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A Legal NLP datasets

Bellow are the details of the legal NLP datasets we
used for the evaluation of our models:

• EURLEX57K (Chalkidis et al., 2019b) con-
tains 57k legislative documents from EURLEX

with an average length of 727 words. All docu-
ments have been annotated by the Publications
Office of EU with concepts from EUROVOC.1

The average number of labels per document is
approx. 5, while many of them are rare. The
dataset is split into training (45k), develop-
ment (6k), and test (6k) documents.

• ECHR-CASES (Chalkidis et al., 2019a) con-
tains approx. 11.5k cases from ECHR’s public
database. For each case, the dataset provides
a list of facts. Each case is also mapped to
articles of the Human Rights Convention that
were violated (if any). The dataset can be used
for binary classification, where the task is to
identify if there was a violation or not, and for
multi-label classification where the task is to
identify the violated articles.

• CONTRACTS-NER (Chalkidis et al., 2017,
2019d) contains approx. 2k US contracts from
EDGAR. Each contract has been annotated
with multiple contract elements such as ti-
tle, parties, dates of interest, governing law,
jurisdiction, amounts and locations, which
have been organized in three groups (con-
tract header, dispute resolution, lease details)
based on their position in contracts.

B Implementation details and results on
downstream tasks

Below we describe the implementation details for
fine-tuning BERT and LEGAL-BERT on the three
downstream tasks:

1http://eurovoc.europa.eu/

EURLEX57K: We replicate the experiments of
Chalkidis et al. (2019c), where a linear layer
with L (number of labels) sigmoid activations
was placed on top of BERT’s [CLS] final rep-
resentation. We follow the same configuration
for all LEGAL-BERT variations.

ECHR-CASES: We replicate the best method of
Chalkidis et al. (2019a), which is a hierarchi-
cal version of BERT, where initially a shared
BERT encodes each case fact independently
and produces N fact embeddings ([CLS] rep-
resentations). A self-attention mechanism,
similar to Yang et al. (2016), produces the
final document representation. A linear layer
with softmax activation gives the final scores.

CONTRACTS-NER We replicate the experiments
of Chalkidis et al. (2019d) in all of their
three parts (contract header, dispute resolu-
tion, lease details). In these experiments, the
final representations of the original BERT for
all (sentencepiece) tokens in the sequence are
fed to a linear CRF layer.

We again follow Chalkidis et al. (2019c,a,d) in
the reported evaluation measures.

C Efficiency comparison for various
BERT-based models

Recently there has been a debate on the over-
parameterization of BERT (Kitaev et al., 2020;
Rogers et al., 2020). Towards that directions most
studies suggest a parameter sharing technique (Lan
et al., 2019) or distillation of BERT by decreasing
the number of layers (Sanh et al., 2019). How-
ever the main bottleneck of transformers in mod-
ern hardware is not primarily the total number
of parameters, misinterpreted into the number of
stacked layers. Instead Out Of Memory (OOM) is-
sues mainly happen as a product of wider models

http://eurovoc.europa.eu/


in terms of hidden units’ dimensionality and the
number of attention heads, which affects gradient
accumulation in feed-forward and multi-head at-
tention layers (see Table 1). Table 1 shows that
LEGAL-BERT-SMALL despite having 3× and 2×
the parameters of ALBERT and ALBERT-LARGE

has faster training and inference times. We expect
models overcoming such limitations to be widely
adopted by researchers and practitioners with lim-
ited resources. Towards the same direction Google
released several lightweight versions of BERT.2

Training Inference
Model. Params T HU AH Max BS Speed Speed

BS = 1 BS = max BS = 1

BERT-BASE 110M 12 768 12 6 1.00× 1.00× 1.00×
ALBERT. 12M 12 768 12 12 1.26× 1.21× 1.00×
ALBERT-LARGE 18M 24 1024 12 4 0.49× 0.37× 0.36×
DISTIL-BERT 66M 6 768 12 16 1.66× 2.36× 1.70×
LEGAL-BERT 110M 12 768 12 6 1.00× 1.00× 1.00×
LEGAL-BERT-SMALL 35M 6 512 8 26 2.43× 4.00× 1.70×

Table 1: Comparison of BERT-based models for different
batch sizes (BS) in a single 11GB NVIDIA-2080TI. Resource
efficiency of the models mostly relies on the number of hidden
units (HU ), attentions heads (AH) and Transformer blocks
T , rather than the number of parameters.
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