
Predicting Linguistic Difficulty by Means of a Morpho-Syntactic
Probabilistic Model

Philippe Blache and Stéphane Rauzy
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Abstract. We propose in this paper a new contribution to the evaluation of linguistic diffi-
culty. At the opposite of classical approaches relying on syntax, we show that a probabilis-
tic morpho-syntactic analysis provides information enough to calculate different parameters,
including surprisal. This method constitutes an original and robust model to linguistic com-
plexity. It constitutes a solution towards complexity experiments using spoken languages.
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1 Introduction

Linguistic complexity is an important problem both from linguistic, computational and cognitive
perspectives: it is important to know for a given language what are the phenomena or the construc-
tions that can lead to a processing problem for a human subject. Such knowledge is the basis of a
better understanding of the cerebral mechanisms of language processing. It is also necessary in the
persepctive of the development of a cognitively-plausible automatic parser. Today, several compu-
tational models have been developed in this perspective. However, most of them are partial, only
take into account local phenomena, and are experimented on highly controlled written text (cf.
(Gibson, 2000), (Vasishth, 2003) or (Lewis and Vasishth, 2005) for example). More recent works
propose to go one step forward in experimenting models on larger corpora (see in particular (Dem-
berg and Keller, 2008), making it possible to validate complexity models. One of the conclusion
of these works is that generic models have to bring together many different complexity parameters
in order to take into account a large variety of phenomena. Moreover, it still remains necessary to
develop and validate generic computational models dealing with unrestricted linguistic material,
in particular spoken languages.

Among the different parameters involved in its definition, the evaluation of the difficulty human
subjects encounter in language production or perception plays a major role.

In the literature, one of the most frequently used approaches relies on surprisal effects that can
occur when integrating a new word to the structure (cf. (Hale, 2001)): roughly speaking, surprisal
is high when the probability for a word to occur in a specific context is low. This parameter is
evaluated as the negative logarithm of the probability of a word wt to appear in its context, taking
into account the sequence w1...wt−1.

Surprisal is evaluated as a function of the probabilities of the possible parses when integrating
the word wt. When using a probabilistic grammar, evaluating surprisal consists in measuring
the difference between the probability of all parses spanning the sequence w1...wt−1 and those
spanning w1...wt:
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SIt = − log
P (w1...wt)

P (w1...wt−1)
(1)

Surprisal has been shown by different studies as being correlated with difficulty. This has been
demonstrated experimentally, in particular by several works relying on eye-tracking in reading
tasks (cf. (Boston et al., 2011), (Demberg and Keller, 2008) or (Mitchell et al., 2010)). These last
studies use results from the Dundee corpus (see (Kennedy et al., 2003)) from which some short
extracts have been chosen (20 texts read by 10 subjects). This corpus has been analyzed, sur-
prisal values calculated and put in perspective with eye-tracking data. Results show a correlation
between difficulty parameters (in particular reading time) and surprisal indexes.

One of the problems is that surprisal evaluation is sensible to the syntactic formalism. More-
over, from a computational point of view, surprisal also depends on the characteristics of the
parser used in the evaluation. Surprisal being measured in terms of the probabilities of the pos-
sible parses, it is necessary first to build a probabilized grammar (which can be problematic) and
second to correctly generate all candidate parses. We know that when parsing unrestricted lin-
guistic material, it is not always possible to build parse trees. Robustness and precision are then
pre-requisite properties of the parsers when evaluating surprisal. This also means that, because of
the limitation of parsing technologies, it is not possible to measure difficulty for non-canonical or
ill-formed construction (not to speak of spoken language).

We propose in this paper to explore a new direction for difficulty evaluation: syntax being prob-
lematic when dealing with unrestricted material, we propose to analyze precisely the contribution
of morpho-syntactic information in surprisal evaluation. Our hypothesis is that surprisal effects
appear at the lexical level, as corroborated by works on the impact of the lexicon on ambiguity
or reanalysis phenomena (cf. (Fodor and Ferreira, 1998)). We propose to measure surprisal ef-
fects only by means of a probabilistic categorization task, without using parsing information. We
use in this perspective a probabilistic morpho-syntactic tagger, taking into account at each step a
variable-size context.

In the first section, we present the probabilistic method thanks to which we evaluate the differ-
ent parameters entering in the difficulty model. In the second section, we describe how to calculate
the parameters. Finally, the last section will present some results.

