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Abstract. Learning Plausible Verb Arguments allows to automatically learn what 

kind of activities, where and how, are performed by classes of entities from sparse 

argument co-occurrences with a verb; this information it is useful for sentence 

reconstruction tasks. Calvo et al. (2009b) propose a non language-dependent model 

based on the Word Space Model for calculating the plausibility of candidate 

arguments given one verb and one argument, and compare with the single latent 

variable PLSI algorithm method, outperforming it. In this work we replicate their 

experiments with a different corpus, and explore variants to the PLSI method in 

order to explore further capabilities of this latter widely used technique. 

Particularly, we propose using an interpolated PLSI scheme that allows the 

combination of multiple latent semantic variables, and validate it in a task of 

identifying the real dependency-pair triple with regard to an artificially created one, 

obtaining up to 83% recall.  

Keywords: Plausible Verb Arguments, K-Nearest Neighbors algorithm, KNN, 

Distributional Thesaurus, Probabilistic Latent Semantic Indexing, PLSI. 

1 Introduction 

Plausible Verb Arguments information is helpful in sentence reconstruction tasks. For example: 

The boy plays with the ____ in the ____; A _____ eats grass; and I drank _____ in a glass. 

Several tasks have to deal with this common problem, for example, anaphora resolution would 

consist on finding the referenced objects: The boy plays with it there, It eats grass, I drank it in a 

glass.  Information Retrieval applications look for answers to 5W questions such as ‘Who eats 

grass?’, “Where?”, “When?” (Parton et al., 2009). The answers to these questions are not 

always explicitly stated in a text, such as ‘Where do boys play usually using what?’, ‘What do 

boys usually play with?’, ‘What is usually drunk in a glass?’ therefore, additional common 

sense knowledge is needed to answer these questions. Our goal is to create a large database of 

this information so that plausibility can be tested for performing a variety of tasks. For other 

tasks that can use this kind of information, see Section  1.1. 

This problem can be seen as collecting a large database of semantic frames with detailed 

categories and examples that fit these categories. For this purpose, recent works take advantage 
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of existing manually crafted resources such as WordNet, Wikipedia, FrameNet, VerbNet or 

PropBank. For example, Reisinger and Paşca (2009) annotate existing WordNet concepts with 

attributes, and extend is-a relations, based on Latent Dirichlet Allocation on Web documents 

and Wikipedia. Yamada et al. (2009) explore extracting hyponym relations from Wikipedia 

using pattern-based discovery and distributional similarity clustering. Nevertheless, the 

approach of using handcrafted resources prevents from obtaining information for languages 

where those resources do not exist. 

Calvo et al. (2009a, 2009b) propose a non language-dependent model based on K-Nearest 

Neighbors for calculating the plausibility of candidate arguments given one verb and one 

argument, and compare with the traditional PLSI method, outperforming it. In this work we 

replicate their experiments with a different corpus, and explore variants to the PLSI method in 

order to attest better capabilities for this latter widely used technique. Particularly, we propose 

using an interpolated PLSI scheme that allows the combination of multiple latent semantic 

variables. 

In Section  2 we present three different models for plausible argument estimation, the K-

Nearest Neighbors Model proposed by Calvo et al. (2009b) is presented in Section  2.1; the 

single-variable PLSI model is presented in Section  2.2; and our proposal of multiple latent 

semantic variable based on interpolation is presented in Section  2.3. Then we present several 

experiments: in Section  3.1 and  3.2 we replicate previous experiments with a different corpus, 

being the latter section an analysis of the learning rate. Previous results are heavily affected by 

pre-filtering, as we show in experiments shown in Section  3.3; our proposal model overcomes 

this and results are shown in Section  3.4. Afterwards, we explore how our model works with n-

grams instead of dependency triple relationships in experiments from Section  3.5.  Finally, we 

draw our conclusions in Section  4 mentioning future work and possible applications. 

