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INTRODUCTION 

The primary goal of our effort is the development of 
robust and portable language processing capabilities 
for information extraction appfications. The system 
under evaluation here is based on language processing 
components that have demonstrated strong 
performance capabilities in previous evaluations 
[Lehnert et al. 1992a]. Having demonstrated the 
general viability of these techniques, we are now 
concentrating on the practicality of our technology by 
creating trainable system components to replace hand- 
coded d~t~ and manually-engineered software. 

Our general strategy is to automate the construction 
of domain-specific dictionaries and other language- 
related resources so that information extraction can be 
customized for specific application s with a minimal 
amount of human assistance. We employ a hybrid 
system architecture that combines selective concept 
extraction [Lehnert 1991] technologies developed at 
UMass with trainable classifier technologies 
developed at Hughes [Dolan et al. 1991]. Our Tipster 
system incorporates seven trainable language 
components to handle (1) lexical recognition and part- 
of-speech tagging,  (2) knowledge of 
semantic/syntactic interactions, (3) semantic feature 
tagging, (4) noun phrase analysis, (5) limited 
coreference resolution, (6) domain object recognition, 
and (7) relational link recognition. Our trainable 
components have been developed so domain experts 
who have no background in natural language or 
machine learning can train individual system 
components in the space of a few hours. 

Many critical aspects of a complete information 
extraction are not appropriate for customization or 
trainable knowledge acquisition. For example, our 
system uses low-level text specialists designed to 
recognize dates, locations, revenue objects, and other 

common constructions that involve knowledge of 
conventional language. Resources of this type are 
portable across domains (although not all domains 
require all specialists) and should be developed as 
sharable language resources. The UMass/I-Iughes 
focus has been on other aspects of information 
extraction that can benefit from corpus-based 
knowledge acquisition. For example, in any given 
information extraction application, some sentences 
are more important than others, and within a single 
sentence some phrases are more important than 
others. When a dictionary is customized for a specific 
application, vocabulary coverage can be sensitive to 
the fact that a lot of words contribute little or no 
information to the final extraction task: full 
dictionary coverage is not needed for information 
extraction applications. 

In this paper we will overview our hybrid architecture 
and trainable system components. We will look at 
examples taken from our official test runs, discuss the 
test results obtained in our official and optional test 
runs, and identify promising opportunities for 
~cldjtional research. 

TRAINABLE LANGUAGE PROCESSING 

Our Tipster system relies on two major tools that 
support automated dictionary construction: (1) OTB, a 
trainable part-of-speech tagger, and (2) AutoSlog, a 
dictionary construction tool that operates in 
conjunction with the CIRCUS sentence analyzer. We 
trained OTB for EJV on a subset of EJV texts and 
then again for EME using only EME texts. OTB is 
notable for the high hit rates it obtains on the basis 
of relatively little training. We found that OTB 
attained overall hit rates of 97% after training on only 
1009 sentences for EJV. OTB crossed the 97% 
threshold in EME after only 621 training sentences. 
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Incremental OTB training requires human interaction 
with a point-and-click interface. Our EJV training was 
completed after 16 hours with the interface; our EME 
training required 10 hours. 

AutoSlog is a dictionary construction tool that 
analyzes source texts in conjunction with associated 
key templates (or text annotations) in order to 
propose concept node (CN) definitions for CIRCUS 
[Riloff & Lehnert 1993; Riloff 1993]. A special 
interface is then used for a manual review of the 
AutoSlog definitions in order to separate the good 
ones from the bad ones. Of 3167 AutoSlog CN 
definitions proposed in response to 1100 EJV key 
templates, 944 (30%) were retained after manual 
inspection. For EME, AutoSlog proposed 2952 CN 
definitions in response to 1000 key templates and 
2275 (77%) of these were retained after manual 
inspection. After generalizing the original definitions 

w i t h  active/passive transformations, verb tense 
generalizations, and singular/plural generalizations, 
our final EJV dictionary contained 3017 CN 
definitions and our final EME dictionary contained 
4220 CN definitions. It took 20 hours to manually 
inspect and filter the full EJV dictionary; the full 
EME dictionary was completed in 17 hours. The 
CIRCUS dictionary used in our official run was based 
exclusively on AutoSlog CN definitions. No hand- 
coded or manually altered definitions were added to the 
CN dictionary. 

When CIRCUS processes a sentence it can invoke a 
semantic feature tagger (MayTag) that dynamically 
assigns features to nouns and noun modifiers. 
MayTag uses a feature taxonomy based on the 
semantics of our target templates, and it dynamically 
assigns context-sensitive tags using a corpus-driven 
case-based reasoning algorithm [Cardie 93]. MayTag 
operates as an optional enhancement to CIRCUS 
sentence analysis. We ran CIRCUS with MayTag for 
EJV, but did not use it for EME (we'll return to a 
discussion of this and other domain differences later). 
MayTag was trained on 174 EJV sentences containing 
5591 words (3060 open class words and 2531 closed 
class words). Our tests indicate that MayTag achieves 
a 74% hit rate on general semantic features (covering 
14 possible tags) and a 75% hit rate on specific 
semantic features (covenng 42 additional tags). 
Interactive training for MayTag took 14 hours using a 
text editor. 

