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Abstract 
Information Extract ion (IE) systems today are com- 
monly based on pat tern  matching. The pat terns  are 
regular expressions stored in a customizable knowl- 
edge base. Adapting an IE system to a new subject 
domain entails the construction of a new pat tern  base 

- -  a t ime-consuming and expensive task. We describe 
a s trategy for building pat terns  from examples. To 
adapt  the IE system to a new domain quickly, the 
user chooses a set of examples in a training text,  and 
for each example gives the logical form entries which 
the example induces. The system transforms these 
examples into pat terns  and then applies meta-rules 
to generalize these patterns.  

1 Introduction 
The task of Information Extract ion (IE) as under- 
stood in this paper  is the selective extraction of mean- 
ing from free natural  language text. 1 This kind of 
text  analysis is distinguished from others in Natu- 
ral Language Processing in tha t  "meaning" is under- 
stood in a narrow sense - in terms of a fixed set of se- 
mantic objects, namely, entities, relationships among 
these entities, and events in which these entities par- 
ticipate. These objects belong to a small number of 
types, all having fixed regular structure, within a fixed 
and closely circumscribed subject domain, which per- 
mits the objects to be stored in a database (e.g., a 
relational da ta  base). These characteristics make the 
IE task both simpler and more tractable than the 
more ambitious problem of general text  understand- 
ing. They allow us to define the notion of a "correct 
answer", and, therefore, to conduct quanti tat ive eval- 
uation of performance of an IE system. A series of for- 
mal evaluations - -  the Message Understanding Con- 

1For a review of a range of extraction systems, the reader 
is referred to [9]. 

ferences (MUCs), 2 conducted over the last decade - -  
are described in [8, 6]. 

The MUCs have yielded some widely (if not uni- 
versally) accepted wisdom regarding IE: 

• Customization and portabil i ty is an important  
problem: to be considered a useful tool, an IE 
system must  be able to perform in a variety of 
domains. 

• Systems have modular design: Control is encap- 
sulated in immutable  core engines, which draw 
upon domain- or scenario-specific information 
stored in knowledge bases (KB) which are cus- 
tomized for each new domain and scenario. 

• Text analysis is based on pattern matching: regu- 
lar expression pat tern  matching is a widely used 
strategy in the IE community. Pa t te rn  match- 
ing is a form of deterministic bo t tom-up par- 
tial parsing. This approach has gained consid- 
erable populari ty due to limitations on the accu- 
racy of full syntactic parsers, and the adequacy 
of partial,  semantically-constrained, parsing for 
this task [2, 1, 5]. 

• Building effective pat terns  for a new domain is 
the most  complex and t ime-consuming par t  of 
the customization process; it is highly error- 
prone, and requires detailed knowledge of system 
internals. 

In view of these findings, it becomes evident that  hav- 
ing a disciplined method of customizing the pat tern  

2In this paper we will use IE terminology accepted in the 
MUC literature. A subject domain will denote the class of 
textual documents to be processed, such as "business news," 
while scenario will refer to the set of facts to be extracted, 
i.e., the specific extraction task that is applied to documents 
within the domain. One example of a scenario is "executive 
succession", the task tested in MUC-6, where the system seeks 
to identify events in which corporate managers left their posts 
or assumed new ones. 
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Figure 1: IEsys t emarch i t ec tu re  

base is essential. It is particularly valuable if the 
method allows naive users (i.e., non-developers, un- 
familiar with system internals) to customize the sys- 
tem. The current work describes such a method. 

2 Structure  of  the  IE S y s t e m  

An outline of our IE system [5, 11, 12] is shown in 
figure 1. The system is a pipeline of modules: each 
module draws on at tendant  KBs to process its input, 
and passes its output  to the next module. 

