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Abstract

The Encoder-Decoder model is widely used in
natural language generation tasks. However,
the model sometimes suffers from repeated re-
dundant generation, misses important phrases,
and includes irrelevant entities. Toward solv-
ing these problems we propose a novel source-
side token prediction module. Our method
jointly estimates the probability distributions
over source and target vocabularies to capture
the correspondence between source and target
tokens. Experiments show that the proposed
model outperforms the current state-of-the-art
method in the headline generation task. We
also show that our method can learn a reason-
able token-wise correspondence without know-
ing any true alignment1.

1 Introduction

The Encoder-Decoder model with the attention mech-
anism (EncDec) (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015) has
been an epoch-making development that has led to
great progress being made in many natural language
generation tasks, such as machine translation (Bah-
danau et al., 2015), dialog generation (Shang et al.,
2015), and headline generation (Rush et al., 2015).
Today, EncDec and its variants are widely used as
the predominant baseline method in these tasks.

∗This work is a product of collaborative research program
of Tohoku University and NTT Communication Science Labora-
tories.

1Our code for reproducing the experiments is available at
https://github.com/butsugiri/UAM

Unfortunately, as often discussed in the commu-
nity, EncDec sometimes generates sentences with
repeating phrases or completely irrelevant phrases
and the reason for their generation cannot be inter-
preted intuitively. Moreover, EncDec also sometimes
generates sentences that lack important phrases. We
refer to these observations as the odd generation prob-
lem (odd-gen) in EncDec. The following table shows
typical examples of odd-gen actually generated by a
typical EncDec.

(1) Repeating Phrases

Gold: duran duran group fashionable again
EncDec: duran duran duran duran

(2) Lack of Important Phrases

Gold: graf says goodbye to tennis due to
injuries

EncDec: graf retires

(3) Irrelevant Phrases

Gold: u.s. troops take first position in
serb-held bosnia

EncDec: precede sarajevo

This paper tackles for reducing the odd-gen in the
task of abstractive summarization. In machine trans-
lation literature, coverage (Tu et al., 2016; Mi et al.,
2016) and reconstruction (Tu et al., 2017) are promis-
ing extensions of EncDec to address the odd-gen.
These models take advantage of the fact that machine
translation is the loss-less generation (lossless-gen)
task, where the semantic information of source- and
target-side sequence is equivalent. However, as dis-
cussed in previous studies, abstractive summarization
is a lossy-compression generation (lossy-gen) task.
Here, the task is to delete certain semantic informa-
tion from the source to generate target-side sequence.
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Therefore the models such as the coverage and the
reconstruction cannot work appropriately on abstrac-
tive summarization.

Recently, Zhou et al. (2017) proposed incorporat-
ing an additional gate for selecting an appropriate
set of words from given source sentence. Moreover,
Suzuki and Nagata (2017) introduced a module for
estimating the upper-bound frequency of the target
vocabulary given a source sentence. These methods
essentially address individual parts of the odd-gen in
lossy-gen tasks.

In contrast to the previous studies, we propose
a novel approach that addresses the entire odd-gen
in lossy-gen tasks. The basic idea underlying our
method is to add an auxiliary module to EncDec
for modeling the token-wise correspondence of the
source and target, which includes drops of source-
side tokens. We refer to our additional module as the
Source-side Prediction Module (SPM). We add the
SPM to the decoder output layer to directly estimate
the correspondence during the training of EncDec.

We conduct experiments on a widely-used head-
line generation dataset (Rush et al., 2015) and eval-
uate the effectiveness of the proposed method. We
show that the proposed method outperforms the cur-
rent state-of-the-art method on this dataset. We also
show that our method is able to learn a reasonable
token-wise correspondence without knowing any true
alignment, which may help reduce the odd-gen.

2 Lossy-compression Generation

We address the headline generation task introduced
in Rush et al. (2015), which is a typical lossy-gen
task. The source (input) is the first sentence of a
news article, and the target (output) is the headline
of the article. We say I and J represent the num-
bers of tokens in the source and target, respectively.
An important assumption of the headline generation
(lossy-gen) task is that the relation I > J always
holds, namely, the target must be shorter than the
source. This implies that we need to optimally select
salient concepts included in given source sentence.
This selection indeed increases a difficulty of the
headline generation for EncDec.

Note that it is an essentially difficult problem for
EncDec to learn an appropriate paraphrasing of each
concept in the source, which can be a main reason

for irrelevant generation. In addition, EncDec also
needs to manage the selection of concepts in the
source; e.g., discarding an excessive number of con-
cepts from the source would yield a headline that
was too short, and utilizing the same concept multi-
ple times may lead a redundant headline.