An important aspect of  the Tipster task concerns 
information extraction at the level of noun phrases. 
Important set fill information is often found in 
modifiers, such as adjectives and prepositional 
phrases. Part-of-speech tags help us identify basic 
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noun phrase components, but higher-level processes 
are needed to determine if a prepositional phrase 
should be attached, how a conjunction should be 
scoped, or ff a comma should be crossed. Noun phrase 
recognition is a non-trivial problem at this higher 
level. To address the more complicated aspects of 
noun phrase recognition, we use a trainable classifier 
that attempts to find the best termination point for a 
relevant noun phrase. This component was trained 
exclusively on the EJV corpus and then used without 
alteration for both EJV and EME. Experiments 
indicate that the noun phrase classifier terminates EJV 
noun phrases perfectly 87% of the time. 7% of its 
noun phrases pick up spurious text (they are extended 
too far), and 6% are truncated (they are not extended or 
extended far enough). Similar hit rates are found with 
EME test data: 86% for exact NP recognition, with 
6% picking up spurious text and 8% being truncated. 
The noun phrase classifier was trained on 1350 EJV 
noun phrases examined in context. It took 14 hours 
to manually mark these 1350 instances using a text 
editor. 

Before we can go from CIRCUS output to template 
instantiations, we create intermediate structures called 
memory tokens. Memory tokens incorporate 
coreference decisions and structure relevant 
information to facilitate template generation. Memory 
tokens record source strings from the original input 
text, OTB tags, MayTag features, and pointers to 
concept nodes that exa'acted individual noun phrases. 

Discourse analysis contributes to critical decisions 
associated with memory tokens. Here we find the 
greatest challenges to trainable language systems. 
Thus far, we have implemented one trainable 
component that contributes to coreference resolution 
in limited contexts. We isolate compound noun 
phrases that are syntactically consistent with 
appositive constructions and pass these NP pairs on 
to a coreference classifier. Since adjacent NPs may be 
separated by a comma if they occur in a list or at a 
clause boundary, it is easy to confuse legitimate 
appositives with pairings of unrelated (but adjacent) 
NPs. Appositive recognition is therefore treated as a 
binary classification problem that can be handled with 
corpus-driven training. For our official Tipster runs 
we trained a classifier to handle appositive recognition 
using EJV development texts and then used the 
resulting classifier for both EJV and EME. Our best 
test results with this classifier showed an 87% hit rate 
on EJV appositives. It took 10 hours to manually 
classify 2276 training instances for the appositive 
classifier using a training interface. 
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Our final tool, "ITG, is responsible for the creation of 
template generators that map CIRCUS output into 
final template instantiations. TTG template 
generators are responsible for the recognition and 
creation of domain objects as well as the insertion of 
relational links between domain objects. 'VFG is 
corpus-driven and requires no human intervention 
during training. Application-specific access methods 
(pathing functions) must be hand-coded for a new 
domain but these can be added to TTG in a few days 
by a knowledgeable technician working with adequate 
domain documentation. Once these adjustments are in 
place, TTG uses memory tokens and key templates to 
train classifiers for template generation. No further 
human intervention is required to create the template 
generators, although additional testing, tuning and 
adjustments are needed for optimal performance. 

Our hybrid architecture demonstrates how machine 
learning capabilities can be utilized to acquire many 
different kinds of knowledge from a corpus. These 
same acquisition techniques also make it easy to 
exploit the resulting knowledge without additional 
knowledge engineering or sophisticated reasoning. 
The knowledge we can readily acquire from a corpus 
of representative texts is limited with respect to 
reusability, but nevertheless cost-effective in a system 
development scenario predicated on customized 
software. The trainable components used for both 
EJV and EME were completed after 101 hours of 
interactive work by a human-in-the-loop. Moreover, 
most of our training interfaces can be effectively 
operated by domain experts: programming knowledge 
or familiarity with computational linguistics is 
generally not required. (Although one technical 
background is needed to train OTB.). Near the end of 
this paper will report the results of a system 
development experiment that supports this claim. 

There will always be a need for some amount of 
manual programming during the system development 
cycle for a new information extraction application. 
Even so, significant amounts of system development 
that used to rely on experienced programmers have 
been shifted over to trainable language components. 
The ability to automate knowledge acquisition on the 
basis of key templates represents a significant 
redistribution of labor away from skilled knowledge 
engineers, who need access to domain knowledge, 
directly to the domain experts themselves. By putting 
domain experts into the role of the human-in-the-loop 
we can reduce dependence on software technicians. 
When significant amounts of system development 
work is being handled by automated knowledge 
acquisition and expert-assisted knowledge acquisition, 
it will become increasingly cost-effective to 
customize and maintain a variety of information 
extraction applications. We have only just begun to 

explore the range of possibilities associated with 
trainable language processing systems. 

The hybrid architecture underlying our official Tipster 
systems was less than six months old at the time of 
the evaluation, and most of the trainable language 
components that we utilized were less than a year old. 
Less than 24 person/months were expended for both 
of the EJV and EME systems, although this estimate 
is confounded by the fact that trainable components 
and their associated interfaces were being designed, 
implemented, and tested by the same people 
responsible for our Tipster system development. The 
creation of a trainable system component represents a 
one-time system development investment that can be 
applied to subsequent systems at much less overhead. 

