
Transforming Examples into Patterns for Information Extraction

R o m a n Yangarber and Ralph Gr ishman
D e p t . o f C o m p u t e r S c i e n c e

N e w Y o r k U n i v e r s i t y

715 B r o a d w a y , 7 t h F l o o r

N e w Y o r k , N Y 10003, U S A

r o m a n , g r i s h m a n ~ c s . n y u . e d u

Abstract
Information Extract ion (IE) systems today are com-
monly based on pat tern matching. The pat terns are
regular expressions stored in a customizable knowl-
edge base. Adapting an IE system to a new subject
domain entails the construction of a new pat tern base

- - a t ime-consuming and expensive task. We describe
a s trategy for building pat terns from examples. To
adapt the IE system to a new domain quickly, the
user chooses a set of examples in a training text, and
for each example gives the logical form entries which
the example induces. The system transforms these
examples into pat terns and then applies meta-rules
to generalize these patterns.

1 Introduction
The task of Information Extract ion (IE) as under-
stood in this paper is the selective extraction of mean-
ing from free natural language text. 1 This kind of
text analysis is distinguished from others in Natu-
ral Language Processing in tha t "meaning" is under-
stood in a narrow sense - in terms of a fixed set of se-
mantic objects, namely, entities, relationships among
these entities, and events in which these entities par-
ticipate. These objects belong to a small number of
types, all having fixed regular structure, within a fixed
and closely circumscribed subject domain, which per-
mits the objects to be stored in a database (e.g., a
relational da ta base). These characteristics make the
IE task both simpler and more tractable than the
more ambitious problem of general text understand-
ing. They allow us to define the notion of a "correct
answer", and, therefore, to conduct quanti tat ive eval-
uation of performance of an IE system. A series of for-
mal evaluations - - the Message Understanding Con-

1For a review of a range of extraction systems, the reader
is referred to [9].

ferences (MUCs), 2 conducted over the last decade - -
are described in [8, 6].

The MUCs have yielded some widely (if not uni-
versally) accepted wisdom regarding IE:

• Customization and portabil i ty is an important
problem: to be considered a useful tool, an IE
system must be able to perform in a variety of
domains.

• Systems have modular design: Control is encap-
sulated in immutable core engines, which draw
upon domain- or scenario-specific information
stored in knowledge bases (KB) which are cus-
tomized for each new domain and scenario.

• Text analysis is based on pattern matching: regu-
lar expression pat tern matching is a widely used
strategy in the IE community. Pa t te rn match-
ing is a form of deterministic bo t tom-up par-
tial parsing. This approach has gained consid-
erable populari ty due to limitations on the accu-
racy of full syntactic parsers, and the adequacy
of partial, semantically-constrained, parsing for
this task [2, 1, 5].

• Building effective pat terns for a new domain is
the most complex and t ime-consuming par t of
the customization process; it is highly error-
prone, and requires detailed knowledge of system
internals.

In view of these findings, it becomes evident that hav-
ing a disciplined method of customizing the pat tern

2In this paper we will use IE terminology accepted in the
MUC literature. A subject domain will denote the class of
textual documents to be processed, such as "business news,"
while scenario will refer to the set of facts to be extracted,
i.e., the specific extraction task that is applied to documents
within the domain. One example of a scenario is "executive
succession", the task tested in MUC-6, where the system seeks
to identify events in which corporate managers left their posts
or assumed new ones.

97

J,)

Name Recognition

T Noun,Vor rou '
!. <>

Noun Phrases

Events

Pattern Base :Ref6rence::Res01:Ution
• - , - ,

Semantic Concept
Hierarchy

Inference
Rules

• Disc0urSe! I!nfei~ence
• - , , . .

:!0utpUt: Ge:nerati0n: :!

Figure 1: IEsys t emarch i t ec tu re

base is essential. It is particularly valuable if the
method allows naive users (i.e., non-developers, un-
familiar with system internals) to customize the sys-
tem. The current work describes such a method.

2 Structure of the IE S y s t e m

An outline of our IE system [5, 11, 12] is shown in
figure 1. The system is a pipeline of modules: each
module draws on at tendant KBs to process its input,
and passes its output to the next module.