3 Encoder-Decoder Model with Attention
Mechanism (EncDec)

This section briefly describes EncDec as the base-
line model of our method2. To explain EncDec con-
cisely, let us consider that the input of EncDec is a
sequence of one-hot vectors X obtained from the
given source-side sentence. Let xi ∈ {0, 1}Vs repre-
sent the one-hot vector of the i-th token inX , where
Vs represents the number of instances (tokens) in
the source-side vocabulary Vs. We introduce x1:I to
represent (x1, . . . ,xI) by a short notation, namely,
X = x1:I . Similarly, let yj ∈ {0, 1}Vt represent
the one-hot vector of the j-th token in target-side
sequence Y , where Vt is the number of instances
(tokens) in the target-side vocabulary Vt. Here, we
define Y as always containing two additional one-
hot vectors of special tokens 〈bos〉 for y0 and 〈eos〉
for yJ+1. Thus, Y = y0:J+1; its length is always
J + 2. Then, EncDec models the following condi-
tional probability:

p(Y |X) =
∏J+1
j=1 p(yj |y0:j−1,X). (1)

EncDec encodes source one-hot vector sequence
x1:I , and generates the hidden state sequence h1:I ,
where hi ∈ RH for all i, and H is the size of the
hidden state. Then, the decoder with the attention
mechanism computes the vector zj ∈ RH at every
decoding time step j as:

zj = AttnDec(yj−1,h1:I). (2)

We apply RNN cells to both the encoder and decoder.
Then, EncDec generates a target-side token based on
the probability distribution oj ∈ RVt as:

oj = softmax(Wozj + bo), (3)

whereWo ∈ RVt×H is a parameter matrix and bo ∈
RVt is a bias term3.

2Our model configuration follows EncDec described in Lu-
ong et al. (2015).

3For more detailed definitions of the encoder, decoder, and
attention mechanism, see Appendices A, B and C.
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Figure 1: Overview of EncDec+SPM. The module
inside the dashed rectangular box represents the SPM.
The SPM predicts the probability distribution over
the source vocabulary qj at each time step j. After
predicting all the time steps, the SPM compares the
sum of the predictions q̃ with the sum of the source-
side tokens x̃ as an objective function `src.

To train EncDec, letD be training data for headline
generation that consists of source-headline sentence
pairs. Let θ represent all parameters in EncDec. Our
goal is to find the optimal parameter set θ̂ that mini-
mizes the following objective function G1(θ) for the
given training data D:

G1(θ) =
1
|D|
∑

(X,Y )∈D `trg(Y ,X, θ),

`trg(Y ,X, θ) = − log
(
p(Y |X, θ)

)
. (4)

Since oj for each j is a vector representation of the
probabilities of p(ŷ|y0:j−1,X, θ) over the target vo-
cabularies ŷ ∈ Vt, we can calculate `trg as:

`trg(Y ,X, θ) = −
∑J+1

j=1 y
>
j · log

(
oj
)
. (5)

In the inference step, we use the trained parameters
to search for the best target sequence. We use beam
search to find the target sequence that maximizes the
product of the conditional probabilities as described
in Equation 1.

4 Proposed Method: Source Prediction
Module (SPM)

In Section 2, we assumed that the selection of con-
cepts in the source is an essential part of the odd-gen.
Thus, our basic idea is to extend EncDec that can

manage the status of concept utilization during head-
line generation. More precisely, instead of directly
managing concepts since they are not well-defined,
We consider to model token-wise correspondence
of the source and target, including the information
of source-side tokens that cannot be aligned to any
target-side tokens.

Figure 1 overviews the proposed method, SPM.
During the training process of EncDec, the decoder
estimates the probability distribution over source-side
vocabulary, which is qj ∈ RVs , in addition to that of
the target-side vocabulary, oj ∈ RVt , for each time
step j. Note that the decoder continues to estimate the
distributions up to source sequence length I regard-
less of target sequence length J . Here, we introduce
a special token 〈pad〉 in the target-side vocabulary,
and assume that 〈pad〉 is repeatedly generated after
finishing the generation of all target-side tokens as
correct target tokens. This means that we always
assume that the numbers of tokens in the source and
target is the same, and thus, our method allows to put
one-to-one correspondence into practice in the lossy-
gen task. In this way, EncDec can directly model
token-wise correspondence of source- and target-side
tokens on the decoder output layer, which includes
the information of unaligned source-side tokens by
alignment to 〈pad〉.

Unfortunately, standard headline generation
datasets have no information of true one-to-one align-
ments between source- and target-side tokens. Thus,
we develop a novel method for training token-wise
correspondence model that takes unsupervised learn-
ing approach. Specifically, we minimize sentence-
level loss instead of token-wise alignment loss. We
describe the details in the following sections.