Before entering into the description of our approach, we want to underline the fact that this
paper presents a theoretical proposal which still has to be validated experimentally. However, we
propose in the last section preliminary results calculated from a large corpus showing a positive
tendency.

2 The statistical model

The mechanism consists in evaluating a probability to any sequence of tokens (or part-of-speech).
Each token is associated, thanks to a lexicon, to its corresponding lexical tags distribution, where
tags take their values in the set of morphosyntactic categories C. An example of tags distribution
is illustrated table 1.

Form Lemma Sampa Tag Proba.
est être E Auxiliary 0.39
est être E Verb 0.52
est est Est Noun 0.09

Table 1: Tags distribution for the french lexical form “est” (meaning “is” in its verb or auxiliary use, or
“east” in its noun use).
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The tagging process is usually very ambiguous. This ambiguity generates an exploration tree
space of potential solutions Sol. Its cardinality card(Sol) is a function of the combinatory associ-
ated with the potential choices for each token of the sentence. The tokens being integrated step by
step to the sentence, the cardinality card(Sol(t)) at position t in the sentence increases (or remains
stable for tokens with one-to-one tag correspondence). For a given sentence, we denote hereafter
by Si(t) the ith solution at position t (i ∈ [1, card(Sol)]),

Si(t) = c1,i...ct,i (2)

where ct,i is the morphosyntactic category associated to the token at position t for solution Si(t).
The probability of the solution Si(t) is obtained recursively by Bayes formulae :

P (Si(t)) = P (ct,i|Si(t− 1))× P (Si(t− 1)) (3)

where P (Si(t − 1)) is the probability of the solution i at position t − 1 and P (ct,i|Si(t − 1)) is
the conditional probability of category ct,i given the right context Si(t− 1) = c1,i...ct−1,i.

In order to calculate the probability of each solution of the space of solutions Sol, we need a
statistical model predicting the probability of each category ct conditioned by each right context
c1...ct−1, for all the combinatory cases found for each solution of the exploration tree :

Model⇒ P (ct|c1...ct−1) , c1, ..., ct ∈ C (4)

The probabilistic model may be limited to the sole use of morphosyntactic information (that is
the strategy experimented in this paper), or makes use of higher syntactical information such like
structure constituents and relations describing the context.

Given a model, the conditional probabilities of equation 4 allow to calculate for each added
token the relative contribution of each solution Si(t) belonging to the space of solutions. The
density function ρ(t) associates to each solution at position t its relative probability ρi(t):

ρi(t) =
P (Si(t))

At
, with At =

∑

Sol
P (Si(t)) (5)

where P (Si(t)) is computed from the model given equation 4 and the normalization factor At

warrants the equality
∑
Sol ρi(t) = 1. The evolution of the space of solutions and of its density

is investigated in the following section. It provides us with the different parameters proposed for
measuring the processing difficulty of a sentence at the morphosyntactic level.

The probabilities mentioned equation 4 are herein obtained using the Pattern Model (Blache
and Rauzy, 2006), a Hidden Markov Model (HMM) more efficient than the standard N-grams
models. For N-grams, the states of the automaton are characterized by sequence of categories
of equal size N − 1. The pattern model relaxes this constraint by accepting states identified by
sequences of varying size. This property allows in practice to learn from the training corpus a set a
states, the patterns of the model, which capture in an optimal way the morphosyntactic regularities
found in the training corpus. The patterns model is seen as an approximation of the real statistical
model describing the data, the approximation becoming more and more accurate as the training
corpus size and coverage become larger.

The model is trained on the GraceLPL corpus, a version of the Grace/Multitag corpus (see
(Paroubek and Rajman, 2000)) corrected by us. It is a French corpus containing about 700 000
words with morphosyntactic annotation following the tagset features Multext (Ide and Véronis,
1994). GraceLPL is regularly corrected and enriched in order to improve its tagging. The mor-
phosyntactic information has been organized in an ad-hoc way in 50 tags (4 types of categories for
punctuation marks, 1 for interjections, 2 for adjectives, 2 for conjunctions, 1 for determiners, 3 for
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nouns, 8 for auxiliaries, 4 for verbs, 5 for prepositions, 3 for adverbs and 15 for pronouns). In its
current form, the tagset does not include gender, number and person features distinction nor tense
and mood information for verbs.

The pattern model describing our tagger is composed of 2 841 patterns of varying size (the
largest right context in the list of patterns counts 8 categories). The evaluation of the model
is performed by comparing the tagged output with the reference. For the selected tagset of 50
categories mentionned above, the quality of the tagger (version 2011) reaches a score of 0.975
(F-measure).