Figure 1 outlines the basic flow-of-control through 
the major components of the UMass/Hughes Tipster 
system. Note that most of the trainable components 
depend only on the texts from the development 
corpus. The concept node dictionary and the trainable 
template generator also rely on answer keys during 
training. In the case of the concept node dictionary, 
we have been able to drive our dictionary construction 
process on the basis of annotated texts created by 
using a point-and-click text marking interface. So the 
substantial overhead associated with creating a large 
collection of key templates is not needed to support 
automated dictionary construction. However, we do 
not see how to support trainable template generation 
without a set of key templates, so this one trainable 
component requires a significant investment with 
respect to labor. 

SYSTEM E V O L U T I O N  AND P R O J E C T  
G O A L S  

Our preparation for Tipster was somewhat limited 
relative to other Tipster extraction sites. We began 
our effort one year later than other sites and we were 
not funded to work with Japanese. Our funding (and 
system development) began October 1, 1992 and the 
24-month evaluation took place in July 1993. During 
that period we redesigned the overall system 
architecture initially described in our proposal, and 
designed a number of wainable system components 
from scratch. OTB, AutoSlog, and MayTag were 
already available, but needed to be trained and applied 
to the new domains. Two project personnel attended 
the 12-month Tipster meeting in September 1992, 
and that was our first introduction to the domain 
guidelines for EJV and EME. 

Our initial system design was based on a simplistic 
model of how the UMass and Hughes technologies 
demonstrated at MUC-3 and MUC4 might be brought 
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together into a hybrid information extraction system. 
The original idea was to pass CIRCUS output to 
"ITTG (the Hughes Trainable Template Generator) 
without further alteration to either CIRCUS or 'FIG. 
This approach was put into place for the 18-month 
Tipster evaluation in February 1993 and found to be 
inadequate for a number of reasons. First, the output 
of CIRCUS was highly fragmented and completed 
unstructured at the discourse level. CIRCUS was 
extracting but not organizing related information even 
when that information all came from the same 
sentence. So TFG was being asked to consolidate 
information that required reorganization at many 
levels. This problem was aggravated by the fact that 
CIRCUS tended to create a lot of output for a given 
text. Some of this output was irrelevant or off-target, 
and some of it was legitimate but redundant. TTG 
was expected to sort out the good from the bad and 
not get tangled up in the redundancies. In fact, TFG 
was designed to handle noise in the ~aining data, but 
the amount of data being generated by CIRCUS 
created massive training runs for "FIG. TTG had never 
been pushed this hard before, so we found ourselves 
contending with memory limitation problems and 
long runtimes. Since TFG is not just one decision 
tree but a collection of about 30 decision trees, these 
additional complications produced significant 
stumbling blocks. 

We barely had a working system in place for the 18- 
month evaluation in February and there was no 
opportunity to adjust this initial implementation 
before the evaluation. As painful as it was to subject 
a first-pass system to a formal evaluation, the 
exercise left no doubt about the problems inherent in 
our system design. The hand-coded consolidation 
heuristics developed at UMass for MUC-3 and MUC- 
4 could not be functionally duplicated by TFG alone. 
Additional processing needed to be inserted between 
CIRCUS and TTG. We were also losing a lot of 
information that should have been recognized during 
preprocessing by low-level specialists designed to 
pick up dates and locations. These specialists were 
not particularly challenging, but they did requite a lot 
of programming time and we had not made an 
adequate investment in our preprocessing specialists. 

At the same time, we were pleased with the trainable 
components that allowed us to customize CIRCUS 
for two new domains. The OTB part-of-speech tagger 
needed some adjustments but seemed quite promising. 
The AutoSlog dictionary construction tool had 
worked very well for EJV and reasonably well for 
EME. We came to understand that EME was heavily 
dependent on keyword recognition for its technical 
vocabulary. AutoSlog had not been designed to 
collect or organize extensive synonym lists, but this 
was not an inherently difficult task. 

Six months prior to the final Tipster evaluation, we 
had to make some major decisions. One of our 
options was to hand-code new consofidation heuristics 
for FEIV and EME. We knew how to do this based on 
similar efforts for MUC-3 and MUC-4, and we 
probably would have been able to improve the 
performance of our system dramatically in the six 
months remaining to us by following this route. But 
we had made a research commitment to investigate 
trainable technologies for information extraction 
system development: we were interested in finding 
alternatives to hand-coded heuristics. So we began to 
look at the gap between CIRCUS and 'FIG with an 
eye for the problems that might be managed by 
trainable decision trees. 

We identified three phenomena that seemed to be 
causing significant difficulties for us at the 18-month 
evaluation: (1) noun phrase termination, (2) 
appositive recognition, and (3) coreference resolution. 
Noun phrase termination refers to the problem of 
knowing when an NP can be extended across potential 
boundary markers like commas, conjunctions and 
prepositional phrases. Appositive recognition is a 
subset of the general coreference resolution problem, 
but we found it useful to separate out appositives 
because appositive candidates can be reliably 
recognized on the basis of a syntactic pattern, which 
makes appositives somewhat easier to tackle than the 
general coreference problem. 

We worked for a few weeks on the design of feature 
vectors for the appositive problem and the noun 
phrase termination problem. Training instances were 
then collected and our first decision trees for these 
problems were running in March. Baseline 
comparisons with hand-coded heuristics for noun 
phrase termination showed that a hand-coded 
component was able to make noun phrase termination 
decisions correctly about 65% of the time. ID3 
decision trees were showing us hit rates in the 80- 
85% range. We found a similar level of success for 
our ID3 appositive d-trees. These trees were generally 
able to categorize potential appositive candidates 
correctly about 85% of the time. Subsequent 
experimentation with these modules during March and 
April failed to improve our initial performance levels. 