The lexical analysis module is responsible for
breaking up the document into sentences, and sen-
tences into tokens. This module draws on a set of
on-line dictionaries. Lexical analysis attaches to each
token a reading, or a list of alternative readings, in
case the token is syntactically ambiguous. A read-
ing contains a list of features and their values (e.g.,
"syntactic category = Noun"). The lexical analyzer
incorporates a statistical part-of-speech tagger, which
eliminates unlikely readings for each token, a

The name recognition module identifies proper
names in the text by using local textual cues, such

SWe wish to t h a n k B B N for providing us wi th thei r tagger .

as capitalization, personal titles ("Mr.", "Esq."), and
company suffixes ("Inc.", "C0.").4 The next module
identifies small syntactic units, such as basic noun
groups (nouns with their left modifiers) and verb
groups. When it identifies a phrase, the system marks
the text segment with a semantic description, which
includes the semantic class of the head of the phrase. 5
The next module (incrementally building on infor-
mation gathered by the earlier modules) finds larger
noun phrases, involving (for example) conjunction,
apposition, and prepositional phrase modifiers, us-
ing local semantic information. The following mod-
ule identifies scenario-specific clauses and nominaliza-
tions.

These four modules operate by matching patterns
of successively increasing complexity against the in-
put. The patterns are regular expressions which trig-
ger associated actions. The actions perform opera-
tions on the logical]orm representation (LF) of the
processed segments of the discourse. The discourse is

4 N a m e recogni t ion is a well-researched topic, wi th the bes t
available s y s t e m s today reaching 96% accuracy in nar row do-
ma ins .

5These m a r k s are po in te rs to the co r respond ing ent i t ies
which are crea ted and added to the logical form.

9 8

Slo t V a l u e
class C-Company
name Coca-Cola, Inc.
location . . .

Figure 2: LF for the text: "Coca-Cola, Inc."

thus represented as a sequence of LFs corresponding
to the entities, relationships, and events encountered
so far in the analysis.

A LF is an object with named slots (see example
in figure 2). One slot in each LF, named "class", has
distinguished status, and determines the number and
type of other slots tha t the object may contain. E.g.,
an entity of class "company" has a slot called "name".
It also contains a slot "location" which points to an-
other entity, thereby establishing a relation between
the location entity and the matr ix entity. Events
are specific kinds of relations, usually having several
operands (example in figure 3).

The subsequent modules operate on the logical
forms built by the pat tern matching modules. Re/er-
ence resolution merges co-referring expressions, e.g.,
it links anaphoric pronouns to their antecedents. Dis-
course in/erence uses inference rules to build more
complex event structures, where the information
needed to extract a single complex fact is spread
across several clauses. Lastly, the output-generat ion
phase formats the resultant LF into the output struc-
ture specified by the user, e.g., into a database table.

3 Genera l and Specific Pa t -
t e rns

Before we describe our example-based strategy for
building patterns, we examine the organization of the
pat tern base in more detail. We can group the pat-
terns into "layers" according to their range of appli-
cability:

1. Domain-independent: this layer contains the
most generally applicable patterns. Included in
this layer are many of the pat terns for name
recognition (for people, organizations, and loca-
tions, as well as temporal and numeric expres-
sions, currencies, etc.), and the purely syntactic
pat terns for noun groups and verb groups. These
pat terns are useful in a wide range of tasks.

2. Domain-specific: the next layer contains domain-
specific pat terns, which are useful across a nar-

rower range of scenarios, but still have consid-
erable generality. These include domain-specific
name patterns, such as those for certain types
of artifacts, as well as pat terns for noun phrases
which express relationships among entities, such
as those between persons and organizations.

. Scenario-specific: the last layer contains
scenario-specific patterns, having the narrowest
applicability, such as the clausal pat terns tha t
capture relevant events.

This stratification reflects the relative "persis-
tence" of the patterns. The pat terns at the lowest
level, having the widest applicability, are built in as
a core component of the system. These change little
when the system is ported to a new domain. The
mid-range patterns, applicable in certain commonly
encountered domains, can be organized as domain-
specific pattern libraries, which can be plugged in as
required by the extraction task. 6 For example, for the
"business/economic news" domain, we have pat terns
tha t capture:

• entities - organization, company, person, loca-
tion;

• relations - person/organizat ion, organiza-
t ion/location, parent /subsidiary organization.

The scenario-specific pat terns must be built on a per-
scenario basis. This is accomplished through a set of
graphical tools, which engage the user only at the
level of surface representations, hiding the internal
operation of the patterns. The user 's input is reduced
to

• providing textual examples of events of interest,

• describing the corresponding output structures
(LFs) which the example text should induce.

In the remaining sections we discuss how the system
can use this information to

* automatical ly build pat terns to map the user-
specified text into the user-specified LF,

• generalize the newly created pat terns to boost
coverage.