3 The morpho-syntactic difficulty model
Surprisal is usually calculated thanks to a probabilistic grammar in building the set of possible
parses (the number of parses being possibly limited to a given number). We propose to replace
parses by the study of part-of-speech sequences, without any other information on structure nor
relations.

The evolution of the surprisal with position t is herein defined for each solution Si(t) presented
equation 2 as follows:

SIi(t) = − log
P (Si(t))

P (Si(t− 1))
+ log(P (ct,i|.)) (6)

where the correction term P (ct,i|.) stands for the non-contextual probability of the morphosyn-
tactic category ct,i associated to token at position t for solution Si(t). Following equation 3, the
equation rewrites :

SIi(t) = − log
P (ct,i|c1,i...ct−1,i)

P (ct,i|.)
(7)

which is the negative logarithm of the ratio between contextual and non-contextual probabilities
for category ct,i. The higher this ratio, i.e. the category has a strong probability to occur within
this context, the more negative is the surprisal index. This term aims at correcting asymmetry in
category distribution. Some of them are densely populated (e.g. common noun) whereas some
other are not (e.g. present participle of the auxiliary) without any consequence on human pro-
cessing difficulty. With this correction, the overall surprisal SI(t) is the same as proposed in the
literature (see for example (Demberg and Keller, 2008)):

SI(t) =
∑

Sol
ρi(t)SIi(t), (8)

which is the weighted average of individual surprisal values for each solution, weighted by their
relative contribution ρi(t) (see equation 5). Surprisal measures a function of these two difficulty
parameters: one related to sparseness of the POS sequences, the other coming from the number of
solutions to take into account at the same time (consequence of the lexical forms ambiguity).

This observation leads us to propose a second parameter making it possible to separate these
two effects. The consequence of morpho-syntacic ambiguity on processing difficulty can be di-
rectly measured. A good indication is for example entropy variation of the probability distribution
ρi(t) described equation 5:

AH(t) = −
∑

Sol
ρi(t) log ρi(t) (9)

AI(t) = AH(t)−AH(t− 1) (10)

The value AH(t) measures evolution of the effective size of solution space. Its derivative across
time, the ambiguity index AI(t), shows that integrating the lexical form at a position t locally
contribute to solve ambiguity (AI(t) < 0) or to increase it (AI(t) > 0).
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4 Experimentation

As mentioned in the introduction, this paper present a preliminary study and many work is still
to be done in order to validate our hypothesis. First, we have to verify that our model is a good
predictor for difficulty. In this perspective, corpora with eye-tracking data have to be collected (for
French in particular). Moreover, a systematic comparison with results obtained with syntactically-
based surprisal values has to be done. Finally, new kinds of data have to be created in the perspec-
tive of validating our model against spoken language corpora.

However, we propose in this section a preliminary study on real data, giving some indications
on the efficiency of the model.

Our study relies on a French corpus, made of 317,258 tokens (14,545 sentences), collected
from the GRACE corpus mentioned before (automatically generated and manually corrected).
The sentence selected from the initial corpus are those which have no difference between the
reference categorization (that of the corpus) and that of our tagger. For each token, surprisal and
ambiguity values have been calculated. Moreover, each sentence is associated to a revision rate,
which relies on the number of revisions (or backtrackings) occurring during the tagging process.
More precisely, the revision rate is the ratio between the number of solutions with a maximal
probability that have been abandoned and the number of tokens in the sentence.

4.1 Model Validation

We propose in this section to verify the validity of our proposal in applying surprisal and ambiguity
parameters to two phenomena known to be complex: relatives (subjects vs. objects) and clitics
(nominative vs. accusative).

Relatives Several psycholinguistic studies (cf. (Gibson, 1998; Gibson, 2000), (Just and Car-
penter, 1992)) have shown the that object relatives are more complex in terms of processing than
subject relatives. Different analysis have been given for this: subject relatives follow the canonical
SVO order, object relatives require to memorize more information, etc. The complexity differ-
ences have been shown experimentally by means of reading times (see for example (Lewis and
Vasishth, 2005), (Demberg and Keller, 2008)).

We obtain the same prediction with our morpho-syntactic model: object relative pronoun has
a surprisal value significantly higher than subject. Moreover, we also observe a relation between
surprisal and ambiguity: the object pronoun is more ambiguous than the subject and causes a
higher surprisal.