1.1 Possible applications 

Correct Plausible Verb Argument identification can be used for several tasks, such as improving 

parsing. Since latent variables group the kind of arguments expected for a sentence, it is 

possible to infer the meaning of unknown words, as in the well-known example about tezguino 

(Lin, 1998b) where it is possible to know what is tezguino from the sentences: A bottle of 

tezguino is on the table; Everybody likes tezguino; Tezguino makes you drunk; and We make 

tezguino out of corn. Another application is Semantic Role Labeling, since grouping verb 

arguments and measuring their plausibility increases performance, as shown by Merlo and Van 

Der Plas (2009) and Deschacht and Moens (2009). Some other applications are metaphora 

recognition, since we are able to know common usages of arguments, and an uncommon usage 

would suggest its presence, or a coherence mistake (v. gr. to drink the moon in a glass). 

Malapropism detection can use the measure of the plausibility of an argument to determine 

misuses of words (Bolshakov, 2005) as in hysteric center, instead of historic center; density has 

brought me to you; It looks like a tattoo subject; and Why you say that with ironing?. 

2 Models for Plausible Argument Estimation 

We explore the models proposed in Calvo et al. (2009a, 2009b); then, we propose a new model 

called interpolated PLSI, which allows using multiple latent semantic variables. 

We can regard the task of finding the plausibility of a certain argument for a set of sentences 

as estimating a word given a specific context. Since we want to consider argument co-relation, 

we want to estimate 
P v,r1,n1,r2,n2( ) where v  is a verb, r1 is the relationship between the verb 

and n1 (noun) as subject, object, preposition or adverb. r2  and n2  are analogous. If we assume 

that n  has a different function when used with another relationship, then we can consider that r  

and n  make a new symbol, called a . So that we can express the 5−tuple P v,r1,n1,r2,n2( ) as 

P v,a1,a2( ). 
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We want to know, given a verb and an argument a1 , which a2  is the most plausible 

argument, i.e. P a2 v,a1( ). The probability of finding a particular verb and two of its syntactic 

relationships can be expressed as: 

P v,a1,a2( )= P v,a1( )⋅ P a2 v,a1( ), (1) 

which can be estimated in several ways. 

2.1 K-Nearest Neighbors Model 

Uses the k nearest neighbors of each argument to find the plausibility of an unseen triple given 

its similarity to all triples present in the corpus, measuring this similarity between arguments. 

See Figure 1 for the pseudo-algorithm of this model. 

 

for each triple <v,a1,a2> with observed count c, 

for each argument a1,a2 

Find its k most similar words a1s1…a1sk,  a2s1…a2sk 

with similarities s1s1, ..., s1sk and s2s1,...,s2sk. 

Add votes for each new triple <v,a1si,a2sj> += c·s1si·s2sj 

Figure 1: Pseudo-algorithm for the K-nearest neighbors DLM algorithm 

As votes are accumulative, triples that have words with many similar words will get more 

votes. 

Common similarity measures range from Euclidean distance, cosine and Jaccard’s 

coefficient (Lee, 1999), to measures such as Hindle’s measure and Lin’s measure (Lin, 1998a). 

Weeds and Weir (2003) show that the distributional measure with best performance is the Lin 

similarity, so this measure is used for smoothing the co-occurrence space, following the 

procedure as described by Lin (1998a). 

2.2 PLSI – Probabilistic Latent Semantic Indexing 

The probabilistic Latent Semantic Indexing Model (PLSI) was introduced in Hofmann (1999), 

arose from Latent Semantic Indexing (Deerwester et al., 1990). The model attempts to associate 

an unobserved class variable z∈Z={z1, ..., zk}, (in our case a generalization of correlation of the 

co-occurrence of v,a1 and a2), and two sets of observables: arguments, and verbs+arguments. In 

terms of generative model it can be defined as follows: a v,a1 pair is selected with probability 

P(v,a1), then a latent class z is selected with probability P(z|v,a1) and finally an argument a2 is 

selected with probability P(a2|z). Calvo et al. (2009a) propose using PLSI (Hoffmann, 1999) 

this said way, expressed also as (2). 

 

P v,a1,a2( )= P zi( )⋅ P a2 zi( )⋅
Z

∑ P v,a1 zi( ) (2) 

 

z is a latent variable capturing the correlation between a2 and the co-occurrence of (v,a1) 

simultaneously. Using a single latent variable to correlate three variables may lead to a poor 

performance of PLSI, so that in next section we explore different ways of exploiting the 

smoothing by latent semantic variables. 