4.1 Model Definition

In Figure 1, the module inside the dashed line repre-
sents the SPM. First, the SPM calculates a probability
distribution over the source vocabulary qj ∈ RVs at
each time step j in the decoding process by using the
following equation:

qj = softmax(Wqzj + bq), (6)

where Wq ∈ RVs×H is a parameter matrix like Wo

in Equation 3, and bq ∈ RVs is a bias term. As de-
scribed in Section 3, EncDec calculates a probability



distribution over the target vocabulary oj from zj .
Therefore, EncDec with the SPM jointly estimates
the probability distributions over the source and tar-
get vocabularies from the same vector zj .

Next, we define Y ′ as a concatenation of the one-
hot vectors of the target-side sequence Y and those
of the special token 〈pad〉 of length I−(J+1). Here,
yJ+1 is a one-hot vector of 〈eos〉, and yj for each
j ∈ {J + 2, . . . , I} is a one-hot vector of 〈pad〉. We
define Y ′ = Y if and only if J + 1 = I . Note that
the length of Y ′ is always no shorter than that of Y ,
that is, |Y ′| ≥ |Y | since headline generation always
assumes I > J as described in Section 2.

Let x̃ and q̃ be the sum of all one-hot vectors
in source sequence x1:I and all prediction of the
SPM q1:I , respectively; that is, x̃ =

∑I
i=1 xi and

q̃ =
∑I

j=1 qj . Note that x̃ is a vector representation
of the occurrence (or bag-of-words representation) of
each source-side vocabulary appearing in the given
source sequence.

EncDec with the SPM models the following con-
ditional probability:

p(Y ′, x̃|X) = p(x̃|Y ′,X)p(Y ′|X). (7)

We define p(Y ′|X) as follows:

p(Y ′|X) =
∏I
j=1 p(yj |y0:j−1,X), (8)

which is identical to p(Y |X) in Equation 1 except
for substituting I for J to model the probabilities of
〈pad〉 that appear from j = I − (J + 1) to j = I .
Next, we define p(x̃|Y ′,X) as follows:

p(x̃|Y ′,X) =
1

Z
exp

(
−‖q̃ − x̃‖22

C

)
, (9)

where Z is a normalization term, and C is a hyper-
parameter that controls the sensitivity of the distribu-
tion.

4.2 Training and Inference of SPM
Training Let γ represent the parameter set of SPM.
Then, we define the loss function for SPM as

`src(x̃,X,Y ′, γ, θ) = − log
(
p(x̃|Y ′,X, γ, θ)

)
.

From Equation 9, we can derive `src as

`src(x̃,X,Y ′, γ, θ) =
1

C
‖q̃ − x̃‖22 + log(Z).

(10)

We can discard the second term on the RHS, that is
log(Z), since this is independent of γ and θ.

Here, we regard the sum of `trg and `src as an ob-
jective loss function of multi-task training. Formally,
we train the SPM with EncDec by minimizing the
following objective function G2:

G2(θ, γ) =
1
|D|
∑

(X,Y )∈D

(
`trg(Y

′,X, θ)

+ `src(x̃,X,Y ′, γ, θ)
)

(11)

Inference In the inference time, the goal is only
to search for the best target sequence. Thus, we
do not need to compute SPM during the inference.
Similarly, it is also unnecessary to produce 〈pad〉
after generating 〈eos〉. Thus, the actual computation
cost of our method for the standard evaluation is
exactly the same as that of the base EncDec.

5 Experiment

5.1 Settings

Dataset The origin of the headline generation
dataset used in our experiments is identical to that
used in Rush et al. (2015), namely, the dataset con-
sists of pairs of the first sentence of each article and
its headline from the annotated English Gigaword
corpus (Napoles et al., 2012).

We slightly changed the data preparation proce-
dure to achieve a more realistic and reasonable eval-
uation since the widely-used provided evaluation
dataset already contains 〈unk〉, which is a replace-
ment of all low frequency words. This is because
the data preprocessing script provided by Rush et al.
(2015)4 automatically replaces low frequency words
with 〈unk〉 5. To penalize 〈unk〉 in system outputs dur-
ing the evaluation, we removed 〈unk〉 replacement
procedure from the preprocessing script. We believe
this is more realistic evaluation setting.

Rush et al. (2015) defined the training, validation
and test split, which contain approximately 3.8M,
200K and 400K source-headline pairs, respectively.
We used the entire training split for training as in

4https://github.com/facebookarchive/
NAMAS.

5In a personal communication with the first author of Zhou et
al. (2017), we found that their model decodes 〈unk〉 in the same
form as it appears in the test set, and 〈unk〉 had a positive effect
on the final performance of the model.
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the previous studies. We randomly sampled test data
and validation data from the validation split since we
found that the test split contains many noisy instances.
Finally, our validation and test data consist of 8K and
10K source-headline pairs, respectively. Note that
they are relatively large compared with the previously
used datasets, and they do not contain 〈unk〉.

