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Abstract. Models of word meaning, built from a corpus of text, have demonstrated
success in emulating human performance on a number of cognitive tasks. Many of
these models use geometric representations of words to store semantic associations
between words. Often word order information is not captured in these models. The
lack of structural information used by these models has been raised as a weakness
when performing cognitive tasks.

This paper presents an efficient tensor based approach to modelling word meaning
that builds on recent attempts to encode word order information, while providing
flexible methods for extracting task specific semantic information.
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1 Introduction

Research in the area of natural language processing has demonstrated that psychologically
relevant models of word meaning can be learnt from exposure to natural language (Lan-
dauer and Dumais, 1997; Lund and Burgess, 1996; McRoy, 1992; Turney, 2008). Many
of these models are based on vector representations built from word co-occurrence statis-
tics that aim to model various semantic relationships. Even though these semantic space
models appear to identify words with similar meanings, it has been argued that they do
not incorporate syntax or achieve other basic cognitive language abilities (Perfetti, 1998).

Recently, a number of semantic space models, that learn directly from unstructured
text, have been developed that encode word order into the semantic space, hence capturing
more structural information about word associations (Jones and Mewhort, 2007; Sahlgren
et al., 2008). Jones and Mewhort (2007) concluded that a model that pays attention to
both context and word order while learning, stands a greater chance of matching the trends
found in human data. The strength of a geometric approach to encode word order is in the
ability to work within a mathematically well defined framework, including the availability
of many existing operators from linear algebra, such as Kronecker products. However, to
our knowledge there has been very few efficient methods for implementing uncompressed
Kronecker products when encoding word order information within a semantic space.

The main contribution of this paper is to present a novel, efficient approach to using
Kronecker products to encode word order information within a semantic space. The other
significant contribution is to demonstrate how applications can use our single representa-
tion to access various task specific semantic information.
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2 Related Work

The main areas of research that provide a theoretical framework for our model include: (i)
the structuralist approaches to defining word meaning, and (ii) the use of semantic spaces
to model word meaning.

2.1 Word Meaning

Ferdinand de Saussure (1916) argued that meaning arose from the relationships between
words. He called the two types of relationships that created this meaning: (i) syntagmatic
and (ii) paradigmatic associations. Saussure’s structuralist ideas provide a relatively clean
linguistic framework, free of psychology, sociology and anthropology, within which we
can distinguish between two types of word associations that can be used to model word
meaning (Holland, 1992). This structuralist approach to linguistics has been used to
motivate other semantic space models (Sahlgren et al., 2008).

A syntagmatic association exists between two words if they co-occur more frequently
than expected from chance. Some common examples may include “coffee-drink” and “sun-
hot”. A paradigmatic association exists between two words if they can substitute for one
another in a sentence without affecting the grammaticality or acceptability of the sentence.
Some common examples may include “drink-eat” and “quick-fast” (Rapp, 2002).

2.2 Semantic Space Models

Linked to structuralist ideas of linguistics, researchers have argued that word meaning
can be modelled by comparing the distributions of words within text (Schütze, 1993). A
popular approach to representing these word distributions is to collect word occurrence
frequencies and place them in high-dimensional context vectors (Turney and Pantel, 2010).
This approach allows techniques from linear algebra to be used to model relationships
between objects, including semantic associations, within the geometric space.

Two of the most well-known semantic space models in literature are HAL (Hyperspace
Analogue to Language; Lund and Burgess (1996)) and LSA (Latent Semantic Analy-
sis; Landauer and Dumais (1997)). These two models differ in the way they build their
context vectors. HAL builds context vectors by storing pre- and post-order word co-
occurrence frequencies in a word-by-word matrix. Consider the HAL matrix, shown in
table 1, created by the sentence “a dog bit the mailman”, using a sliding context window
with radius 2. The co-occurrence information preceding and post-ceding each word are
recorded separately by the row and column vectors.