2.3 iPLSI – interpolated PLSI 

The previous PLSI formula originally used crushes the association of information from a2, and 

v,a1 simultaneously into one single latent variable. This caused two problems: first, data 

sparseness, and second, it fixed the correlation between two variables. Hence we propose a 

variation for this calculation by using interpolation based on each pair of arguments for a triple. 
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The following formula shows an interpolated way of estimating the probability of a triple based 

on the co-occurrences of its different pairs. 

 

PE v,a1,a2( )∝ fm (v,a1) f (a2) + fn (v,a2) f (a1) + fo(a1,a2) f (a2)
 

fm v,a1( )= P mi( )⋅ P v mi( )⋅
m

∑ P a1 mi( )

fn v,a2( )= P ni( )⋅ P v n
i( )⋅

n

∑ P a2 ni( )

fo a1,a2( )= P oi( )⋅ P a1 oi( )⋅
o

∑ P a2 oi( )

 

(3) 

 
where f (v),  f (a1),  and f (a2) are the observed probabilities of v, a1 and a2 respectively.   

Additionally we test a model that considers additional information. See Eq. (4). Note that ai 

(the latent variable topics) should not be confused with a1 and a2 (the arguments). 

 

PE v,a1,a2( ) ≈ fm (v,a1) f (a2) + fn (v,a2) f (a1) + fo(a1,a2) f (a2)

+ fa (v,a1,a2) + fb (v,a1,a2) + f c (v,a1,a2)  

fa v,a1,a2( )= P ai( )⋅ P v,a2 a( )⋅
a

∑ P a1 a( )

fb v,a1,a2( )= P bi( )⋅ P a1,a2 b
i( )⋅

b

∑ P v bi( )

fc v,a1,a2( )= P c i( )⋅ P v,a1 c
i( )⋅

c

∑ P a2 c i( )

 

(4) 

 
See the Figure 2 for a graphical representation of this concept. Each latent variable is 

represented by a letter in a small circle. Big circles surround the components of the dependency 

triple to be estimated. A black dot shows the co-occurrence of two variables. All of them 

contribute for the estimation of the triple v,a1,a2. 

 

 

 

Figure 2: Graphical representation of iPLSI.  The tuple v,a1,a2 is estimated by using latent variables 

based on pairs of two variables, and/or the pair of a variable and the co-ocurrence of two variables. See 

eqs. (3) and (4). 
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3 Experiments 

We compare these two models in a pseudo-disambiguation task following Weeds and Weir 

(2003). First we obtain triples v,a1,a2
 from the corpus. Then, we divided the corpus in 

training (80%) and testing (20%) parts. With the first part we trained the PLSI model. We use 

this part also for creating the distributional thesaurus used by the KNN model, i.e., the similarity 

measure used for pairs of arguments a2, ′ a 2 . Then we are able to calculate Plausibility (v,a1,a2 ) . 

For evaluation we created artificially 4-tuples: v,a1,a2, ′ a 2 , formed by taking all the triples 

v,a1,a2
 from the testing corpus, and generating an artificial tuple v,a1, ′ a 2  choosing a random 

′ a 2 with ′ r 2 = r2
, and making sure that this new random triple v,a1, ′ a 2  was not present in the 

training corpus. The task consisted of selecting the correct tuple. Ties occur when both tuples 

are given the same score (and both are different from zero). 

For these evaluations we used the UkWaC corpus (Ferraresi et al., 2008.) This corpus is a 

large balanced corpus of English from the UK Web with more than 2 billion tokens
1
. We 

created two wordsets for the verbs: play, eat, add, calculate, fix, read, write, have, learn, inspect, 

like, do, come, go, see, seem, give, take, keep, make, put, send, say, get, walk, run, study, need, 

and become. These verbs were chosen as a sample of highly frequent verbs, as well as not so 

frequent verbs. They are also verbs that can take a great variety of arguments, such as take (i.e., 

ambiguity is high). Each wordset contains 1000 or 2500 verb dependency triples per each verb. 