6 To a limited degree, the system is able to adapt to a new
domain automatically: given training data in the domain, we
can train a statistical proper name recognizer [3], in effect,
obviating the need for building domain-specific name patterns.

99

. . . Information Resources Inc.'s London-
based European Information Services opera-
tion has appointed George Garrick, .40 years
old, president . . .

Fie ld Value
Posit ion
Company
Location
Person
Status

president
European Information Services
London
George Garrick
In

Figure 3: Succession text and extracted record

4 Example-based Acquisition

4 . 1 O b j e c t i v e

Consider a situation where the developer has found
a salient text segment and proceeds to extend the
IE system to extract the proper information from it.
Figure 3 shows a (paraphrased) text segment from the
MUC-6 development corpus, with the corresponding
extracted event, in the form of a database record. We
will use this example to illustrate our methodology.
In our earlier system (as in most other IE systems),
upon finding a candidate example, the developer had
to construct a pat tern capable of capturing the ex-
ample. Such a pat tern consists of two parts:

• the precondition, which seeks to match an active
clause beginning with a np of type "company",
followed by a verb group (vg) of class "appoint",
followed by a np of class "person", etc.;

• the action which fires when the pat tern matches,
and prescribes the operations to be performed on
the sentence fragments and the logical form.

Figure 4 shows an excerpt from the pat tern code; it
is written in Common Lisp, with the precondition
specified using a special "pat tern language". Clearly,
this method of development is quite time-consuming
and error-prone.

Instead, we now employ a kind of a "bootstrap-
ping" procedure: the system allows the user to intro-
duce a new example and apply to it the patterns that
the system has acquired so far. This produces a par-
tial analysis, and builds LFs for the analyzable con-
stituents of the example text. The user then specifies
how these LFs, or their sub-parts, combine to yield
the LF for the entire example.

;;; For <company> appoints <person> <position>
(definePattern Appoint

"np(C-company)? vg(C-appoint) np(C-person)
to-be? np(C-position):

company=l.attributes, person=3.attributes,
position=5.attributes I

(definehction Appoint (phrase-type)
(l e t ((p e r s o n - a t (b ind ing 'person))

(company-entity (entity-bound 'company))
(person-entity (entity-bound 'person))
(p o s i t i o n - e n t i t y (en t i t y -bound ' p o s i t i o n))
new-event)

;; if no company slot in position, use agent

Figure 4: A manually coded scenario pat tern

4 . 2 A c q u i r i n g P r e c o n d i t i o n s

To illustrate this method, we first show how the sys-
tem acquires the pat tern for analyzing the portion of
our example shown in figure 6. This is a complex
NP made up of a series of nouns, names, and other
lexical items. The crucial point is that a basic sys-
tem, which has not been specialized for any domain,
will analyze this reduced example as in figure 5 by
dint of its built-in patterns for named entities. 7 The
analysis also produces the LF entities for each boxed
segment. This information is sufficient for the system
to propose a precondition for a candidate pattern: s

n (C - c o m p a n y) ' s n (C-c i ty) - b a s e d n (C-

company) n(operation)

The system then initiates an interaction with the user
in which s /he can operate on the components, mod-
ifying them or labeling them as optional (indicated
below by a following question mark), to complete the
precondition of the pattern:

[n(C-company) 's]? [n(C-city)-based]? n(C-
company) n(operation)?

4 . 3 A c q u i r i n g A c t i o n s

Now the user specifies, again by example, what action
is to be performed when the precondition of the pat-
tern matches. S/he can select the new type of event

7The customization tool supports two methods for analyz-
ing specific noun group structures. The approach described
here involves the creation of a semantically-specific noun group
pattern. Alternatively, the phrase can first be analyzed by the
general, syntactic noun group pat tern, with the resulting LF
then restructured by a semantically-specific pattern.

SFor purposes of presentation, we have simplified the form
of these pat terns to emphasize the parallel with the clause
patterns. In the current implementation, each pat tern element
would involve a conjunction of tests for the syntactic type (n)
and the semantic class (C-company, etc.).

100

company location company
I Information Resources Inc. I ' s ~ -based I Earopea n Information Services I operation

Figure 5: Initial analysis

. . . Information Resources Inc. 's London-
based European Information Services oper-
ation . ..