Table 1: Example HAL Space

a dog bit the

dog 2 0 0 0
bit 1 2 0 0
the 0 1 2 0

mailman 0 0 1 2

LSA differs from HAL in that LSA’s context vectors are formed by collecting the word
occurrence frequencies within each document to create a word-document matrix. A costly
technique, known as single value decomposition (SVD), is then used to reduce the dimen-
sions of the word-document matrix to the k most significant latent concepts. Even though
models based on LSA and HAL have been shown to simulate human performance on a
number of cognitive tasks, it has been argued by Perfetti (1998) that these models do
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not capture concepts such as syntax or achieve other basic cognitive language abilities.
A relevant example, includes the fact that LSA chose nurse over doctor when asked to
determine the closest match to physician in a synonym judgement test. The lack of word
order information in LSA is a result of the way in which it builds its context vectors, how-
ever, even though HAL would appear to hold word order information, it has been argued
by Jones and Mewhort (2007) that HAL does not explicitly encode order information.

A number of recent semantic space models have tried to increase the amount of struc-
tural information encoded within the representations. These include the Bound Encoding
of the Aggregate Language Environment (BEAGLE) model (Jones and Mewhort, 2007)
and a permutation model (Sahlgren et al., 2008) based on Random Indexing (RI) (Kan-
erva et al., 2000). Both BEAGLE and the permuted RI model build their semantic spaces
from a set of fixed length environment vectors. This approach allows the dimensionality of
the semantic space to be contained. These fixed dimension approaches rely on the random
assignment of environment vectors to create an approximately orthogonal basis, which is
required to use many of the popular geometric distance measures.

In addition to forming context vectors, by summing environment vectors for terms that
co-occur within the sliding context window, both BEAGLE and the permuted RI model
create order vectors. To build order vectors BEAGLE binds the environment vectors using
a circular convolution operation (~), which is a mathematical function that compresses
the Kronecker (outer) product of two vectors. The compression avoids the explosion in
tensor order associated with Kronecker products, and is achieved by summing along the
trans-diagonal elements of the outer product, giving rise to a vector dubbed a holographic
reduced representation (HHR) (Plate, 1991). The resulting HHR created by the n-grams
within the context window are added to the term’s order vector. Circular convolution is
non-commutative, such that a ~ b 6= b ~ a for distinct vectors a, b. Non-commutativity
is crucial as word order is usually not commutative.

The main drawback of BEAGLE’s encoding method comes from the cost of the bind-
ing process and the loss of information through compression of the Kronecker prod-
ucts (Mitchell and Lapata, 2010). In the case of the permuted RI model, word order
encoding is performed by rotating the coordinates of the sparse environment vectors in
the direction of the co-occurrence (with preceding opposite to post-ceding) before sum-
ming the result with the order vector. This approach is much more efficient than circular
convolution. The results of both BEAGLE and the permuted RI model show that includ-
ing order information improves performance on a synonym judgement task over context
information alone. We now present a model that formally encodes word order and provides
the ability to compute semantic associations that underpin word meaning.

3 Building the Tensor Encoding Model’s Semantic Space

Our tensor encoding (TE) model builds its semantic space using an efficient binding process
based on Kronecker products of theoretically unbounded unit vectors. The result contains
both context and order information in a single representation we call the memory tensor.

3.1 The TE Binding Process
The way in which the TE model encodes word order is illustrated by considering our
binding process for the following example sentence, “A dog bit the mailman”, where A
and the are considered to be stop words (noisy, low information terms that are ignored)
and hence will not be included in the vocabulary. The resulting vocabulary includes:

Term-id Term Environment vector
1 dog edog = (1 0 0)T

2 bit ebit = (0 1 0)T

3 mailman emailman = (0 0 1)T
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The memory tensor for each term in the vocabulary is constructed by summing the re-
sulting Kronecker products of the environment vectors within a sliding context window
over the text. The number of environment vectors bound using Kronecker products im-
pacts the order of the memory tensors. For this research a second order binding process
was used, and results in second order tensors (matrices) being formed. Higher order TE
models, which capture the co-occurrence frequencies of n-tuples, are left for future work.
The second order binding process for the TE model is defined by:

Mw =
k≺w∑

k∈CW

ek ⊗ eTw +
k�w∑

k∈CW

ew ⊗ eTk , (1)

where w is the target term, k is a non-stop word found within the sliding context window
(CW ), k ≺ w indicates that term k appears before term w in the context window, and
k � w indicates that term k appears after term w. Note, stop words are not bound,
but they are included when determining the window boundaries. Consider the memory
matrices created for the vocabulary terms using a sliding context window with radius 2.

Binding Step 1:
︷ ︸︸ ︷
As [dog] bit thes mailman

Mdog = edog ⊗ eTbit =




1
0
0


 (0 1 0) =




0 1 0
0 0 0
0 0 0


 .