We also evaluated our experiments on the test
data used in the previous studies. To the best of
our knowledge, two test sets from the Gigaword are
publicly available by Rush et al. (2015)6 and Zhou et
al. (2017)7. Here, both test sets contain 〈unk〉 8.
Evaluation Metric We evaluated the perfor-
mance by ROUGE-1 (RG-1), ROUGE-2 (RG-2) and
ROUGE-L (RG-L)9. We report the F1 value as given
in a previous study10. We computed the scores with
the official ROUGE script (version 1.5.5).
Comparative Methods To investigate the effec-
tiveness of the SPM, we evaluate the performance of
the EncDec with the SPM. In addition, we investigate
whether the SPM improves the performance of the
state-of-the-art method: EncDec+sGate. Thus, we
compare the following methods on the same training
setting.

EncDec This is the implementation of the base
model explained in Section 3.

EncDec+sGate To reproduce the state-of-the-art
method proposed by Zhou et al. (2017), we combined
our re-implemented selective gate (sGate) with the
encoder of EncDec.

EncDec+SPM We combined the SPM with the
EncDec as explained in Section 4.

EncDec+sGate+SPM This is the combination of
the SPM with the EncDec+sGate.
Implementation Details Table 1 summarizes
hyper-parameters and model configurations. We se-
lected the settings commonly-used in the previous
studies, e.g., (Rush et al., 2015; Nallapati et al., 2016;
Suzuki and Nagata, 2017).

We constructed the vocabulary set using Byte-Pair-

6https://github.com/harvardnlp/
sent-summary

7https://res.qyzhou.me
8We summarize the details of the dataset in Appendix D
9We restored sub-words to the standard token split for the

evaluation.
10 ROUGE script option is: “-n2 -m -w 1.2”

Source Vocab. Size Vs 5131
Target Vocab. Size Vt 5131
Word Embed. Size D 200
Hidden State Size H 400

RNN Cell Long Short-Term Memory
(LSTM) (Hochreiter and Schmid-
huber, 1997)

Encoder RNN Unit 2-layer bidirectional-LSTM
Decoder RNN Unit 2-layer LSTM with attention (Lu-

ong et al., 2015)

Optimizer Adam (Kingma and Ba, 2015)
Initial Learning Rate 0.001
Learning Rate Decay 0.5 for each epoch (after epoch 9)
Weight C of `src 10
Mini-batch Size 256 (shuffled at each epoch)
Gradient Clipping 5
Stopping Criterion Max 15 epochs with early stopping
Regularization Dropout (rate 0.3)
Beam Search Beam size 20 with the length nor-

malization

Table 1: Configurations used in our experiments

Encoding11 (BPE) (Sennrich et al., 2016) to handle
low frequency words, as it is now a common practice
in neural machine translation. The BPE merge op-
erations are jointly learned from the source and the
target. We set the number of the BPE merge opera-
tions at 5, 000. We used the same vocabulary set for
both the source Vs and the target Vt.

5.2 Results
Table 2 summarizes results for all test data. The
table consists of three parts split by horizontal lines.
The top and middle rows show the results on our
training procedure, and the bottom row shows the
results reported in previous studies. Note that the top
and middle rows are not directly comparable to the
bottom row due to the differences in preprocessing
and vocabulary settings.

The top row of Table 2 shows that EncDec+SPM
outperformed both EncDec and EncDec+sGate. This
result indicates that the SPM can improve the perfor-
mance of EncDec. Moreover, it is noteworthy that
EncDec+sGate+SPM achieved the best performance
in all metrics even though EncDec+sGate consists
of essentially the same architecture as the current

11https://github.com/rsennrich/
subword-nmt
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Gigaword Test (Ours) Gigaword Test (Rush) Gigaword Test (Zhou)

Models RG-1 RG-2 RG-L RG-1 RG-2 RG-L RG-1 RG-2 RG-L

EncDec 45.74 23.80 42.95 34.52 16.77 32.19 45.62 24.26 42.87
EncDec+sGate (our impl. of SEASS) 45.98 24.17 43.16 35.00 17.24 32.72 45.96 24.63 43.18
EncDec+SPM† 46.18 24.34 43.35 35.17 17.07 32.75 46.21 24.78 43.27
EncDec+sGate+SPM† 46.41 24.58 43.59 35.79 17.84 33.34 46.34 24.85 43.49

EncDec+sGate+SPM (5 Ensemble)† 47.16 25.34 44.34 36.23 18.11 33.79 47.39 25.89 44.41

ABS (Rush et al., 2015) - - - 29.55 11.32 26.42 37.41 15.87 34.70
SEASS (Zhou et al., 2017) - - - 36.15 17.54 33.63 46.86 24.58 43.53
DRGD (Li et al., 2017) - - - 36.27 17.57 33.62 - - -
WFE (Suzuki and Nagata, 2017) - - - 36.30 17.31 33.88 - - -