Slot Value
class C-Company
name European Information Services
~ocation entity ~ <London>

p a r e n t entity ~ <I.R.Inc.>

Figure 6: A complex NP and corresponding entity
LF

or entity to be created, and indicate how the matched
constituents (LFs) discovered in the example are to
function in the new event. Alternatively, s /he may
designate one of the generated entities as the "head"
entity (or the matrix entity) for the complex phrase,
and designate the remaining entities as subordinate to
the matrix entity, i.e., as standing in some semantic
relation to it. To accomplish this, the user can drag-
and-drop a subordinate entity into the appropriate
slot in the matrix entity (in a simple GUI environ-
ment); the slot serves to indicate the relationship of
the subordinate entity to the matrix; (see figure 6).
The precondition and the action together now con-
stitute a complete pat tern which matches a complex
NP and produces a LF with relations.

4 . 4 S e m a n t i c G e n e r a l i z a t i o n

Consider the final, optional constituent in the pre-
condition of the preceding pattern, n(operation). We
would like to broaden the coverage of the pattern,
so that it could match any semantically similar noun
in that position; in particular, it should also match
"concern", "outfit", etc. To this end, our system al-
lows the user to gather semantic concepts in an in-
heritance hierarchy. For example, s /he can gather
all these and more lexemes under the same semantic
class, called, e.g., C-co-descrip. Similarly, the classes
C-city for city names and C-state for state names
would be gathered under a concept C-location. The
GUI tools then allow the user to perform semantic
generalization on the individual constituents of the
pattern's precondition; its final form becomes:

S lo t i Va lue
c~ass P r e d i c a t e - S t a r t - J o b
company e n t i t y ~ < E . I . S . >
p e r s o n entity ~ <Garrick>
p o s i t i o n entity ~ <pres iden t>

Figure 7: Event LF corresponding to a clause

In(C-company) 's]? [n(C-location)-based]?
n(C-company) n(C-co-descrip)?

The semantic hierarchy is scenario-specific. It is
built up dynamically through tools tha t draw on
pre-existing domain-independent hierarchies, such as
WordNet, as well as domain-specific word similarity
measures and co-occurrence statistics [4].

By a similar process, we can now acquire a clausal
pattern from the example in figure 3 at the beginning
of this •section. The system proposes the precondi-
tion:

np(C-company) vg(C-appoint) np(C-person)
np(president)

Applying semantic generalization to the last con-
stituent yields:

np(C-company) vg(C-appoint) np(C-person)
np(C-title)

where C-title is a semantic class that gathers all cor-
porate titles. The user can now fill the slots in the
LF for the event as in figure 7.

5 M e t a - r u l e s

Consider the following variant of the original exam-
ple:

... George Garrick, an avowed anti-
capitalist, was appointed yesterday presi-
dent of Information Resources Inc., ...

The basic pat tern for an active clause, which we ac-
quired in the preceding section, will not match this
paraphrase. There are two essential kinds of varia-
tions here:

101

• syntactic transformations; the system needs sev-
eral related patterns, which capture the cor-
responding passive clause, relative clause, and
other syntactic variants of the example.

• optional, semantically irrelevant modifiers, e.g.,
sentence adjuncts, appositions, etc., as exempli-
fied by the italicized segments above.

The user could, of course, provide transformed exam-
ples, build patterns individually for each transforma-
tion of the original, and insert the optional modifiers
to make the patterns as general as possible. How-
ever, it is clear that this naive approach quickly leads
to a proliferation of patterns with which the user is
directly concerned. Instead, we have introduced a
meta-rule mechanism: after a pat tern is accepted,
the system generates all related generalizations of the
pattern automatically. 9 For example, from the active
clause pat tern above, a passivizing meta-rule will pro-
duce the precondition:

np(C-person) rn? sa? pass-vg(C-appoint) sa?
np(C-title) [by np(C-company)]? lO

The resulting pat tern will match the variant exam-
ple, and produce the correct event LF. To maximize
coverage, the system should contain meta-rules for
all clausal variants, including nominalizations; similar
meta-rules can be provided to generalize noun-phrase
patterns, as discussed in section 4.2.

6 D i s c u s s i o n

We have described a comprehensive methodology for
acquiring patterns from examples and automatically
expanding their coverage. Other IE systems employ
variants of example-based pat tern acquisition. One
system, developed at University of Massachusetts at
Amherst, [10], used unsupervised training to learn
patterns from the MUC training corpus. However,
unsupervised learning can degrade in the face of [1]
sparse data; the UMass system seemed to require one
more order of magnitude of training data than was
available in MUC-6. The HASTEN system, devel-
oped by SRA [7], used a somewhat different example-
based approach: they seek to broaden coverage by
allowing statistically approximate matches, a strat-
egy that lacks a syntactic basis, and may result in
overgeneration. [2]

9A meta-rule mechanism is also included in the SRI FAS-
TUS system[2].