During this same period we were also first coming to 
appreciate the difficulties inherent in a system based 
on many trainable components. With changes still 
occurring to critical upstream components like the 
processing specialists and OTB, we knew that older 
training data for AutoSlog and our ID3-based 
components was slowly falling out of sync with the 
rest of the system. It wasn't a good idea to wain a tree 
on one set of data and then test the tree on a 

245  



sul)stantially different data set. If a training set 
incorporated a certain amount of noise (e.g. false hits 
with respect to locations), and the test data contained 
no noise or a much reduced noise level, an appositive 
tree or noun phrase termination tree might not operate 
as effectively as it would if the noise levels were 
consistent across both data sets. But it wasn't 
practical for us to continually update the training sets 
in order to keep everything in phase. So we were 
constantly waking  with components that were either 
outdated or out of phase, and it was difficult to know 
how significant that complication would prove to be. 
We were also dealing with a lot of  software 
engineering complexity in trying to manage all the 
data sets, decision trees, and various configurations of 
the system under inspection. Our Tipster system 
development effort was proving to be much more 
complicated than our MUC-3 and MUC-4 efforts had 
been. 

In all system development efforts, downstream 
development depends on upstream stability, and this 
is especially true when a number of  trainable 
components are involved. The introduction of major 
new components six months before the final Tipster 
evaluation was far from ideal. In particular, we were 
up against the fact that we could not retrain TFG 
until the new components were producing output. We 
knew that TTG would benefit  from a lot of  
experimentation, but we couldn't do anything about 
that until we had new capabilities in place to handle 
noun phrases, appositives, and coreference. Noun 
phrase termination was very important for AutoSlog, 
so we held off  on our final dictionary construction 
until May in order to benefit from our progress on 
noun phrase termination. 

In retrospect, we can also see that we were too slow 
to get started on the coreference module. We knew 
that coreference would benefit from noun phrase 
termination and appositives, so it made sense to delay 
the coreference work until we had made at least some 
progress on these other components. But we did not 
appreciate how much more complicated data 
collection for coreference would prove to be, and we 
did not allow enough time to design feature vectors 
for coreference. Coreferenee data collection was not 
tackled before May, and progress on coreference went 
much more slowly than expected. We did eventually 
train some decision trees for general coreference 
resolution, but our preliminary test results were not 
strong, so we were forced to abandon trainable 
coreference in the eleventh hour. Manually-coded 
heuristics were then created in an effort to manage at 
least some coreference decisions prior to template 
generation. 

The difficulties associated with coreference and the 
last minute drive to pull together manual coreference 
heuristics prevented us from experimenting with "FIG 
as much as we would have liked. Some 
improvements were made to make TI'G more efficient 
and less memory intensive, but nothing could be done 
that depended on memory token input. In the end, we 
were not able to begin TTG training and 
experimentation until July, at which time we were 
struggling to produce a working system in time for 
the final evaluation. 

The lack of  complete system throughput until July 
meant that we couldn't run the scoring program in 
order to obtain internal benchmarks during the six 
months prior to the 24-month evaluation. We ran the 
scoring program on EME output for the first time on 
July 21, and on F.JV output for the first time on July 
25. The official test runs were executed on July 31. 

Our previous experience with MUC-3 and MUC-4 
taught us that significant improvements to score 
reports can be made by studying high-frequency slots 
and looking for simple adjustments that improve 
performance for these slots. There was no time to 
experiment with any such adjustments in EJV 
although some effort was made to optimize the EME 
system in response to some internal testing based on 
the 18-month test set. Unfortunately, these EME 
adjustments may have backfired for reasons that we 
will describe in the next section. 

Despite our abbreviated development schedule and 
difficulties establishing upstream system stability, we 
learned a lot about the integration of machine learning 
techniques into natural language processing systems. 
Although Tipster was originally conceived to obtain a 
comparative evaluation of mature text processing 
technologies, we always viewed our Tipster effort as 
being somewhat more exploratory in nature. No one 
had previously attempted to integrate NLP techniques 
with machine learning techniques at any of  the 
previous MUC conferences. The UMass/Hughes 
system represented an ambitious undertaking that 
would have benefited greatly from another year of 
collaboration. 

T H E  O F F I C I A L  T E S T  R U N S  

Our official test runs were conducted on three 
DECstations running Allegro Common Lisp. The 
runs went smoothly in EME but we encountered one 
fatal error in one of the EJV test sets. Portions of our 
official EJV and EME score reports are shown in 
figures 2 and 3. 
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Figure 4: Unofficial Tips2 EME Score Reports 

Based on the minimal amount of  internal testing 
conducted prior to the official test runs, we were 
surprised to see that our EME scores were about the 
same as our EJV scores. We had expected to do much 
better on the EME test set. In the week prior to the 
final evaluation, we made adjustments to the EME 
system based on internal testing with the Tips2 test 
set from the 18-month evaluation. Subsequent testing 
on Tips2 suggested that we should have done much 
better on the official test runs. 

