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Abstract

Language models have been used in many nat-
ural language processing applications. In re-
cent years, the recurrent neural network based
language models have defeated the conven-
tional n-gram based techniques. However, it
is difficult for neural network architectures to
use linguistic annotations. We try to incorpo-
rate part-of-speech features in recurrent neural
network language model, and use them to pre-
dict the next word. Specifically, we proposed a
parallel structure which contains two recurrent
neural networks, one for word sequence mod-
eling and another for part-of-speech sequence
modeling. The state of part-of-speech net-
work helped improve the word sequence’s pre-
diction. Experiments show that the proposed
method performs better than the traditional re-
current network on perplexity and is better at
reranking machine translation outputs.1

1 Introduction

Language models (LMs) are crucial parts of many
natural language processing applications, such as
automatic speech recognition, statistical machine
translation, and natural language generation. Lan-
guage modeling aims to predict the next word given
context or to give the probability of a word sequence
in textual data. In the past decades, n-gram based
modeling techniques were most commonly used in
such NLP applications. However, the recurrent neu-
ral network based language model (RNNLM) and

∗Corresponding author
1Our code is available at https://github.com/

chao-su/prnnlm

its extensions (Mikolov et al., 2010; Mikolov et al.,
2011) have received a lot of attention and achieved
the new state of the art results since 2010. The most
important advantage of RNNLM is that it has the
potential to model unlimited size of context, due to
its recurrent property. That is to say, the hidden
layer has a recurrent connection to itself at previous
timestep.

Part-of-speech (POS) tags capture the syntactic
role of each word, and has been proved to be use-
ful for language modeling (Kneser and Ney, 1993;
A. Heeman, 1998; Galescu and Ringger, 1999;
Wang and Harper, 2002). Jelinek (1985) pointed out
that we can replace the classes with POS tags in lan-
guage model. Kneser and Ney (1993) incorporated
POS tags into n-gram LM and got 37 percents im-
provement. But they got only 10 percents improve-
ment with classes through clustering. A. Heeman
(1998) redefined the objective of automatic speech
recognition: to get both the word sequence and the
POS sequence. His experiments showed 4.2 percent
reduction on perplexity over classes.

It is common to build probabilistic graphical
models using many different linguistic annotations
(Finkel et al., 2006). However, the problem to com-
bine neural architectures with conventional linguis-
tic annotations seems hard. This is because neural
architectures lack flexibility to incorporate achieve-
ments from other NLP tasks (Ji et al., 2016). To ad-
dress the problem, (Ji et al., 2016) used a latent vari-
able recurrent neural network (LVRNN) to construct
language models with discourse relations. LVRNN
was proposed by Chung et al. (2015) to model vari-
ables observed in sequential data.
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Inspired by the POS language models and the
LVRNN models above, we use POS features to im-
prove the performance of RNNLM. We assume that
if we know the next POS tag, the search range to
predict the next word will be shrinked; and the next
POS is closely related with the POS sequence that
has been seen before. Not the same as Ji et al.
(2016), who used a latent variable to model the lan-
guage annotation, we designed a parallel RNN struc-
ture, which consists two RNNs to model the word
sequence and POS sequence respectively. And fur-
ther the state of POS network has an impact on the
word network.

In summary our main contributions are:

• We propose to model words and POS tags si-
multaneously by using a parallel RNN structure
that consists of two recurrent neural networks,
word RNN and POS RNN.

• We propose that the current state of the word
network is conditioned on the current word, the
previous hidden state, and also the state of POS
network.

• We demonstrate the performance of our model
by computing lower perplexity. We conducted
our experiments on three different corpora,
including Penn TreeBank, Switchboard, and
BBC corpora.

The rest parts of this paper are organized as fol-
lows. Section 2 introduces the background tech-
niques, including RNNLM and evaluation for lan-
guage models. Section 3 elaborates our POS tag
language model. Section 4 reports the experimental
results. Section 5 reviews related work and Section
6 concludes the paper.

2 Background

In this section, we introduce the background tech-
niques on which our work is based on. Recurrent
neural network language models (RNNLMs) are im-
portant bases of our work. And the introduced eval-
uation method (perplexity) is used in this paper.