The first wordset is evaluated against 5,279 verb dependency triples, while the second wordset 

is evaluated against 12,677 verb dependency triples, corresponding roughly to 20% of the total 

number of triples in each wordset.  

3.1 Results of original algorithm with new corpus 

In this section we present our results for this new corpus of the original PLSI and the KNN 

algorithms with the new corpus. Tests were carried out with one 7-topic variable for PLSI, and a 

100 nearest neighbors expansion for KNN. Calvo et al. (2009b) have shown that for estimating 

the probability of an argument a2, P a2 v,a1( ) works better than P a2 v( ). The following table 

confirms this for different wordset sizes. These experiments were performed on a subcorpus of 

UKWaC made of 1000 or 2500 triples per verb for the verbs mentioned in Section  3. 

 

Table 1: Results of the original PLSI and KNN algorithms for a test with the UKWaC corpus 

Mode Algorithm Wordset size Prec. Recall F-score 

PLSI 1000 0.5333 0.2582 0.3479 P a2 v( ) 
KNN 1000 0.7184 0.5237 0.6058 

 PLSI 2500 0.5456 0.2391 0.3325 

 KNN 2500 0.7499 0.5032 0.6023 

PLSI 1000 0.4315 0.1044 0.1681 P a2 v,a1( ) 
KNN 1000 0.8236 0.5492 0.6590 

 PLSI 2500 0.3414 0.0611 0.1036 

 KNN 2500 0.8561 0.6858 0.7615 

 

In almost cases KNN performs better than original PLSI in precision and recall (the best of 

the KNN variations is better than the best of the PLSI variations). Contrary to KNN, PLSI’s 

performance increases as the wordset size is increased probably due to more confusion in using 

the same number of topics. This can be seen also in Figures 3 and 4: recall improves slightly for 

bigger data sets and more topics. 

                                                      
1
 A tool including queries to this corpus can be found at http://sketchengine.co.uk 
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3.2 Measuring the learning rate 

This experiment consisted on gradually increasing the number of triples from 125 to 2000 

dependency triples per verb to examine the effects of using smaller corpora. Results are shown 

in Figure 3. In this figure KNN outperforms PLSI when adding more data. KNN precision is 

higher as well in all experiments. The best results for PLSI were obtained with 7 topics, while 

for KNN the best results were obtained using 200 neighbors. 

 

Figure 3: Precision and Recall for the original PLSI and KNN with learning rate (each series has 

different number of triples per verb, tpv). The frequency threshold for triples was set to 4. The numbers 

and the lower part show the number of topics for PLSI and the number of neighbors for KNN. 

3.3 Results with no pre-filtering 

Previous results used a pre-filtering threshold of 4, that is, triples with less than 4 occurrences 

were discarded. Here we present results with no pre-filtering. In  

Figure 4 results for KNN fall dramatically. PLSI is able to perform better with 20 topics. This 

suggests that PLSI is able to smooth better single occurrences of certain triples. KNN is better 

for working with frequently occurring triples. We require a method that can handle occurrences 

of un-frequent words, since pre-filtering implies a loss of data that could be useful afterwards. 

For example, consider that tezgüino is mentioned only once in the training test. We consider that 

it is important to be able to learn information for scarcely mentioned entities too. The next 

section presents results regarding to the improvement of using PLSI to handle non-filtered items.  

 
Figure 4: Average of Precision and Recall for the original PLSI and KNN showing learning rate (each 

series has different number of triples per verb, tpv). No frequency threshold was used. The numbers and 

the lower part show the number of topics for PLSI and the number of neighbors for KNN. 
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3.4 iPLSI results 

As presented in Section  2.3, we test different models for combining the Latent Semantic 

Variables. The mode part shows the latent variables that were used for these tests. For example, 

for the a,c row, the estimation was carried using (5). Results are presented in Table 2. 