The lexical analysis module is responsible for 
breaking up the document into sentences, and sen- 
tences into tokens. This module draws on a set of 
on-line dictionaries. Lexical analysis attaches to each 
token a reading, or a list of alternative readings, in 
case the token is syntactically ambiguous. A read- 
ing contains a list of features and their values (e.g., 
"syntactic category = Noun"). The lexical analyzer 
incorporates a statistical part-of-speech tagger, which 
eliminates unlikely readings for each token, a 

The name recognition module identifies proper 
names in the text by using local textual cues, such 

SWe wish to t h a n k  B B N for providing us  wi th  thei r  tagger .  

as capitalization, personal titles ("Mr.", "Esq."), and 
company suffixes ("Inc.", "C0.").4 The next module 
identifies small syntactic units, such as basic noun 
groups (nouns with their left modifiers) and verb 
groups. When it identifies a phrase, the system marks 
the text segment with a semantic description, which 
includes the semantic class of the head of the phrase. 5 
The next module (incrementally building on infor- 
mation gathered by the earlier modules) finds larger 
noun phrases, involving (for example) conjunction, 
apposition, and prepositional phrase modifiers, us- 
ing local semantic information. The following mod- 
ule identifies scenario-specific clauses and nominaliza- 
tions. 

These four modules operate by matching patterns 
of successively increasing complexity against the in- 
put. The patterns are regular expressions which trig- 
ger associated actions. The actions perform opera- 
tions on the logical ]orm representation (LF) of the 
processed segments of the discourse. The discourse is 

4 N a m e  recogni t ion is a well-researched topic,  wi th  the  bes t  
available s y s t e m s  today  reaching  96% accuracy  in nar row do- 
ma ins .  

5These  m a r k s  are po in te rs  to the  co r respond ing  ent i t ies  
which are crea ted  and  added  to the  logical form.  
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Slo t  V a l u e  
class C-Company 
name Coca-Cola, Inc. 
location . . .  

Figure 2: LF for the text: "Coca-Cola, Inc." 

thus represented as a sequence of LFs corresponding 
to the entities, relationships, and events encountered 
so far in the analysis. 

A LF is an object with named slots (see example 
in figure 2). One slot in each LF, named "class", has 
distinguished status, and determines the number  and 
type of other slots tha t  the object may contain. E.g., 
an entity of class "company" has a slot called "name".  
It  also contains a slot "location" which points to an- 
other entity, thereby establishing a relation between 
the location entity and the matr ix  entity. Events 
are specific kinds of relations, usually having several 
operands (example in figure 3). 

The subsequent modules operate on the logical 
forms built by the pat tern  matching modules. Re/er- 
ence resolution merges co-referring expressions, e.g., 
it links anaphoric pronouns to their antecedents. Dis- 
course in/erence uses inference rules to build more 
complex event structures, where the information 
needed to extract  a single complex fact is spread 
across several clauses. Lastly, the output-generat ion 
phase formats the resultant LF into the output  struc- 
ture specified by the user, e.g., into a database table. 

3 Genera l  and Specific Pa t -  
t e rns  

Before we describe our example-based strategy for 
building patterns,  we examine the organization of the 
pat tern  base in more detail. We can group the pat-  
terns into "layers" according to their range of appli- 
cability: 

1. Domain-independent: this layer contains the 
most generally applicable patterns.  Included in 
this layer are many  of the pat terns  for name 
recognition (for people, organizations, and loca- 
tions, as well as temporal  and numeric expres- 
sions, currencies, etc.), and the purely syntactic 
pat terns for noun groups and verb groups. These 
pat terns  are useful in a wide range of tasks. 

2. Domain-specific: the next layer contains domain- 
specific pat terns,  which are useful across a nar- 

rower range of scenarios, but  still have consid- 
erable generality. These include domain-specific 
name patterns,  such as those for certain types 
of artifacts, as well as pat terns  for noun phrases 
which express relationships among entities, such 
as those between persons and organizations. 

. Scenario-specific: the last layer contains 
scenario-specific patterns,  having the narrowest 
applicability, such as the clausal pat terns  tha t  
capture relevant events. 