Binding Step 2:
︷ ︸︸ ︷
As dog [bit] thes mailman

M bit = edog ⊗ eTbit + ebit ⊗ eTmailman =




1
0
0


 (0 1 0) +




0
1
0


 (0 0 1) =




0 1 0
0 0 1
0 0 0


 .

Binding Step 3: As dog
︷ ︸︸ ︷
bit thes [mailman]

Mmailman = ebit ⊗ eTmailman =




0
1
0


 (0 0 1) =




0 0 0
0 0 1
0 0 0


 .

The resulting pattern is that all non-zero elements are situated on the row or col-
umn corresponding to the target term’s term-id. If this vocabulary building process was
performed over the entire corpus the general form of a memory matrix would be:

Mw =




0, . . . , 0, f1w, 0, . . . , 0
. . .

0, . . . , 0, f(w−1)w, 0, . . . , 0
fw1, . . . , fw(w−1), fww, fw(w+1), . . . , fwN

0, . . . , 0, f(w+1)w, 0, . . . , 0
. . .

0, . . . , 0, fNw, 0, . . . , 0




,

where fiw is the value in row i column w of the matrix which represents the ordered
co-occurrence frequencies of term i before term w, fwj is the value in row w column j of
the matrix that represents the ordered co-occurrence of term j after term w, and N is the
number of unique terms in the vocabulary.

3.2 Capturing Stronger Proximity Information

Similar to HAL, our TE model captures stronger proximity information by weighting the
strength of a co-occurrence inversely proportional to the distance between the target term
and the interacting term. Formally, the binding process in equation (1) becomes:

Mw =
k≺w∑

k∈CW

(R− dk + 1).ek ⊗ eTw +
k�w∑

k∈CW

(R− dk + 1).ew ⊗ eTk , (2)
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where R is the radius of the sliding context window, and dk is the distance between term
k and target term w. To demonstrate, consider our previous example sentence, noting
bit and mailman are 2 words apart in the sentence (as stop words are included when
calculating distance within the context window):

Binding Step (with proximity scaling):
︷ ︸︸ ︷
As dog [bit] thes mailman

M bit = 2× edog ⊗ eTbit + ebit ⊗ eTmailman = 2×




1
0
0


 (0 1 0) +




0
1
0


 (0 0 1) =




0 2 0
0 0 1
0 0 0


 .

3.3 Flexible use of Word Order

Unlike BEAGLE and the permuted RI model, the TE model has the ability to access
explicit context and order information within the one geometric representations. This
means that order information can be easily ignored by combining rows and columns of
the memory tensors. This can be efficiently achieved within similarity measures, as will
be demonstrated in section 4.

3.4 Efficient Implementation of Tensor Computations

By using environment vectors that are unit vectors, our second order binding process
creates sparse N -by-N memory matrices, with the percent sparseness proportional to
1 − 2

N + 1
N2 . This sparseness, along with the fact that no multiplication of elements is

required in the binding process, allows memory matrices to be efficiently computed and
stored at an implementation level. To demonstrate, consider the memory matrix for bit
in the proximity scaled example above. Mbit can be stored as a fixed dimensional vector
of term-id (T), co-occurrence frequency (CF) pairs, (T CF):

Storage vector for M bit = [(−1 2) (3 1)] ,

where parenthesis have been added to illustrate implicit grouping of (T CF) pairs, and
the sign of the T component is used to capture the word order. Knowing that a context
window of radius 2 was used, the storage vector above indicates that the word dog (term
1) appeared directly before (as indicated by the negative sign) the word bit, and the word
mailman (term 3) occurred two words after bit. By storing the memory matrix in this
way, the process of building memory matrices is achieved by searching the (T CF) pair
list in the focus term’s storage vector, to find a matching, ordered term-id. If a match is
found then the co-occurrence frequency element of the pair is incremented.