Table 2: Full length ROUGE F1 evaluation results. The top and middle rows show the results on our evaluation
setting. † is the proposed model. The bottom row shows published scores reported in previous studies. Note
that (1) SEASS consists of essentially the same architecture as our implemented EncDec+sGate, and (2) the
top and middle rows are not directly comparable to the bottom row due to differences in preprocessing and
vocabulary settings. (see discussions in Section 5.2).

state-of-the-art model, i.e., SEASS.
The bottom row of Table 2 shows the results of pre-

vious methods. They often obtained higher ROUGE
scores than our models in Gigaword Test (Rush) and
Gigaword Test (Zhou). However, this does not imme-
diately imply that our method is inferior to the previ-
ous methods. This result is basically derived from the
inconsistency of the vocabulary. In detail, our train-
ing data does not contain 〈unk〉 because we adopted
the BPE to construct the vocabulary. Thus, our exper-
imental setting is severer than that of previous studies
with the presence of 〈unk〉 in the datasets of Giga-
word Test (Rush) and Gigaword Test (Zhou). This is
also demonstrated by the fact that EncDec+sGate ob-
tained a lower score than those reported in the paper
of SEASS, which has the same model architecture as
EncDec+sGate.

6 Discussion

The motivation of the SPM is to suppress odd-gen
by enabling a one-to-one correspondence between
the source and the target. Thus, in this section, we
investigate whether the SPM reduces odd-gen in com-
parison to EncDec.

6.1 Does SPM Reduce odd-gen?

For a useful quantitative analysis, we should compute
the statistics of generated sentences containing odd-
gen. However, it is hard to detect odd-gen correctly.
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(b) Lack of Important Phrases

Figure 2: Comparison between EncDec and
EncDec+SPM on the number of sentences that po-
tentially contain the odd-gen. The smaller examples
mean reduction of the odd-gen.

Instead, we determine a pseudo count of each type of
odd-gen as follows.
Repeating phrases We assume that a model
causes repeating phrases if the model outputs the
same token more than once. Therefore, we compute
the frequency of tokens that occur more than once
in the generated headlines. However, some phrases
might occur more than once in the gold data. To
address this case, we subtract the frequency of tokens
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(1) Repeating Phrases

Gold: duran duran group fashionable again Gold: community college considers building $
## million technology

EncDec: duran duran duran duran EncDec: college college colleges learn to get
ideas for tech center

EncDec+SPM: duran duran fashionably cool once
again

EncDec+SPM: l.a. community college officials say
they ’ll get ideas

(2) Lack of Important Phrases

Gold: graf says goodbye to tennis due to
injuries

Gold: new york ’s primary is most
suspenseful of super tuesday races

EncDec: graf retires EncDec: n.y.
EncDec+SPM: german tennis legend steffi graf

retires
EncDec+SPM: new york primary enters most

suspenseful of super tuesday contests

(3) Irrelevant Phrases

Gold: u.s. troops take first position in
serb-held bosnia

Gold: northridge hopes confidence does n’t
wane

EncDec: precede sarajevo EncDec: csun ’s csun
EncDec+SPM: u.s. troops set up first post in

bosnian countryside
EncDec+SPM: northridge tries to win northridge men

’s basketball team

Figure 3: Examples of generated summaries. “Gold” indicates the reference headline. The proposed
EncDec+SPM model successfully reduced odd-gen.

in the reference headline from the above calculation
result. The result of this subtraction is taken to be
the number of repeating phrases in each generated
headline.
Lack of important phrases We assume generated
headline which is shorter than the gold omits one
or more important phrase. Thus, we compute the
difference in gold headline length and the generated
headline length.
Irrelevant phrases We consider that improve-
ments in ROUGE scores indicate a reduction in ir-
relevant phrases because we believe that ROUGE
penalizes irrelevant phrases.

Figure 2 shows the number of repeating phrases
and lack of important phrases in Gigaword Test
(Ours). This figure indicates that EncDec+SPM re-
duces the odd-gen in comparison to EncDec. Thus,
we consider the SPM reduced odd-gen. Figure
3 shows sampled headlines actually generated by
EncDec and EncDec+SPM. It is clear that the out-
puts of EncDec contain odd-gen while those of the
EncDec+SPM do not. These examples also demon-
strate that SPM successfully reduces odd-gen.

6.2 Visualizing SPM and Attention

We visualize the prediction of the SPM and the at-
tention distribution to see the acquired token-wise
correspondence between the source and the target.

Specifically, we feed the source-target pair (X,Y )
to EncDec and EncDec+SPM, and then collect the
source-side prediction (q1:I) of EncDec+SPM and
the attention distribution (α1:J) of EncDec12. For
source-side prediction, we extracted the probability
of each token xi ∈X from qj , j ∈ {1, . . . , I}.