This stratification reflects the relative "persis- 
tence" of the patterns.  The pat terns  at the lowest 
level, having the widest applicability, are built in as 
a core component  of the system. These change little 
when the system is ported to a new domain. The 
mid-range patterns,  applicable in certain commonly 
encountered domains, can be organized as domain- 
specific pattern libraries, which can be plugged in as 
required by the extraction task. 6 For example, for the 
"business/economic news" domain, we have pat terns  
tha t  capture: 

• entities - organization, company, person, loca- 
tion; 

• relations - person/organizat ion,  organiza- 
t ion/location,  parent /subsidiary  organization. 

The scenario-specific pat terns  must  be built on a per- 
scenario basis. This is accomplished through a set of 
graphical tools, which engage the user only at the 
level of surface representations, hiding the internal 
operation of the patterns.  The user 's input is reduced 
to 

• providing textual  examples of events of interest, 

• describing the corresponding output structures 
(LFs) which the example text  should induce. 

In the remaining sections we discuss how the system 
can use this information to 

* automatical ly build pat terns  to map the user- 
specified text  into the user-specified LF, 

• generalize the newly created pat terns  to boost 
coverage. 

6 To  a limited degree, the system is able to adapt to a new 
domain automatically: given training data in the domain, we 
can train a statistical proper name recognizer [3], in effect, 
obviating the need for building domain-specific name patterns. 
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. . . Information Resources Inc.'s London- 
based European Information Services opera- 
tion has appointed George Garrick, .40 years 
old, president . . .  

Fie ld  Value  
Posit ion 
Company 
Location 
Person 
Status 

president 
European Information Services 
London 
George Garrick 
In 

Figure 3: Succession text and extracted record 

4 Example-based Acquisition 

4 . 1  O b j e c t i v e  

Consider a situation where the developer has found 
a salient text  segment and proceeds to extend the 
IE system to extract  the proper information from it. 
Figure 3 shows a (paraphrased) text segment from the 
MUC-6 development corpus, with the corresponding 
extracted event, in the form of a database record. We 
will use this example to illustrate our methodology. 
In our earlier system (as in most other IE systems), 
upon finding a candidate example, the developer had 
to construct a pat tern capable of capturing the ex- 
ample. Such a pat tern consists of two parts: 

• the precondition, which seeks to match an active 
clause beginning with a np of type "company", 
followed by a verb group (vg) of class "appoint",  
followed by a np of class "person", etc.; 

• the action which fires when the pat tern matches, 
and prescribes the operations to be performed on 
the sentence fragments and the logical form. 

Figure 4 shows an excerpt from the pat tern code; it 
is written in Common Lisp, with the precondition 
specified using a special "pat tern  language". Clearly, 
this method of development is quite time-consuming 
and error-prone. 

Instead, we now employ a kind of a "bootstrap- 
ping" procedure: the system allows the user to intro- 
duce a new example and apply to it the patterns that  
the system has acquired so far. This produces a par- 
tial analysis, and builds LFs for the analyzable con- 
stituents of the example text. The user then specifies 
how these LFs, or their sub-parts, combine to yield 
the LF for the entire example. 

;;; For <company> appoints <person> <position> 
(definePattern Appoint 

"np(C-company)? vg(C-appoint) np(C-person) 
to-be? np(C-position): 

company=l.attributes, person=3.attributes, 
position=5.attributes I 

(definehction Appoint (phrase-type) 
( l e t  ( ( p e r s o n - a t  (b ind ing  'person)) 

(company-entity (entity-bound 'company)) 
(person-entity (entity-bound 'person)) 
( p o s i t i o n - e n t i t y  ( en t i t y -bound  ' p o s i t i o n ) )  
new-event) 

;; if no company slot in position, use agent 

Figure 4: A manually coded scenario pat tern 

4 . 2  A c q u i r i n g  P r e c o n d i t i o n s  

To illustrate this method, we first show how the sys- 
tem acquires the pat tern for analyzing the portion of 
our example shown in figure 6. This is a complex 
NP made up of a series of nouns, names, and other 
lexical items. The crucial point is that  a basic sys- 
tem, which has not been specialized for any domain, 
will analyze this reduced example as in figure 5 by 
dint of its built-in patterns for named entities. 7 The 
analysis also produces the LF entities for each boxed 
segment. This information is sufficient for the system 
to propose a precondition for a candidate pattern: s 

n ( C - c o m p a n y )  ' s  n (C-c i ty )  - b a s e d  n (C-  

company) n(operation) 

The system then initiates an interaction with the user 
in which s /he can operate on the components, mod- 
ifying them or labeling them as optional (indicated 
below by a following question mark), to complete the 
precondition of the pattern: 

[n(C-company) 's]? [n(C-city)-based]? n(C- 
company) n(operation)? 