1°where rn is a pre-defined sub-pattern that matches various
right noun-phrase modifiers, sa is a sentence adjunct, and pass-
vg is a passive verb group.

The presented methodology has been fully imple-
mented as a set of tools that complement our core
information extraction engine, and has been tested
on three different scenarios. One of the scenarios was
successfully implemented by a computational linguist
who interacted with the system exclusively by means
of the tools, and had no familiarity with the system
internals.

Our experience also suggests areas of improvement,
which we are currently pursuing. One important
question is: where do examples come from? We seek
to shift the burden of inventing the examples from
the developer to the system. In response to these
problems we are building tools that will help the user
surf the corpus to help discover patterns.

7 C o n c l u s i o n

Porting an existing system to a new domain presents
an important problem in IE. Effective techniques are
needed to minimize the time and complexity of the
process, and to extricate the porting process from
low-level system details, so that it can be undertaken
by non-expert users. In this report, we have described
our approach to the problem, based on:

• example-based acquisition of scenario-specific
patterns,

• system-aided generalization of acquired pat-
terns, at the semantic and syntactic level.

The experience we have gained from implementing
this strategy leads us to believe in its overall useful-
ness.

R e f e r e n c e s

Douglas Appelt, Jerry Hobbs, John Bear, David
Israel, Megumi Kameyama, Andy Kehler, David
Martin, Karen Meyers, and Mabry Tyson. SRI
International FASTUS system: MUC-6 test re-
sults and analysis. In Proc. Sixth Message Un-
derstanding Conf. (MUC-6), Columbia, MD,
November 1995. Morgan Kaufmann.

Douglas Appelt, Jerry Hobbs, John Bear, David
Israel, and Mabry Tyson. FASTUS: A finite-
state processor for information extraction from
real-world text. In Proc. 13th Int'l Joint Conf.
Artificial Intelligence (IJCAI-93), pages 1172-
1178, August 1993.

102

[3] Andrew Borthwick, John Sterling, Eugene
Agichtein, and Ralph Grishman. Exploiting di-
verse knowledge sources via maximum entropy in
named entity recognition. In Proceedings of the
Sixth Workshop on Very Large Corpora, Mon-
treal, Canada, August 1998.

[4] Ido Dagan, Shaul Marcus, and Shaul
Markovitch. Contextual word similarity
and estimation from sparse data. In Proceed-
ings of the 31st Annual Meeting of the Assn.
for Computational Linguistics, pages 31-37,
Columbus, OH, June 1993.

[5] Ralph Grishman. The NYU system for MUC-6,
or where's the syntax. In Proc. Sixth Message
Understanding Conf., pages 167-176, Columbia,
MD, November 1995. Morgan Kaufmann.

[6] Ralph Grishman and Beth Sundheim. Mes-
sage understanding conference - 6: A brief his-
tory. In Proc. 16th Int'l Conf. on Computational
Linguistics (COLING 96), Copenhagen, August
1996.

[7] George Krupka. SRA: Description of the SRA
system as used for MUC-6. In Proc. Sixth Mes-
sage Understanding Conf. (MUC-6), Columbia,
MD, November 1995. Morgan Kaufmann.

[8] Proceedings of the Sixth Message Understanding
Conference (MUC-6), Columbia, MD, November
1995. Morgan Kaufmann.

[9] Maria Teresa Pazienza, editor. Information Ex-
traction. Springer-Verlag, Lecture Notes in Ar-
tificial Intelligence, Rome, 1997.

[10] W. Soderland, D. Fisher, J. Aseltine, and
W. Lenhert. CRYSTAL: Inducing a conceptual
dictionary. In Proc. Int'l Joint Conf. Artificial
Intelligence (IJCAI-95), pages 1314-1319, Mon-
treal, Canada, 1995.

[11] Roman Yangarber and Ralph Grishman. Cus-
tomization of information extraction systems.
In Paola Velardi, editor, International Work-
shop on Lexically Driven Information Extrac-
tion, pages 1-11, Frascati, Italy, July 1997. Uni-
versitg di Roma.

[12] Roman Yangarber and Ralph Grishman. NYU:
Description of the Proteus/PET system as used
for MUC-7 ST. In MUC-7: Seventh Message Un-
derstanding Conference, Columbia, MD, April
1998. Avaliable through the SAIC MUC web
site, h t t p ://www.muc. sa ic . com/.

103