2.1 RNN Language Model
Mikolov et al. (2010) proposed to use recurrent neu-
ral network (RNN) to construct language model. By

Figure 1: A simple Recurrent Neural Network.

using RNN, context information can cycle inside
the network for arbitrarily long time. Though it is
also claimed that learning long-term dependencies
by stochastic gradient descent can be quite difficult.
We simply introduce Mikolov et al. (2010)’s recur-
rent neural network language model and its exten-
sions (Mikolov et al., 2011) here.

We assume that a sentence consists of words, and
each word is represented as y(t), where t is current
time step and y(t) ∈ V ocab. The architecture of
RNNLM is shown in Fig. 1. Input to the network
at time t is w(t) and s(t − 1), where w(t) is a one
hot vector representing the current word y(t), and
s(t − 1) is the hidden layer s at previous time t −
1. The hidden layer s(t) is the current state of the
network. Output layer y(t) represents probability
distribution of next word. Hidden and output layers
are computed as:

si(t) = f


∑

j

wj(t)uij +
∑

k

sk(t− 1)wik




(1)

yk(t) = g

(∑

i

si(t)vki

)
(2)

where f(z) is sigmoid activation function:

f(z) =
1

1 + e−z
(3)

and g(z) is softmax function:

g(zm) =
ezm∑
k e

zk
(4)

In 2011, Mikolov et al. (2011) proposed some ex-
tensions of RNNLM. Those include a training algo-
rithm for recurrent network called backpropagation
through time (BPTT), and two speedup techniques.
One is factorizing the output layer by class layer, and
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the other is adding a compression layer between the
hidden and output layers to reduce the size of the
weight matrix V. In this paper, we use two exten-
sions, BPTT and class layer. But we still use the
simple RNNLM architecture in figures for simplic-
ity.

2.2 Evaluation
The quality of language models is evaluated both in-
trinsically by perplexity and extrinsically by quality
of reranking machine translation outputs. The per-
plexity (PPL) of a word sequence w is defined as

PPL = K

√√√√
K∏

i=1

1

P (wi|w1...i−1)

= 2−
1
K

∑K
i=1 log2 P (wi|w1...i−1)

(5)

Perplexity can be easily evaluated and the model
which yields the lowest perplexity is in some sense
the closest to the true model which generated the
data.

Language model is an essential part of statisti-
cal machine translation systems, for measuring how
likely it is that a translation hypothesis would be
uttered by a native speaker (Koehn, 2010). Under
the same conditions, a better language model brings
a better translation system. Thus, we also evalu-
ate our language model by evaluating the transla-
tion system who uses it. We use the most popular
automatic evaluation metric for translation system,
BLEU (Bilingual Evaluation Understudy) (Papineni
et al., 2002); higher is better.

3 Parallel RNN LM with POS Feature

The traditional RNNLM models word sequences but
ignores other linguistic knowledge. POS is such a
kind of linguistic knowledge. It is easy to acquire
with high annotation accuracy. We now present a
parallel RNN structure over sequences of words and
POS tag information. In this structure, we train two
RNNs simultaneously, one for word sequence and
another for POS sequence. We integrate the state of
POS RNN with the word RNN.

3.1 Parallel RNN
The structure of the parallel RNN is shown in Fig.
2. The parallel RNN consists of two RNNs, word

Figure 2: Structure of the Parallel RNN

RNN and POS RNN. The word RNN is almost the
same as the traditional RNN, except that its hidden
state s(t) is also affected by an output from the state
of POS RNN. The input layer of POS RNN consists
two parts. One is the current POS tag p(t) and the
other is the previous state of POS RNN. The hidden
layer of POS RNN represents the current state of the
network. The output layer represents the probability
distribution of the next POS tag.

We can see that the structure of the word RNN
is similar with traditional RNN. The hidden layer of
RNNLM theoretically contains all the information
of the words those have been seen before. Similarly,
the hidden layer of POS RNN contains the POS in-
formation in history. In order to use these informa-
tion to predict the next word, we add a connection
matrix between the hidden layers of word RNN and
POS RNN.