Even for applications where the vocabulary is small and the context window radius
is small, there will be a number of noisy terms that co-occur with many terms. These
co-occurrences with noisy terms will quickly fill the storage vectors. To ensure the model
is scalable and these noisy terms are managed a number of methods are used:

1. Stop-list: A stop-list is used to remove common high frequency terms.

2. Co-occurrence frequency ratio cut-offs: Frequency cut-offs are commonly used
in semantic space models (Rohde et al., 2006). Traditionally, the cut-off is applied to
the collection frequency of a term. In contrast, our approach is to use a co-occurrence
frequency ratio (CFR) cut-off, and apply it during the vocabulary building process
when a storage vector is full and no match on term-id exists. The CFR is used to
identify a (T CF) pair to be replaced, and is determined by comparing CF

Fw
, where Fw

is the collection frequency of the target term w, to a threshold value. If the CFR is
below the threshold value the pair is moved to the end of the list and updated with
the (T CF) details of this new co-occurrence.
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Figure 1: Performance on a synonym judgement task for storage vectors of various dimensions.

The success of these storage vector management methods can be evaluated by considering
their impact on the model’s performance on a synonym judgement task when the dimen-
sionality of the storage vector is varied, as shown in figure 1. The task was taken from the
synonym-finding part of the Test of English as a Foreign Language (TOEFL). TOEFL
is a standardized test employed by American universities to evaluate foreign applicants’
knowledge of the English language, and is further explained in section 4.2.

The superior performance achieved by the TE model for lower dimensionality vectors is
particularly beneficial when contrasting computational complexity of the various models.
Both BEAGLE and RI have been shown to achieve improved performance as the environ-
ment vector dimensionality is increased, often greater than 2000 (Sahlgren et al., 2008).
The relatively superior effectiveness for storage vectors with dimensionality between 250
and 1000, compared to those greater than 1000 may be due to our storage vector manage-
ment technique removing low information items when the storage vector becomes full. At
larger dimensions we predict that these low information terms are not removed and this
may introduce noise into the TE model’s synonym judgement.

The time complexity of the TE model’s vocabulary building operation is determined by
considering the worst case, in which the storage vector is full and a replacement operation
is needed. In this case, the basic operation of the binding process becomes a full search of
the (T CF) list, giving: TTE(n) = O(DSV

2 ), whereDSV is the storage vector dimensionality.
For the synonym judgement task, optimal performance is when DSV = 1000. The binding
operation of the permuted RI model involves the summing of an environment vector with
a context vector and a permuted environment vector with an order vector. Assumng the
dimensionality of the vectors are DRI , the time complexity of the permuted RI model
would be TRI(n) = O(2.DRI), and from our discussion above DRI ≥ 2000. Therefore,
our approach is argued to build the semantic space more efficiently than the permuted RI
approach on the synonym judgement task.

4 Computing Word Meaning

One of the major advantages of our approach to encoding word order, compared to BEA-
GLE and the permuted RI model, is that it captures explicit word co-occurrence frequen-
cies. This allows probabilistic measures to be used in addition to geometric measures
when extracting information from the semantic space. The following section outlines two
features that effectively measure the strength of syntagmatic or paradigmatic associations
crucial in modelling word meaning.

When developing these measures we have tried to generalise the result to support the
similarity between a sequence of priming words Q = (q1, . . . , qp) and any vocabulary term
w. This was done so that the TE model could be more easily applied to a wider range
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of information processing tasks. The memory matrix for the sequence of priming terms is
formed by summing the memory matrices of these terms, MQ = Mq1 + . . .+ Mqp .

4.1 A Measure of Syntagmatic Associations

One of the most popular measures of similarity between two geometric representations is
the cosine of the angle formed between them. For the unique structure of the memory
matrices used in our model, two interesting results were identified when developing a cosine
measure: (i) that there exists a very efficient expression for calculating the cosine of the
angle between memory matrices, and (ii) the resulting expression provides an excellent
measure of the strength of syntagmatic associations between the terms.

For the extended general case and using linear algebra techniques, the cosine of the
angle θ between memory matrices, MQ and Mw, is defined as:

cos θ =

∑N
j=1
w∈Q

s2wf
2
jw +

∑N
j=1
j 6=w
w∈Q

s2wf
2
wj +

∑qm
i=q1
i 6=w

(s2i f
2
iw + s2i f

2
wi)

√
∑qm

i=q1

[∑N
j=1 s

2
i f

2
ji +

∑N
j=1
j 6=i

s2i f
2
ij

]√∑N
j=1 f

2
jw +

∑N
j=1
j 6=w

f2wj

, (3)

where q1, . . . , qm are the list of m unique priming terms found in the sequence of all
priming terms Q having m ≤ p, si is the number of times term qi appears in Q, fab is the
co-occurrence frequency of term a appearing before term b in the vocabulary, fba is the
co-occurrence frequency of term a appearing after term b.