Figure 4 shows an example of the heat map13. We
used Gigaword Test (Ours) as the input. The brackets
in the y-axis represent the source-side tokens that
are aligned with target-side tokens. We selected the
aligned tokens in the following manner: For the atten-
tion (Figure 4a), we select the token with the largest
attention value. For the SPM (Figure 4b), we select
the token with the largest probability over the whole
vocabulary Vs.

Figure 4a indicates that most of the attention dis-
tribution is concentrated at the end of the sentence.
As a result, attention provides poor token-wise cor-
respondence between the source and the target. For
example, target-side tokens “tokyo” and “end” are
both aligned with the source-side sentence period. In
contrast, Figure 4b shows that the SPM captures the
correspondence between the source and the target.
The source sequence “tokyo stocks closed higher” is
successfully aligned with the target “tokyo stocks end
higher”. Moreover, the SPM aligned unimportant to-

12For details of the attention mechanism, see Appendix C.
13For more visualizations, see Appendix E
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Figure 4: Visualization of EncDec and EncDec+SPM.
The x-axis and y-axis of the figure correspond to the
source and the target sequence respectively. Tokens
in the brackets represent source-side tokens that are
aligned with target-side tokens at that time step.

kens for the headline such as “straight” and “tuesday”
with 〈pad〉 tokens. Thus, this example suggests that
the SPM achieves better token-wise correspondence
than attention. It is noteworthy that the SPM captured
a one-to-one correspondence even though we trained
it without correct alignment information.

7 Related Work

In the field of neural machine translation, several
methods have been proposed to solve the odd-gen.
The coverage model (Mi et al., 2016; Tu et al., 2016)
forces the decoder to attend to every part of the source
sequence to translate all semantic information in the
source. The reconstructor (Tu et al., 2017) trains the
translation model from the target to the source. More-
over, Weng et al. (2017) proposed a method to predict
the untranslated words from the decoder at each time
step. These methods aim to convert all contents in
the source into the target, since machine translation
is a lossless-gen task. In contrast, our proposal, SPM,
models both paraphrasing and discarding to reduce
the odd-gen in the lossy-gen task.

We focused on headline generation which is a well-
known lossy-gen task. Recent studies have actively
applied the EncDec to this task (Rush et al., 2015;

Chopra et al., 2016; Nallapati et al., 2016). For
the headline generation task, Zhou et al. (2017) and
Suzuki and Nagata (2017) tackled a part of the odd-
gen. Zhou et al. (2017) incorporated an additional
gate (sGate) into the encoder to select appropriate
words from the source. Suzuki and Nagata (2017)
proposed a frequency estimation module to reduce
the repeating phrases. Our motivation is similar to
theirs, but our goal is to solve all odd-gen compo-
nents. In addition, we can combine these approaches
with the proposed method. In fact, we showed in Sec-
tion 5.2 that the SPM can improve the performance
of sGate with EncDec.

Apart from tackling odd-gen, some studies pro-
posed methods to improve the performance of the
headline generation task. Takase et al. (2016) incor-
porated AMR (Banarescu et al., 2013) into the en-
coder to use the syntactic and semantic information of
the source. Nallapati et al. (2016) also encoded addi-
tional information of the source such as TF-IDF and
named entities. Li et al. (2017) modeled the typical
structure of a headline, such as “Who Action What”
with a variational auto-encoder. These approaches
improve the performance of headline generation, but
it is unclear that they can reduce odd-gen.

8 Conclusion

In this paper, we introduced an approach for reducing
the odd-gen in the lossy-gen task. The proposal, SPM,
learns to predict the one-to-one correspondence of
tokens in the source and the target. Experiments on
the headline generation task showed that the SPM
improved the performance of typical EncDec, and
outperformed the current state-of-the-art model. Fur-
thermore, we demonstrated that the SPM reduced
the odd-gen. In addition, SPM obtained token-wise
correspondence between the source and the target
without any alignment data.

Acknowledgment

We are grateful to anonymous reviewers for their in-
sightful comments. We thank Sosuke Kobayashi for
providing helpful comments. We also thank Qingyu
Zhou for providing a dataset and information for a
fair comparison.

PACLIC 32

296 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



References
[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2015. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. In
Proceedings of the 3rd International Conference on
Learning Representations (ICLR 2015).

[Banarescu et al.2013] Laura Banarescu, Claire Bonial,
Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Her-
mjakob, Kevin Knight, Philipp Koehn, Martha Palmer,
and Nathan Schneider. 2013. Abstract Meaning Rep-
resentation for Sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability
with Discourse, pages 178–186.

[Cho et al.2014] Kyunghyun Cho, Bart van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP 2014), pages 1724–
1734.