In Fig. 2, the blue solid lines represent the for-
ward computation, while the red dashed lines rep-
resent the back propagation of errors. Note that
there is no error propagation from the hidden layer
of word RNN to that of POS RNN. It is more likely
that the latter affects the former like a latent variable
in (Ji et al., 2016).

The hidden layer h(t) and output layer z(t) of
POS RNN are computed as

hi(t) = f


∑

j

pj(t)xij +
∑

k

hk(t− 1)zik




(6)
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zk(t) = g

(∑

i

hi(t)yki

)
(7)

The hidden layer of word RNN should be affected
by that of POS RNN. So it is computed as

si(t) = f

(∑

j

wj(t)uij +
∑

k

sk(t)wik

+
∑

l

hl(t)mil

) (8)

3.2 Learning
In language model scenery, our purpose is to get the
best word sequence. The training of the word RNN
is the same as the traditional RNN. Though using
the hidden layer of POS RNN to compute the state
of the word RNN, we do not propagate the latter’s
error vector to the former. This is why we tend to
treat the former also as a latent variable affecting the
word sequence.

We train the POS RNN to maximize the log-
likelihood function of the training data:

O =
T∑

i=1

log dlt(t) (9)

where T is the total number of POS tags in training
examples, and lt is the index of the correct POS tag
for the t’th sample. The error vector in the output
layer eo(t) is computed as

eo(t) = d(t)− z(t) (10)

where d(t) is the one-hot target vector that repre-
sents the POS tag at time t.

We update the parameters of POS RNN using
stochastic gradient descent method. For example,
the matrix Y is updated as

yjk(t+1) = yjk(t)+hj(t)eok(t)α−yjk(t)β (11)

where β is L2 regularization parameter. And the er-
ror vector propagated from the output layer to the
hidden layer is

ehj(t) = hj(t)(1− hj(t))
∑

i

eoj(t)yij (12)

The update of the matrices X and Z is similar
to equation (11). The error vector propagated from
the hidden layer to its previous is similar to equation
(12).

4 Experiments

We evaluated the proposed model in two ways: us-
ing perplexity (PPL) and reranking machine transla-
tion outputs.

4.1 Perplexity Setup

We evaluated our model on three corpora, including
Switchboard-1 Telephone Speech Corpus (SWB),
Penn TreeBank (PTB)2, and BBC3. The former two
corpora was used by Ji et al. (2016), while the last
one was used by Wang and Cho (2016). We took
all their work as comparisons. We splitted all the
corpora into train, valid, and test sets, just like Ji
et al. (2016) and Wang and Cho (2016) did. Statis-
tics of the corpora are listed in Table 1. We tok-
enized all the corpora with tokenizer written by Pi-
dong Wang, Josh Schroeder, and Philipp Koehn 4,
and POS tagged with the Stanford POS Tagger 5.

We implemented our model based on Mikolov’s
RNNLM Tookit6. We considered the value 100 for
the hidden dimension, and 10K for the vocabulary
size.

The POS tagger’s tagset consists of 48 tags. We
counted the times of each tag appeared in the BBC
corpus and sorted them in descending order (see Ta-
ble 2). To verify the effect of POS tags, we gradually
expanded our tagset’s size (5, 10, 15, 20, 25, 30, 35,
40, 45) in the experiments. The size of POS RNN’s
hidden layer was set to one-fifth of the tagset’s size.
For example, varsize = 40 represents that we use
the first 39 tags in Table 2 and reduce other tags to
the OTHER tag and the hidden size of POS RNN
is set to be 40/5 = 8.

2LDC97S62 for SWB, and LDC99T42 for PTB
3http://mlg.ucd.ie/datasets/bbc.html
4https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

5http://nlp.stanford.edu/software/
tagger.shtml

6http://www.fit.vutbr.cz/˜imikolov/
rnnlm/
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SWB PTB BBC

#Sents #Words #Sents #Words #Sents #Words

Train 211K 1.8M 37K 1M 37K 879K
Valid 3.5K 32K 3.6K 97K 2K 47K
Test 4.4K 38K 3.3K 91K 2.2K 51K