The time complexity of this measure would appear to be linear with N , the size of the
vocabulary. However, the storage vectors hold a maximum of DSV

2 (T CF) pairs, where
DSV is the dimensionality of the storage vector. This means that the cosine measure has
maximum time complexity when the storage vector is full and hence T (n) = O(DSV

2 .|Q|),
where |Q| is the number of priming terms. An additional saving when computing the cosine
scores for the vocabulary terms is gained by noting that the numerator in equation (3) will
only be non-zero if term w has at least one interaction with a priming term (q1, . . . , qp),
or is a priming term itself. Therefore, equation (3) will only need to be computed for
term-ids found in the storage vectors of the priming terms, (q1, . . . , qp).

Nearest neighbours: Due to the unique construction of our memory matrices, it can be
seen from equation (3) that the cosine measure extracts primarily syntagmatic associations
of the priming terms and the focus term w. Access to syntagmatic relationships can be
useful for many tasks including the identification of terms most likely to precede or succeed
a target term. Within our representations, this can be achieved by isolating co-occurrence
frequencies in the direction of interest, effectively setting elements to 0 on the row or
column not of interest in the memory matrices, MQ and Mw. For example, to identify
the term w that most likely precedes a sequence of priming terms Q, equation (3) becomes:

cospr θ =

∑N
j=1
w∈Q

s2wf
2
jw +

∑qm
i=q1
i 6=w

s2i f
2
iw

√∑qm
i=q1

∑N
j=1 s

2
i f

2
ji

√∑N
j=1 f

2
jw

, (4)

with an equivalent expression, using fwx instead of fxw, created to calculate most likely
succeeding terms. Table 2 provides a list of most likely preceding and succeeding terms
produced by the TE model for a list of target words identified in Jones and Mewhort
(2007) for the BEAGLE model. The results illustrate the influence of the asymmetric
nature of the memory matrices, and the effectiveness of the cosine measure to identify the
strongest ordered syntagmatic associations.
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Table 2: Top 6 lexical representations produced for a word preceding or succeeding a target word.

KING PRESIDENT WAR SEA
king king president president war war sea sea

luther:0.419 jr:0.945 vice:0.905 roosevelt:0.948 civil:0.989 ii:0.918
mediterran-
ean:0.995

level:0.972

martin:0.288 midas:0.695 elected:0.834 kennedy:0.927 world:0.851 ended:0.298 caribbean:0.857 anemone:0.315

dr:0.185 arthur:0.419 former:0.14 nixon: 0.876
revolution-
ary: 0.524

effort: 0.056 baltic:0.738 urchins:0.256

french:0.146 minos:0.307 new:0.07 johnson:0.613
spanish-
american:0.306

began:0.038 caspian:0.714 captains:0.252

rex:0.03 queen:0.193 our:0.036 lincoln:0.522 during:0.122 between:0.024 aegean:0.675 gull:0.157

english:0.025 myron:0.165
twenty-
seventh:0.012

carter:0.386 declare:0.085 broke:0.024 sargasso:0.592 gulls:0.154

4.2 A Measure of Paradigmatic Associations

One of the main advantages of our TE model, over BEAGLE and the permuted RI model,
is the ability to capture explicit co-occurrence frequencies within the geometric represen-
tations. This result provides the model with the ability to use the element values of the
geometric representations to calculate direct probabilistic measures between vocabulary
terms. As an example, we developed an expression to estimate the strength of paradig-
matic associations between a sequence of priming terms Q = (q1, . . . , qp) and a vocabulary
term w. The measure is based on enhancing terms that co-occur with the same terms as
Q, and is defined as:

Ppar(w|Q) =
1

Zpar

qp∑

j=q1

N∑

i=1

fijfiw + fjifwi

fjfw
, (5)

where fj is the vocabulary frequency of term j, fji is the ordered co-occurrence
frequency of term j before term i, N is the size of the vocabulary, and Zpar =
∑

w∈Vk

[∑qp
j=q1

∑N
i=1

fijfiw+fjifwi

fjfw

]
. Since the storage vector holds a maximum of DSV

2

(T CF) pairs, the worst case time complexity of this paradigmatic measure is T (n) =

O(
D2

SV
4 .|Q|), where DSV is the dimensionality of the storage vector.