4 . 3  A c q u i r i n g  A c t i o n s  

Now the user specifies, again by example, what action 
is to be performed when the precondition of the pat- 
tern matches. S/he  can select the new type of event 

7The customization tool supports two methods for analyz- 
ing specific noun group structures. The approach described 
here involves the creation of a semantically-specific noun group 
pattern.  Alternatively, the phrase can first be analyzed by the 
general, syntactic noun group pat tern,  with the resulting LF 
then restructured by a semantically-specific pattern.  

SFor purposes of presentation, we have simplified the form 
of these pat terns  to emphasize the parallel with the clause 
patterns. In the current implementation,  each pat tern  element 
would involve a conjunction of tests for the syntactic type (n) 
and the semantic class (C-company, etc.). 
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company location company 
I Information Resources Inc. I ' s  ~ -based I Earopea n Information Services I operation 

Figure 5: Initial analysis 

. . .  Information Resources Inc. 's London- 
based European Information Services oper- 
ation . .. 

Slot Value 
class C-Company 
name European Information Services 
~ocation entity ~ <London> 

p a r e n t  entity ~ <I.R.Inc.> 

Figure 6: A complex NP and corresponding entity 
LF 

or entity to be created, and indicate how the matched 
constituents (LFs) discovered in the example are to 
function in the new event. Alternatively, s /he may 
designate one of the generated entities as the "head" 
entity (or the matrix entity) for the complex phrase, 
and designate the remaining entities as subordinate to 
the matrix entity, i.e., as standing in some semantic 
relation to it. To accomplish this, the user can drag- 
and-drop a subordinate entity into the appropriate 
slot in the matrix entity (in a simple GUI environ- 
ment); the slot serves to indicate the relationship of 
the subordinate entity to the matrix; (see figure 6). 
The precondition and the action together now con- 
stitute a complete pat tern which matches a complex 
NP and produces a LF with relations. 

4 . 4  S e m a n t i c  G e n e r a l i z a t i o n  

Consider the final, optional constituent in the pre- 
condition of the preceding pattern,  n(operation). We 
would like to broaden the coverage of the pattern,  
so that  it could match any semantically similar noun 
in that  position; in particular, it should also match 
"concern", "outfit", etc. To this end, our system al- 
lows the user to gather semantic concepts in an in- 
heritance hierarchy. For example, s /he can gather 
all these and more lexemes under the same semantic 
class, called, e.g., C-co-descrip. Similarly, the classes 
C-city for city names and C-state for state names 
would be gathered under a concept C-location. The 
GUI tools then allow the user to perform semantic 
generalization on the individual constituents of the 
pattern's  precondition; its final form becomes: 

S lo t  i Va lue  
c~ass  P r e d i c a t e - S t a r t - J o b  
company e n t i t y  ~ < E . I . S . >  
p e r s o n  entity ~ <Garrick> 
p o s i t i o n  entity ~ <pres iden t> 

Figure 7: Event LF corresponding to a clause 

In(C-company) 's]? [n(C-location)-based]? 
n(C-company) n(C-co-descrip)? 

The semantic hierarchy is scenario-specific. It is 
built up dynamically through tools tha t  draw on 
pre-existing domain-independent hierarchies, such as 
WordNet, as well as domain-specific word similarity 
measures and co-occurrence statistics [4]. 