Table 1: Statistics of the Corpora SWB, PTB, and BBC

Order POS Times Order POS Times

1 NN 121,359 21 “ 11,010
2 IN 92,042 22 PRP$ 8,939
3 NNP 88,331 23 ” 7,961
4 DT 75,397 24 POS 7,711
5 JJ 52,851 25 : 5,219
6 NNS 47,003 26 FW 4,041
7 . 37,146 27 WDT 3,916
8 , 31,840 28 RP 3,583
9 VBD 31,575 29 JJR 2,990
10 VB 29,429 30 WP 2,865
11 RB 27,261 31 WRB 2,424
12 PRP 26,519 32 JJS 2,215
13 CC 22,554 33 NNPS 1,904
14 TO 22,440 34 EX 1,440
15 VBN 22,096 35 RBR 1,295
16 VBZ 20,795 36 $ 1,127
17 CD 17,696 37 RBS 438
18 VBG 15,773 38 PDT 402
19 VBP 15,409 39 WP$ 114
20 MD 11,015 OTHER 199

Table 2: Times of Each Tag Appeared in BBC Corpora

4.2 Perplexity Results

The perplexities of language modeling on the three
corpora are summarized in Figure 3 and Table 3.

In Figure 3, we demonstrate the results using dif-
ferent number of most frequent POS tags, where the
variable size is actually the size of POS RNN’s hid-
den layer. Note that varsize = 0 represents a tradi-
tional RNNLM. We can see that the perplexity tends
to reduce as the tagset size grows.

In Table 3, we compared our model with classic
5-gram model, Mikolov et al. (2010)’s RNNLM, Ji
et al. (2016)’s, and Wang and Cho (2016)’s work.
We can see that our parallel RNN (p-RNN) per-
forms better than most of them except Wang and
Cho (2016)’s work on BBC corpus. And our model
gets 6.8%-16.5% PPL reduction over Mikolov et al.
(2010)’s RNNLM.

Varsize SWB PTB BBC

0 31.38 113.63 120.49

5 27.67 109.56 121.78

10 27.17 104.42 117.48

15 26.91 103.13 123.74

20 26.70 103.91 115.44

25 26.85 101.98 113.41

30 26.49 100.99 113.70

35 26.50 101.29 113.72

40 26.20 99.36 116.90

45 26.53 100.86 112.35
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Figure 3: Perplexity Reduction with the Growth of Vari-
able size

Model SWB PTB BBC

5-gram 32.10 120.18 127.32
RNNLM 31.38 113.63 120.49

(Ji et al., 2016) 39.60 108.30 -
(Wang and Cho, 2016) - 126.20 105.60

p-RNNLM 26.20 99.36 112.35

PPL reduction 16.5% 12.6% 6.8%

Table 3: Perplexity Comparison with Other Works

4.3 MT Reranking Setup

We also performed reranking experiments on
Chinese-English machine translation (MT) task.
We evaluated the proposed parallel RNN language
model by rescoring the 1000-best candidate transla-
tions produced by a phrase-based MT system. The
decoder used was Moses(Koehn et al., 2007). The
MT system was trained on FBIS (Foreign Broad-
casting Information Service) corpus7 containing
about 250K sentence pairs and tuned with MERT
(Minimum Error Rate Training) (Josef Och, 2003)
on NIST MT02 test set. Our test sets included NIST

7LDC2003E14
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MT 03, 04, and 05.
In reranking phase, we first performed MERT on

two features, the MT score (got from MT system)
and a LR score (the length ratio of the target lan-
guage sentence to the source one), as a baseline.
Both the RNNLM and p-RNNLM were trained on
some news corpora8 which contains about 2M sen-
tences. We considered the values {100, 300, 500}
for the hidden dimension of the word RNN, and 80K
for the vocabulary size. We also performed POS
tagging using the Stanford POS Tagger. We used
the two trained models to rescore the 1000-best out-
puts from MT system and got RNNLM score and
p-RNNLM score. Then we combine the two scores
with MT score and LR score respectively to per-
form MERT to get their own weights. We tuned
the weights for MT, LR, and RNNLM/p-RNNLM
scores by using Z-MERT (Zaidan, 2009), which is a
easy-to-use tool for MERT.