We had restricted our feedback loop to this one test 
set because we knew that answer keys compiled for 
official test sets tend to be more reliable than answer 
keys in the general development corpus. We also 
expected the test sets from the 18-month evaluation 
to be predictive of the test sets used for the 24-month 
evaluation. Unfortunately, this turned out not to be 
the case with the Tips2 EME test set. After the final 
evaluation, we discovered that Tips2 contained a 
disproportionate number of  short texts (97% of the 
Tips2 texts were less than 2200 bytes long). We had 
inadvertently tuned our EME system for short texts 
without realizing it. The EME test set used for the 
24-month evaluation contained a large number of 
texts that were significantly longer than 2200 bytes. 

Tips3/ l  
Tips3/2 
Tips3/3 
Tips2 

the complete test set 

E ]g:'lrl IIF Ii 
791271391321 
7713313713sl 
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E = Error rate R = Recall P = Precision F = P&R F-score 
(all objects scores only) 

Figure 5: EME Tuning Effects for Short Texts 

We can see the effects of  this disparity between 
training materials and test materials ff we compare the 
overall EME score reports with score reports based on 
only a subset of the shorter EME test texts. Figure 5 
shows how our system would have performed if the 
EME test set had been restricted to shorter texts that 
were consistent with the Tips2 test set. When we test 
the system on only the shorter texts from the Tips3 
test set, we see significantly higher test scores. The 
Tips3 subset scores are a tittle weaker than the Tips2 
scores, but that difference is probably due to the fact 
that we were tuning the system in response to Tips2 
and we would therefore expect to see our strongest 
possible performance on those same texts. 
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THE OPTIONAL TEST RUNS 

We ran optional tests to see what sort of 
recall/precision trade-offs were available from the 
system. Since the template generator is a set of 
classifiers, and each classifier outputs a certainty 
associated with a hypothesized template fragment, we 
have many parameters that can be manipulated. 
Raising the threshold on the certainty for a 
hypothesis will, in most cases, increase precision and 
reduce recall. In the experiments reported here, we 
have varied the parameters over broad classes of 
discrimination trees. There are three important 
classes of decision tree: (1) trees that filter the 
creation of objects based on string fills, (2) trees that 

falter the Creation of objects based on set fills, and (3) 
trees that hypothesize relations among objects. An 
example of the first class is the tree that filters the 
CIRCUS output for entity names in the FJV domain. 
An example of the second class is the tree that filters 
possible lithography objects based on evidence of the 
type of lithography process. The trees that 
hypothesize TIE_UP_RELATIONSHIP's and 
MI~CAPABILITY's are examples of the third class. 

For these experiments we have varied the certainty 
thresholds for all trees of a given class. Figure 6 
shows the trade-off achieved for EME. 
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Figure 6: Trade-off curve for EME 
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This trade-off curve was achieved by varying, in 
concert the thresholds on all three classes of  
discrimination tree from 0.0 to 0.9. Figure 7 shows 
the trade-off curve achieved in EJV. The difference 
between the two curves highlights difference between 
the two domains and between the system 
configurations used for the two domains. The EME 
curve shows a much more dramatic trade-off. The 
EJV curve shows that only modest varying of recall 
and precision is achievable. Part of  this is a 
reflection of the two domains. In EJV, most 
relationships were found via two noun phrases that 
shared a common CN trigger. This method proved to 
be effective at detecting relationships. Therefore the 
only real difference in the trade-off comes from 
varying the thresholds for the string-fall and set-fill 
trees, which generate the objects that are then 
composed into relationships. In EME, there not 
nearly as many shared triggers and so the template 
generator must attempt intelligent guesses for 
relations. The probabilistic guesses made in EME are 
much more amenable to threshold manipulation than 
the more structured information used in EJV. Also, 
in EJV the system ran with a slot masseur that 
embodied some domain knowledge. In EJV, TFG 
was configured to only hypothesize objects ff the slot 
masseur had found a reasonable slot-fill or set-fill. 

This use of  domain knowledge further limited the 
efficacy of changing certainty thresholds. 

T R A I N A B L E  I N F O R M A T I O N  
E X T R A C T I O N  IN A C T I O N  

Before CIRCUS can tackle an input sentence, we 
have to pass the source text through a preprocessor 
that locates sentence boundaries and reworks the 
source text into a list structure. The preprocessor 
replaces punctuation marks with special symbols and 
appfies text processing specialists to pick up dates, 
locations, and other objects of interest to the target 
domain. We use the same preprocessing specialists 
for both EJV and EME: many specialists will apply 
to multiple domains. A subset of the Gazetteer was 
used to support the location specialist, but no other 
MRDs are used by the preprocessing specialists. We 
do not have a specialist that attempts to recognize 
company names. Figure 8 shows sample output 
from the preprocessor along with subsequent 
processing. 

Note that the date specialist had to consult the 
dateline of the source text in ~der  to determine that 

S o u r c e  T e x t  : 

BRIDGESTONE SPORTS CO. SAID FRIDAY IT HAS SET UP A JOINT VENTURE IN TAIWAN WITH A LOCAL 
CONCERN AND A JAPANESE TRADING HOUSE TO PRODUCE GOLF CLUBS TO BE SHIPPED TO JAPAN. 