By a similar process, we can now acquire a clausal 
pattern from the example in figure 3 at the beginning 
of this •section. The system proposes the precondi- 
tion: 

np(C-company) vg(C-appoint) np(C-person) 
np(president) 

Applying semantic generalization to the last con- 
stituent yields: 

np(C-company) vg(C-appoint) np(C-person) 
np(C-title) 

where C-title is a semantic class that  gathers all cor- 
porate titles. The user can now fill the slots in the 
LF for the event as in figure 7. 

5 M e t a - r u l e s  

Consider the following variant of the original exam- 
ple: 

... George Garrick, an avowed anti- 
capitalist, was appointed yesterday presi- 
dent of Information Resources Inc., ... 

The basic pat tern for an active clause, which we ac- 
quired in the preceding section, will not match this 
paraphrase. There are two essential kinds of varia- 
tions here: 
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• syntactic transformations; the system needs sev- 
eral related patterns, which capture the cor- 
responding passive clause, relative clause, and 
other syntactic variants of the example. 

• optional, semantically irrelevant modifiers, e.g., 
sentence adjuncts, appositions, etc., as exempli- 
fied by the italicized segments above. 

The user could, of course, provide transformed exam- 
ples, build patterns individually for each transforma- 
tion of the original, and insert the optional modifiers 
to make the patterns as general as possible. How- 
ever, it is clear that  this naive approach quickly leads 
to a proliferation of patterns with which the user is 
directly concerned. Instead, we have introduced a 
meta-rule mechanism: after a pat tern is accepted, 
the system generates all related generalizations of the 
pattern automatically. 9 For example, from the active 
clause pat tern above, a passivizing meta-rule will pro- 
duce the precondition: 

np(C-person) rn? sa? pass-vg(C-appoint) sa? 
np(C-title) [by np(C-company)]? lO 

The resulting pat tern will match the variant exam- 
ple, and produce the correct event LF. To maximize 
coverage, the system should contain meta-rules for 
all clausal variants, including nominalizations; similar 
meta-rules can be provided to generalize noun-phrase 
patterns, as discussed in section 4.2. 

6 D i s c u s s i o n  

We have described a comprehensive methodology for 
acquiring patterns from examples and automatically 
expanding their coverage. Other IE systems employ 
variants of example-based pat tern acquisition. One 
system, developed at University of Massachusetts at 
Amherst, [10], used unsupervised training to learn 
patterns from the MUC training corpus. However, 
unsupervised learning can degrade in the face of [1] 
sparse data; the UMass system seemed to require one 
more order of magnitude of training data  than was 
available in MUC-6. The HASTEN system, devel- 
oped by SRA [7], used a somewhat different example- 
based approach: they seek to broaden coverage by 
allowing statistically approximate matches, a strat- 
egy that  lacks a syntactic basis, and may result in 
overgeneration. [2] 

9A meta-rule mechanism is also included in the SRI FAS- 
TUS system[2]. 

1°where rn is a pre-defined sub-pattern that matches various 
right noun-phrase modifiers, sa is a sentence adjunct, and pass- 
vg is a passive verb group. 

The presented methodology has been fully imple- 
mented as a set of tools that  complement our core 
information extraction engine, and has been tested 
on three different scenarios. One of the scenarios was 
successfully implemented by a computational linguist 
who interacted with the system exclusively by means 
of the tools, and had no familiarity with the system 
internals. 

Our experience also suggests areas of improvement, 
which we are currently pursuing. One important  
question is: where do examples come from? We seek 
to shift the burden of inventing the examples from 
the developer to the system. In response to these 
problems we are building tools that  will help the user 
surf the corpus to help discover patterns. 

7 C o n c l u s i o n  

Porting an existing system to a new domain presents 
an important  problem in IE. Effective techniques are 
needed to minimize the time and complexity of the 
process, and to extricate the porting process from 
low-level system details, so that  it can be undertaken 
by non-expert  users. In this report,  we have described 
our approach to the problem, based on: 

• example-based acquisition of scenario-specific 
patterns,  

• system-aided generalization of acquired pat- 
terns, at the semantic and syntactic level. 

The experience we have gained from implementing 
this strategy leads us to believe in its overall useful- 
ness. 
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