[Chopra et al.2016] Sumit Chopra, Michael Auli, and
Alexander M. Rush. 2016. Abstractive Sentence Sum-
marization with Attentive Recurrent Neural Networks.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL 2016), pages 93–98.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780.

[Kingma and Ba2015] Diederik Kingma and Jimmy Ba.
2015. Adam: A Method for Stochastic Optimization.
In Proceedings of the 3rd International Conference on
Learning Representations (ICLR 2015).

[Li et al.2017] Piji Li, Wai Lam, Lidong Bing, and Zihao
Wang. 2017. Deep Recurrent Generative Decoder for
Abstractive Text Summarization. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2017), pages 2081–2090.

[Luong et al.2015] Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective Approaches to
Attention-based Neural Machine Translation. In Pro-
ceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2015), pages
1412–1421.

[Mi et al.2016] Haitao Mi, Baskaran Sankaran, Zhiguo
Wang, and Abe Ittycheriah. 2016. Coverage Embed-
ding Models for Neural Machine Translation. In Pro-
ceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2016), pages
955–960.

[Nallapati et al.2016] Ramesh Nallapati, Bowen Zhou, Ci-
cero dos Santos, Caglar Gulcehre, and Bing Xi-

ang. 2016. Abstractive Text Summarization Using
Sequence-to-Sequence RNNs and Beyond. In Proceed-
ings of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 280–290.

[Napoles et al.2012] Courtney Napoles, Matthew Gorm-
ley, and Benjamin Van Durme. 2012. Annotated Gi-
gaword. In Proceedings of the Joint Workshop on Au-
tomatic Knowledge Base Construction and Web-scale
Knowledge Extraction, AKBC-WEKEX ’12, pages 95–
100.

[Rush et al.2015] Alexander M. Rush, Sumit Chopra, and
Jason Weston. 2015. A Neural Attention Model for Ab-
stractive Sentence Summarization. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2015), pages 379–389.

[Sennrich et al.2016] Rico Sennrich, Barry Haddow, and
Alexandra Birch. 2016. Neural Machine Translation
of Rare Words with Subword Units. In Proceedings of
the 54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2016), pages 1715–1725.

[Shang et al.2015] Lifeng Shang, Zhengdong Lu, and
Hang Li. 2015. Neural Responding Machine for Short-
Text Conversation. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natu-
ral Language Processing (ACL & IJCNLP 2015), pages
1577–1586, July.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. Le. 2014. Sequence to Sequence Learning
with Neural Networks. In Advances in Neural Informa-
tion Processing Systems 27 (NIPS 2014), pages 3104–
3112.

[Suzuki and Nagata2017] Jun Suzuki and Masaaki Nagata.
2017. Cutting-off Redundant Repeating Generations
for Neural Abstractive Summarization. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics (EACL
2017), pages 291–297.

[Takase et al.2016] Sho Takase, Jun Suzuki, Naoaki
Okazaki, Tsutomu Hirao, and Masaaki Nagata. 2016.
Neural Headline Generation on Abstract Meaning Rep-
resentation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2016), pages 1054–1059.

[Tu et al.2016] Zhaopeng Tu, Zhengdong Lu, Yang Liu,
Xiaohua Liu, and Hang Li. 2016. Modeling Coverage
for Neural Machine Translation. In Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2016), pages 76–85.

[Tu et al.2017] Zhaopeng Tu, Yang Liu, Lifeng Shang, Xi-
aohua Liu, and Hang Li. 2017. Neural Machine Trans-
lation with Reconstruction. In Thirty-First AAAI Con-
ference on Artificial Intelligence (AAAI 2017), pages
3097–3103.

PACLIC 32

297 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



[Weng et al.2017] Rongxiang Weng, Shujian Huang, Zaix-
iang Zheng, Xinyu Dai, and Jiajun Chen. 2017. Neural
Machine Translation with Word Predictions. In Pro-
ceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2017), pages
136–145.

[Zhou et al.2017] Qingyu Zhou, Nan Yang, Furu Wei, and
Ming Zhou. 2017. Selective Encoding for Abstractive
Sentence Summarization. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (ACL 2017), pages 1095–1104.

PACLIC 32

298 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



A Baseline Model Encoder

We employ bidirectional RNN (BiRNN) as the en-
coder of the baseline model. BiRNN is composed
of two separate RNNs for forward (

−−−→
RNNsrc) and

backward (
←−−−
RNNsrc) directions. The forward RNN

reads the source sequenceX from left to right order
and constructs hidden states (~h1, . . . , ~hI). Similarly,
the backward RNN reads the input in the reverse
order to obtain another sequence of hidden states
( ~h1, . . . , ~hI). Finally, we take a summation of the
hidden states of each direction to construct the final
representation of the source sequence (h1, . . . ,hI).