Preprooessed T e x t  : 

(*START* SRIDGESTONE SPORTS CO= SAID **ON 241189 W HAS SET UP A JOINT VENTURE IN @@ Taiwan WITI~I.A LOCAL 
CONCERN AND A JAPANESE TRADING HOUSE T(.)PRODUCE GOLF CLUBS TO BE SHIPPED TO ~-_Japan *END ) 

OTB Tags: 

(*START* BRIDGESTONE SPORTS CO= SAID **ON_241189 1T HAS SET UP A JOINT 
strt nm nm noun verb $date$ noun aug pasp ptcl art nm 

VENTURE IN @@_Taiwan WITH A LOCAL CONCERN AND A JAPANESE TRADING 
noun prep $1ocation$ prep art nm noun conJ art nm nm 

HOUSE TO PRODUCE GOLF CLUBS TO BE SHIPPED 1D @@japan *END*) 
noun inf verb nm noun inf aux pasp prep $1ocation$ stop 

exwacted NPs rejected CN features: accepted CN features: 

BRIDGESTONE SPORTS CO= iv-person 
IT iv-person 
A JOINT VENTURE 
GOLF CLUBS 

jv-enlib,, jv-p~'ent, jv 

jr-entity, company 
jv-procLserv, produclion 

Figure 8: Preprocessing and CIRCUS analysis 

2 4 9  



"Friday" must refer to November 24, 1989. Once the 
preprocessor has completed its analysis, the OTB 
part-of-speech tagger identifies parts of speech: OTB 
tagged 97.1% of the words in EJV 0592 correctly. 
One error associated with "... A COMPANY ACTIVE IN 
TRADING WITH TAIWAN ..." led to a truncated noun 
phrase when "active" was tagged as a head noun 
instead of a nominative predicate. 

With part-of-speech tags in place, CIRCUS can begin 
selective concept extraction. On this first sentence 
from FjV 0592, CIRCUS triggers 18 CN definitions 
triggered by the words "said" (3 CNs), "set" (3 CNs), 
"venture" (9 CNs), "produce" (1 CN), and "shipped" 
(2 CNs). These CNs extract a number of key noun 
phrases, and assign semantic features to these noun 
phrases based on soft constraints in the CN 
definition. Some of these features were recognized to 
be inconsistent with the slot fill and others were 
deemed acceptable. For example, in Figure 8 we see 
that different CNs picked up "8RIDGESTONE SPORTS 
CO." with incompatible semantic features (it was 
associated with both a joint  venture and a jo in t  
venture parent feature). 

As we can see from this sentence, CN feature types 
are not always reliable, and CIRCUS does not always 
recognize the violation of a soft feature constraint. An 
independent set of semantic features are obtained from 
MayTag. In the first sentence of EJV 0592, MayTag 

only missed marking "golf clubs" as a product/ 
service. An independent set of semantic features are 
obtained from MayTag as shown in Figure 9. 

In addition to extracting some noun phrases and 
assigning semantic features to those noun phrases, we 
also call the noun phrase classifier to see if any of the 
simple NPs picked up by .the CN definitions should 
be extended to longer NPs. For this sentence, the 
noun phrase classifier extended only one NP: it 
decided that "A JOINT VENTURE" should be extended to 
pick up "A JOINT VENTURE IN TAIWAN WITH A LOCAL 
CONCERN AND A JAPANESE TRADING HOUSE'. The 
second prepositional phrase should not have been 
included - this is an NP expansion that was 
overextended. 

Each noun phrase extracted by a CIRCUS concept 
node will eventually be preserved in a memory token 
that records the CN features, MayTag features, any 
NP extensions, and other information associated with 
CN definitions. But before we look at the memory 
tokens, let's briefly review the other NPs that are 
extracted from the remainder of the text. For each 
preprocessed sentence produced in response to EJV 
0592, we will put the noun phrases extracted by 
CIRCUS into boldface and use underlines to indicate 
how the noun phrase classifier extends some of these 
NPs. 

words 

*START* 
BRIDGESTONE 
SPORTS 
CO= 
SAID 
IT 
HAS 
SET 
UP 
A 
JOINT 
VENTURE 
IN 
JV-LOCATION 
WITH 
A 
LOCAL 
CONCERN 
AND 
A 
JAPANESE 
TRADING 
HOUSE 
TO 
PRODUCE 
GOLF 
CLUBS 
TO 
BE 
SHIPPED 
TO 
JV-LOCATION 

MavTa~semanficfeamres 

((WS-JV-ENTITY) (WS-COMPANY-NAME)) 
((WS-JV-ENTITY) (WS-COMPANY-NAME)) 
((WS-JV-ENTITY) (WS-GENERIC-COMPANY)) 

((WS-ENTITY) NIL) 

((WS-JV-ENTITY) NIL) 
((WS-JV-ENTITY) NIL) 

((WS-LOCATION) NIL) 

((WS-ENTITY) NIL) 
((WS-JV-ENTITY) NIL) 

((WS-NATIONALITY) NIL) 
((WS-PRODUCT-SERVICE) 
((WS-JV-ENTITY) NIL) 

((WS-ENTITY) NIL) 
((WS-ENTITY) NIL) 

(WS-SALES)) 

((WS-LOCATION) NIL) 

hits & misses 

; correct 
; correct 
; correct 

; correct 

; correct 
; correct 

; correct 

; correct 
; correct 

; correct 
; correct 
; correct 

; incorrect 
; incorrect 

; correct 

Figure 9: MayTag semantic feature tags 
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*START. ~IDGESTONE SPORTS CO=- SAID **0N_241189 ~ HAS SET UP A doiNT VENTURE IN ~ Talwan WITH A LEX~AL 