PE v,a1,a2( ) ≈ f a (v,a1,a2) + f c (v,a1,a2 )  (5) 

In Table 2, the best results were obtained for o, (using only the information from a1,a2) followed 

by m,o, which is combining the information from v,a1 and a1,a2. The m,n,o and n,o modes 

include n, which has no impact in this test because it is always fixed, and helps little for 

deciding which triple is better. However, as we show in the following section, a test with pure n-

grams (non dependency triples, as in all previous tests) the three components (in this case m, n, 

and o), are contributing to the estimation. 

Table 2: Comparison of different iPLSI modes, consisting on selecting different estimators. KNN is 

shown in the last row for reference. 

mode Precision Recall mode Precision Recall 

a,b,c 0.78 0.78 m,n,o 0.83 0.83 

a 0.67 0.60 m 0.78 0.77 

b 0.44 0.44 n 0.50 0.48 

c 0.77 0.77 o 0.84 0.84 

a,c 0.62 0.62 m,n 0.77 0.77 

a,b 0.78 0.78 m,o 0.83 0.83 

b,c 0.76 0.76 n,o 0.84 0.84 

KNN 0.74 0.51 a,b,c,m,n,o 0.80 0.80 

3.5 N-grams test 

We conducted this test to attest that the three components are contributing to the interpolation, 

as well as avoiding the bias the parser might induce. The n-grams test was conducted by 

selecting trigrams of bigrams from the UKWaC corpus in a similar manner than the previous 

experiments, however in this case we did not use dependency relationships, but sliding windows 

of hexagrams distributed in trigrams in order to mimic the way function words (v.gr. 

prepositions or determiners) affect triplets in the dependency model. The n-grams were 

extracted for n-grams related to the same verbs described in Section  3. The task consisted, as 

with the dependency triples task, to choose one amongst two options of Pair 1. The correct case 

is the always first pair, although the system does not know about this. We used 80% of the 

trigrams as a base for prediction (training), and 20% for testing. Tests were conducted for 500 

triples per verb to 5000 triples per verb, in the best performance models of the previous 

experiment (m,n and m,n,o). 

Table 3: Results of iPLSI for hexagrams grouped as trigrams of bigrams. It shows that it is possible to 

select the correct trigram amongst two in 75% of the cases. 

Size, Mode Prec. Recall Size, Mode Prec. Recall 

500 m,n 0.75 0.70 2000 m,n,o 0.77 0.77 

500 m,n,o 0.78 0.74 3000 m,n 0.70 0.70 

1000 m,n 0.70 0.70 3000 m,n,o 0.75 0.75 

1000 m,n,o 0.76 0.76 5000 m,n 0.72 0.72 

2000 m,n 0.73 0.72 5000 m,n,o 0.76 0.76 

From Table 3 we can see that m,n,o is always having the best performance.  

4 Conclusions 

We have confirmed previous results that show that the KNN algorithm outperforms single-

variable PLSI, and we study the learning rate of both algorithms, showing that KNN increases 

recall when more data is added, without trading much recall; however, KNN requires strongly a 

pre-filtering phrase which eventually leads to an important loss of scarcely occurring words. 
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These words are important to our purposes, because filtering them out would prevent us to 

generalizing rare words for measuring their plausibility. The iPLSI (interpolated PLSI) 

algorithm proposed here deals with that issue, yielding better results than single-variable PLSI. 

We have found that it is possible to select the most feasible hexagram out of two with a 75% of 

recall for raw n-grams grouped as trigrams of bigrams, and up to 83% recall for dependency 

trigrams. The conducted tests prove that it is possible to select the correct candidate for a triple, 

which can be regarded as part of a sentence. This allows calculating the most plausible 

argument in a sentence, using a broader context given by a verb and other argument. 

iPLSI has outperformed the previous KNN model, but still there is room for improvement. As 

a future work, we should explore with true three-variable PLSI instead of a two-way 

interpolation, as well as other variants of iPLSI such as two-staged iPLSI, which would consist 

on relating two latent semantic variables with a latent variable in a second stage. Finally, since 

the test we conducted creates random alternatives, our system might select more probable 

candidates than the actual one, such as given “cow eats hay in yard”, selecting the randomly 

created “cow eats grass in yard” would count as negative results. Although the effect of this is 

expected to be low, it should be considered on further analyses.   
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