4.4 MT Reranking Results
The results for MT reranking is shown in Table 4.
Both the RNN and p-RNN models outperform the
baselines, Moses or MT+LR. The p-RNN model
with 500 dimension size gets 0.59-1.04 BLEU im-
provement than MT+LR and at most 0.31 BLEU
improvement than RNN model. Most of the im-
provements are statistically significant. The p-RNN
model outperforms the RNN model on every test set
with each dimension size.

5 Related Work

This paper draws on previous work language mod-
eling including structured count-based and neural
LMs.

5.1 Structured LMs
Efforts to incorporate linguistic annotations into lan-
guage model include the structured LMs. Chelba et
al. (1997) proposed a dependency language model
using maximum entropy model. Chelba and Jelinek
(1998) developed a language model that used syn-
tactic structure to model long-distance dependen-

8LDC2003E14, LDC2000T46, LDC2007T09,
LDC2005T10, LDC2008T06, LDC2009T15, LDC2010T03,
LDC2009T02, LDC2009T06, LDC2013T11, LDC2013T16,
LDC2007T23, LDC2008T08, LDC2008T18, LDC2014T04,
LDC2014T11, LDC2005T06, LDC2007E101, LDC2002E18

cies. Charniak (2001) assigned the probability to a
word conditioned on the lexical head of its parent
constituent. Peng and Roth (2016) developed two
models that captured semantic frames and discourse
information.

POS-based LM originated from class-based LM
(Jelinek, 1985; F. Brown et al., 1992), since POS
tags captured the syntactic role of each word and
could be seen as the equivalence classes. Kneser and
Ney (1993) reported a perplexity reduction when
combined their model with POS tags. A. Heeman
(1998) redefined the speech recognition problem to
find the best both word and POS sequences and in-
corporated POS-based LM.

5.2 Neural LMs

Bengio et al. (2003) proposed to use artificial neural
network to learn the probability of word sequences.
The feedforward network they used has to use fixed
length context to predict the next word. Mikolov
et al. (2010) used recurrent neural network to en-
code temporal information for contexts with arbi-
trary lengths.

In recent years, there was an increasing number of
research integrating knowledge into RNN. Mikolov
and Zweig (2012) incorporated topic information as
a feature layer into RNNLM. Ji et al. (2015) em-
ployed the hidden states of the previous sentence as
contextual information for predicting words in the
current sentence. Ji et al. (2016) modeled discourse
relation with Latent Variable Recurrent Neural Net-
work (LVRNN) for language models. Ahn et al.
(2016) proposed a language model which combined
knowledge graphs with RNN. Dieng et al. (2016)
proposed a TopicRNN to capture the global topic in-
formation for language modeling.

6 Conclusions

We proposed a parallel RNN structure to model both
word and POS tag sequences. The structure consists
of two RNNs, one for words and another for POS
tags. The connection between the two network’s
hidden layers enabled the POS information to help
to improve the word prediction. The role of POS
RNN’s hidden layer is similar to that of the latent
variable in Ji et al. (2016)’s work. The perplexity of
LM trained based on that structure got a reduction of
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System MT02 MT03 MT04 MT05

Moses 28.09 24.38 28.03 24.19
MT+LR 28.07 24.40 28.11 24.26

MT+LR+RNN-100 28.25 25.16∗∗ 28.48∗∗ 24.39∗

MT+LR+p-RNN-100 28.46∗∗+ 25.23∗∗ 28.70∗∗++ 24.53∗∗+

MT+LR+RNN-300 28.57∗ 25.16∗∗ 28.72∗∗ 24.50∗∗

MT+LR+p-RNN-300 28.62∗∗+ 25.26∗∗ 28.85∗∗+ 24.79∗∗++

MT+LR+RNN-500 28.48∗∗ 25.38∗∗ 28.72∗∗ 24.59∗∗

MT+LR+p-RNN-500 28.66∗∗+ 25.44∗∗ 28.84∗∗+ 24.90∗∗++

Table 4: MT Reranking Results. */**: significantly better than Moses (p < 0.05/0.01); +/++: significantly better than
MT+LR+RNN (p < 0.1/0.05)

6.8%-16.5%. We used the LM to rerank MT outputs
and got improvement on BLEU score.

Next, we will explore the expandability of the par-
allel RNN structure. We need to incorporate more
linguistic knowledge to improve the performance of
neural networks.
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