QONCERN ,a.ND A JAPANESE TRADING HOUSE TO PRODUCE .~.QJ,,E.bd=.U.~.a TO BE SHIPPED TO @@_Japan *END*) (*START" 

THE JOINT VENTURE $COMMA$ BRIDGESTONE SPORTS TAIWAN CO= $COMMA$ CAPITAUZED AT 

$COMMA$ WILL START PRODUCTION **DURING 0190 WITH PRODUCTION OF &&20000 IRON AND METAL WOOD CLUBS A 

MONTH *END*) (*START" THE MONTHLY OUTPUT WILL BE LATER RAISED TO &&50000 UNITS $COMMA$ 

SAID *END*) (*START" THE NEW COMPANY $COMMA$ BASED IN KAOHSIUNG $COMMAS SOUTHERN 

TAIWAN $COMMA$ IS OWNED %%75 BY BRIDGESTONE SPORTS $COMMA$ %%15 BY UNION PRECISION CASTING CO=. OF 

(~b  Taiwall AND THE REMAINDER BY TAGA CO= SCOMMA$ A COMPANY ACTIVE IN TRADING WITH TAIWAN $COMMA$ 

THE OFFICIALS SAID *END*) (*START* BRIDGESTONE SPORTS HAS S(~FAR BEEN ENTRUSTING PRODUCTION OF 

CLUB PARTS WITH UNION PRECISION CASTING AND OTHER TAIWAN COMPANIES *END*) (*START* WITH THE 

ESTABLISHMENT OF THE TAIWAN UNIT $COMMA$ THE JAPANESE SPORTS G(X)DS MAKER PLANS TO INCREASE 

PRODUCTION OF LUXURY CLUBS IN ~ Jaoan *END*) 

Figure 10: Noun phrase analysis 

As far as our CN dictionary coverage is concerned, we 
were able to identify all of the relevant noun phrases 
needed with the exception of'A LOCAL CONCERN AND 
A JAPANESE TRADING HOUSE" which should have been 
picked up by a JV parent CN. In fact, our AutoSlog 
dictionary had two such definitions in place for 
exactly this type of construction, but neither 
definition was able to complete its instantiation 
because of a previously unknown problem with time 
stamps inside CIRCUS. This was a processing 
failure--not a dictionary failure. 

Trainable noun phrase analysis processes 13 of the 17 
NP instances shown in Figure 10 correctly. Three of 
the NPs were expanded too fur, and one was expanded 
but not quite far enough due to a tagging error by 
OTB ("a company active ..."). An inspection of the 
13 correct instances reveals that 7 of these would have 
been correctly terminated by simple heuristics based 
on part-of-speech tags. It is important to note that the 
trainable NP analyzer had to deduce these more 
"obvious" heuristics in the same way that it deduces 
decisions for more complicated decisions. It is 
encouraging to see that straightforwurd heuristics can 
be acquired automatically by trainable classifiers. 
When our analyzer makes a mistake, it generally 
happens with the more complicated noun phrases 
(which is where hand-coded heuristics tend to break 
down as well). 

After the noun phrase classifier has attempted to find 
the best termination points for the relevant NPs, we 
then call the coreference classifier to consider pairs of 
adjacent NPs separated by a comma. In this text we 
find three such appositive candidates (the second of 

which contains an extended NP that was not properly 
terminated): 

THE JOINT VENTURE, BRIDGESTONE SPORTS TAIWAN CO. 
TAGA CO., A COMPANY ACTIVE 
THE NEW COMPANY, BASED IN KAOHSlUNG, SOUTHERN TAIWAN 

In the third case, the location specialist failed to 
recognize either Kaohsiung or Southern Taiwan as 
names of locations. On the other hand, the fragment 
"based in Kaohsiung" was recognized as a location 
description and therefore reformatted it as "THE NEW 
COMPANY (%BASED-IN% KAOHSIUNG), SOUTHERN 
TAIWAN" which set up the entire construct as an 
appositive candidate. The coreference classifier then 
went on to accept each of these three instances as 
val id appositive constructions. This was the right 
decision in the first two cases, but wrong in the third. 
I f  fu l l  location recognition had been working, this 
last instance would have never been handed to the 
coreference classifier in the first place. 

The coreference classifier tells us when adjacent noun 
phrases should be merged into a single memory 
token. We also invoke some hand-coded heuristics for 
coreference decisions that can be handled on the basis 
of lexical features alone. These heuristics determine 
that Bridgestone Sports Co. is coreferent with 
Bridgestone Sports, and that "THE JOINT VENTURE,, 
BRIDGESTONE SPORTS TAIWAN CO." is coreferent with 
"A JOINT VENTURE IN TAIWAN ..." Our lex ica l  
coreference heuristics are nevertheless very 
conservative, so they fail to merge our four product 
service instances in spite of the fact that "clubs" 
appears in three of these string falls. In effect, we pass 
the following memory token output to TTG: 
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5 recognized companies (#4 and #5 should have been merged): 

I 1) "TAGA CO=" aka "A COMPANY ACTIVE" 
2) "UNION PRECISION CASTING CO= OF @@_TAIWAN 

(3) "BRIDGESTONE SPORTS CO=" aka "BRIDGESTONE SPORTS" 
(4) "THE NEW COMPANY ~%BASED-IN% KAOHSIUNG)" aka "SOUTHERN TAIWAN 
(5) "THE JOINT VENTURE aka "BRIDGESTONE SPORTS TAIWAN CO=" aka 