POS Occur. Surprisal Ambiguity
Subj 2507 -1,438 -0,076
Obj 1228 -0,953 0,202

Clitics Language acquisition studies show a later acquisition of accusative clitics than nomina-
tive ones (see (Jakubowicz, 2003)), underlying higher complexity for the accusative case. This
difference is predicted by our model: accusative clitics have surprisal values twice higher than
nominative ones.

POS Occur. Surprisal Ambiguity
Nomin. 9682 -1,586 0,003
Acc. 1857 -0,701 0,261

These results tend to confirm our hypothesis stipulating that surprisal evaluation on a morpho-
syntactic basis is a good predictor of processing difficulty, as the syntactic-based surprisal model.
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4.2 Surprisal

The following examples underline the effects of surprisal and ambiguity values, obtained on a
morpho-syntactic basis. The figures show the evolution by words of the two parameters. In the
first example, the maximal surprisal value is reached with the preposition “de”, located between
two determiners (a cardinal and a demonstrative). In this case, category sequence sparseness is the
cause of the surprisal, more than ambiguity. This last parameter show a peak on the previous token,
whereas the token associated to the surprisal peak corresponds to a negative ambiguity value.

“Ainsi pour Le Seuil, quarante-sept de ces droits ont
t acquis par des diteurs de langue allemande.”

“On parle aussi d’étoiles de l’Opéra : Noella Pontois,
qui est à la retraite, Michael Denard, qui va bientôt
l’être ...”

“So, for Le Seuil, 47 of these rights have been ac-
quired by German-speaking editors.”

“We also talk about Opera stars: Noella Pontois,
who is retired, Michal Denard, who will be soon too
...”

Figure 1: Surprisal examples

In the second example, the surprisal peak is located on the infinitive verb “être”. This value is
related to the categorization of the preceding word “l” as a determiner. It reveals a syntactic dif-
ficulty related to the elliptic construction. Moreover, at the difference with the previous example,
surprisal comes with high ambiguity value.

These two examples show that the contribution of the ambiguity parameter to surprisal is not
direct. Nevertheless, we have observed on the entire corpus a correlation between surprisal and
ambiguity (Pearson correlation coefficient of 0.4).

Ambiguity, parallelism: A frequently discussed question in the literature concerning human
processor is to know whether it works on a sequential or parallel manner (cf. (Gibson, 1991;
Boston et al., 2011)). This question is important and has consequences on complexity study, and
more particularly on memorization costs. A parallel parser requires to store all possible parses at
the same time whereas a sequential parser memorizes less states, but relies on backtracking. This
question is still open, even with the massive use of probabilistic approaches in language processing
that could militate in favor of a parallel processing.

(Brants and Crocker, 2000) have shown that the choice of an adequate hierarchization factor
renders the parallelization process almost useless. The study of revision rates obtained in the
corpus tends to confirm this result: surprisingly, the categorization process is almost deterministic.
More precisely, we measured on the corpus 7,133 sentences (49% of the total) that do not present
backtrack: the choice of the most probable solution at each step leads to the right solution. The
overall revision rate is 4.3%.

In other words, the tagger behavior confirms the hypothesis of a very limited parallelism in
language processing. It is an interesting result not only from a cognitive perspective, but also for
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automatic language processing: parsing techniques relying on a “beam search” strategy seems to
constitute an adapted answer.

5 Conclusion

The analysis of language processing difficulty by human subjects necessarily has to take into
account language in natural situation, which means the necessity of treating spoken language.
The methods and models used in such studies must then deal with different uses in order to be
general and reusable, which is not the case with current difficulty models. In particular, evaluating
automatically difficulty parameters means tools able to process non canonical or even ill-formed
sentences.

The solution we propose in this paper consists in using low-level information: morpho-syntax
features can been calculated with a good performance, even for spoken language transcriptions.
This means that automatic tools can always provide some information, whatever the structure
(which is not the case with syntactic models). Our approach constitutes a first answer towards
natural language difficulty modeling for mainly for two reasons:

• The approach is formalism-independent and theoretical-neutral: evaluating difficulty on the
basis of morpho-syntactic information avoids the use of syntactically-annotated resources as
well as parsers. It becomes the possible to adapt this technique to other languages, even those
without syntactic resources.

• Robustness: the efficiency of modern taggers makes it possible to process all kinds of lin-
guistic material, including spoken language.

The results we obtained on corpus analysis have to be generalized by means of experimenta-
tions on human subjects leading to reading-time, eye-tracking and evoked potentials data.
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