Synonym judgements: Paradigmatic associations are heavily used in the process of
making synonym judgements. Therefore, we will evaluate our paradigmatic measure on the
synonym-finding task in the TOEFL, after using the TASA (Touchstone Applied Science
Associates, Inc.) corpus to build our semantic space. TASA contains 12-million words, and
is a collection of English text articles that are reportedly equivalent to what the average
college-level student has read in his or her lifetime. It has been extensively used to learn
semantic relationships within semantic space models evaluated on TOEFL (Landauer and
Dumais, 1997; Jones and Mewhort, 2007; Sahlgren et al., 2008). In the synonym-finding
part of TOEFL the participant is asked to choose one of four provided words as the most
similar to the question word. It was reported that for a large sample of applicants to U.S.
colleges, coming from non-English speaking countries, the average result on the synonym
test was 51.6 items correct out of 80 (or 64.5%) (Landauer and Dumais, 1997).

A review of past papers using the TOEFL synonym test as a benchmark 1, suggests that
the corpus used, preprocessing of documents and resulting vocabulary size may impact
the performance achieved (Stone et al., 2008). Therefore, comparisons of TOEFL perfor-
mance between papers is likely unreliable. A more robust comparison may be achieved by

1 http://aclweb.org/aclwiki
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evaluating the models of interest on the same data configuration, hence we built BEAGLE
and the permuted RI model.2 In our experiments a 416 word stop list3 was used, with
the exception of the words enough, often and alone, which were present as a question or
answer within TOEFL. We did not use any stemming on the vocabulary, however, the
TOEFL question, expeditiously, was not found in the TASA corpus, whereas expeditious
was, therefore that TOEFL question was updated to use expeditious. We also chose to
remove TASA terms that contained numerics. These steps resulted in a vocabulary size
of 134,054 unique terms. The performance achieved by each model is shown in figure 2.

Figure 2: TOEFL performance for the Tensor Encoding, BEAGLE and permuted RI model.

Since BEAGLE and the permuted RI model use random environment vectors, a number
of runs were performed to calculate the average score. The best average results were: (i)
BEAGLE=61.25% (49/80) using a context window radius (cwr) of 2, and environment
vector length (evl) of 2048, and (ii) permuted RI model=38% (30/80) using cwr=5 and
evl=2,000. The best TE model result was 67.5% (54/80) using cwr=1 and a storage
vector length of 1,000. The BEAGLE results were similar to those reported in Jones and
Mewhort (2007), with any improvement likely due to the reduced context window length
used in our experiments. The permuted RI model result is much lower than that reported
in Sahlgren et al. (2008), possibly due to the difference in vocabulary size. Their TASA
vocabulary was reduced to 74,100 terms by using stemming and high frequency cut-offs.

Addressing weaknesses in LSA: Landauer and Dumais (1997) indicated that some
of the TOEFL errors produced by LSA, that were not made by students, may be attributed
to the fact that LSA was more sensitive to paradigmatic associations, and not syntagmatic.
For example, Perfetti (1998) commented that on the TOEFL, LSA chose nurse (0.47) over
doctor (0.41) for the question word of physician. Even though this is Perfetti’s selective
example, we found that the TE model was more likely to choose doctor (P (w|Q)=0.01926)
over nurse (P (w|Q) = 0.01818) for the same question.

5 Conclusions and Future Work

The aim of this paper has been to present a model of word meaning that goes beyond
existing semantic space models by using Kronecker products to capture word order and
co-occurrence information. Our TE model overcomes weaknesses in previous models at-
tempting to encode greater structural information by reducing the information loss with-
out computational cost. It also provides applications with more flexibility when extracting
task specific semantic information without relying on existing knowledge or POS taggers.

2 The permuted RI model functions were supplied by http://code.google.com/p/semanticvectors/
3 Stoplist taken from the Lemur toolkit for information retrieval: http://www.lemurproject.org
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The ability to extend the evaluation of this model to other information processing tasks,
such as word sense disambiguation, query expansion, and document retrieval, is an area
for future research. Another area for further investigation includes extending the current
vocabulary binding process to form higher order tensors that would allow larger n-tuple
associations to be encoded in the representations underpinning the semantic space. Using
higher order TE models may have advantages similar to those highlighted by Baroni and
Lenci (2010).
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