Concretely, for given time step i, the representation
hi is constructed as follows:

~hi =
−−−→
RNNsrc(Esxi, ~hi−1), (12)

~hi =
←−−−
RNNsrc(Esxi, ~hi+1), (13)

hi = ~hi + ~hi (14)

where Es ∈ RD×Vs denotes the word embedding
matrix of the source-side, and D denotes the size of
word embedding.

B Baseline Model Decoder

The baseline model AttnDec is composed of the
decoder and the attention mechanism. Here, the
decoder is the unidirectional RNN with the input-
feeding approach (Luong et al., 2015). Concretely,
decoder RNN takes the output of the previous time
step yj−1, decoder hidden state ~zj−1 and final hid-
den state zj−1 and derives the hidden state of current
time step zj :

~zj =
−−−→
RNNtrg(Etyj−1, zj−1, ~zj−1), (15)

~z0 = ~hI + ~h1 (16)

where Et ∈ RD×Vt denotes the word embedding
matrix of the decoder. Here, z0 is defined as a zero
vector.

C Baseline Model Attention Mechanism

The attention architecture of the baseline model is
the same as the Global Attention model proposed
by Luong et al. (2015). Attention is responsible
for constructing the final hidden state zj from the
decoder hidden state ~zj and encoder hidden states
(h1, . . . ,hI).

use 〈unk〉? size #.ref source (split)

Training No 3,778,230 1 Giga (train)
Validation No 8,000 1 Giga (valid)
Test (ours) No 10,000 1 Giga (valid)

Test (Rush) Yes 1,951 1 Giga (test)
Test (Zhou) Yes 2,000 1 Giga (valid)

Table 3: Characteristics of each dataset used in our
experiments

First, the model computes the attention distribution
αj ∈ RI from the decoder hidden state ~zj and en-
coder hidden states (h1, . . . ,hI). From among three
attention scoring functions proposed in Luong et al.
(2015), we employ general function. This function
calculates the attention score in bilinear form. Specif-
ically, the attention score between the i-th source
hidden state and the j-th decoder hidden state is com-
puted by the following equation:

αj [i] =
exp(h>i Wα~zj)∑I
i=1 exp(h

>
i Wα~zj)

(17)

whereWα ∈ RH×H is a parameter matrix, andαj [i]
denotes i-th element of αj .
αj is then used for collecting the source-side in-

formation that is relevant for predicting the target
token. This is done by taking the weighted sum on
the encoder hidden states:

cj =

I∑
i=1

αj [i]hi (18)

Finally, the source-side information is mixed with
the decoder hidden state to derive final hidden state
zj . Concretely, the context vector cj is concatenated
with ~zj to form vector uj ∈ R2H . uj is then fed into
a single fully-connected layer with tanh nonlinearity:

zj = tanh(Wsuj) (19)

whereWs ∈ RH×2H is a parameter matrix.

D Dataset Summary

Table 3 summarizes the characteristics of each dataset
used in our experiments.
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E Extra Visualizations of SPM and
Attention

Figures 5, 6 and 7 are additional visualizations of
SPM and attention. We created each figure using the
procedure described in Section 6.2.

F Obtained Alignments

We analyzed source-side prediction to investigate the
alignment acquired by SPM. We randomly sampled
500 source-target pairs from Gigaword Test (Ours),
and fed them to EncDec+SPM. For each decoding
time step j, we created the alignment pair by compar-
ing the target-side token yj with the token with the
highest probability over the source-side probability
distribution qj . Table 4 summarizes some examples
of the obtained alignments. The table shows that the
SPM aligns various types of word pairs, such as verb
inflection and paraphrasing to the shorter form.
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(a) Attention distribution of EncDec
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(b) Source-side prediction of EncDec+SPM

Figure 5: Although “london” is not at the beginning of the source sentence, the SPM aligns “london” in the
source and the target. On the other hand, EncDec concentrates most of the attention at the end of the sentence.
As a result, most of the target-side tokens are aligned with the sentence period of the source sentence.

Type Aligned Pairs: (Target-side Token, SPM Prediction)

Verb Inflection (calls, called), (release, released), (win, won), (condemns, condemned), (rejects,
rejected), (warns, warned)

Paraphrasing to Shorter Form (rules, agreement), (ends, closed), (keep, continued), (sell, issue), (quake, earth-
quake), (eu, european)

Others (tourists, people), (dead, killed), (dead, died), (administration, bush), (aircraft,
planes), (militants, group)

Table 4: Examples of the alignment that the SPM acquired
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(b) Source-side prediction of EncDec+SPM

Figure 6: SPM aligns “election” with “vote”, whereas EncDec aligns “vote” with sentence period.
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(b) Source-side prediction of EncDec+SPM

Figure 7: The SPM aligns “welcomes” with “welcomed.” On the other hand, EncDec aligns “welcomes”
with the sentence period.
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