"A JOINT VENTURE IN @@_TAIWAN WITH A LEX~AL CONCERN AND A JAPANESE TRADING HOUSE" 

4 product service strings (all of  these should have been merged): 

! "GOLF CLU BS" 
"&&20000 IRON AND METAL WCOD CLUBS" 
"GOLF CLUB PARTS WITH UNION PRECISION CASTING AND OTHER TAIWAN COMPANIES" 
"LUXURY CLUBS IN @@_JAPAN" 

1 ownership and 2 percent objects : 

(10) ~ X ) 0 0 0 0 ~ r W D "  
(11) "%%15" 
(12) "%%75" 

We failed to extract "the remainder by ..." for the third ownership object 
because out percentage specialist was not watching for non-numeric referents 
in a perceaatage context - this could be fixed with an adjustment to the 
specialist. 

Figure 11: Extracted Text Strings 

When TTG receives memory tokens as input, the 
object existence classifiers try to filter out spurious 
information picked up by overzealous CN definitions. 
Unfortunately, in the case of 0592, TTG filtered out 
two good memory tokens: (#1 describing the parent 
Tago Co.), and (#5 describing the joint venture). It 
was particularly damaging to throw away #5 because 
that memory token contained the correct company 
name (Bndgestone Sports Taiwan Co.). Of  the 3 
remaining memory tokens describing companies, 
TTG correctly identified the two parent companies on 
the basis of semantic features, but then it was forced 
to pick up #4 as the child company. Our pathing 
function was smart enough to know that -THE NEW 
COMPANY" was probably not a good company name, 
but that left us with "SOUTHERN TAIWAN" for the 
company name. So a failure that started with location 
recognition led to a mistake in trainable appositive 
recognition, which then combined with a failure in 
lexical coreference recognition and a filtering error by 
TTG in order to give us a joint venture named 
"SOUTHERN TAIWAN" instead of "BRIDGESTONE 
SPORTS TAIWAN." Overly aggressive Efltering by TTG 
resulted in the loss of our 4 product service memory 
tokens. 

Our CN instantiations do not explicitly represent 
relational information, but CNs that share a common 
trigger word can be counted on to link two CN 
instantiations in some kind of a relationship. Trigger 
families can reliably tell us when two entities are 

• related, but they can't tell us what that relationship is. 
We relied on TTG to deduce specific relationships on 
the basis of  its training. In cases like "75% BY 
BRIDGESTONE SPORTS', TTG had no trouble linking 

extracted percentage objects with companies. But our 
trainable link recognition ran into more difficulties 
when trigger families contained multiple companies 
Among the features that TTG had available for 
discrimination where closed class features, such as 
memory token types, semantic features, and CN 
patterns, and open class features (i.e. trigger words). 
However,  although there exist  heuristics for 
discriminating relationships based on particular 
words, the combination of  the algorithms used (ID3) 
and the amount of data (600 stories) failed to induce 
these heuristics. There may be other algorithms, 
however, that can use the same or less data and 
external knowledge to derive such heuristics from the 
training data. 

The processing for EME proceeds very similarly to 
EJV, with the exception that MayTag is not used in 
our EME configuration, and in the EME system we 
used our standard CN mechanism and an additional 
keyword CN mechanism (KCN). The KCN 
mechanism was used to recognize specific types of 
processing, equipment, and devices that have one or 
only a few possible manifestations. In Figure 12 we 
see the OTB tags for the first sentence, all of  which 
are correct. In fact, for EME text 2789568, OTB had 
100% hit rate. 

The memory token structure in Figure 12 illustrates 
the processing of the text prior to TTG. Two NPs 
are identified as the same entity, "Nikon" and "Nikon 
Corp." The two NPs are merged into one memory 
token based on name merging heuristics. The second 
NP demonstrates  how mult iple recogni t ion 
mechanisms can add robustness to the processing. 
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*start* **DURING2Q91 $COMMA$ Nikon Corp= $LPAREN$ &&7731 
strt Sdate$ punc nm noun punc noun 
$RPAREN$ plans to market the NSR-1755EX8A $COMMA$ a new stepper 
punc verb inf verb art noun punt art run noun 
intended for use in the production of &&64- Mbit DRAMs *end* 
pasp prep noun prep art noun prep nm nm noun stop 

( TOKEN 
(TYPE (ME-ENTITY)) 
(SUBTYPE NIL) 
(RELATION NIL) 
(SLOT-FILLS 

(TYPE COMPANY) 
(NAME ( : SYM-LIST NIKON CORP=) ) ) 

(NPS 
(NP 2 1 (NIKON) 

(CNS %ME-ENTITY-NAME-SUBJECT-VERB-AND-DO-STEPPER%) ) 
(NP 0 3 (NIKON CORP =) 

(CNS %ME-ENT I TY-NAME- SUBJECT-VERB-AND-INFINI T IVE-P LANS-TO-MARKET % ) 
(KCNS % KEYWORD-ME-ENTI TY-CORP=% 

%LEAD-NP%) ) ) ) 

Figure 12: EME processing 

FEATURE RELATION CERTAINTY AFTER FEATURE 
0.36 
0.23 The process is not X-RAY 

The entity is not tri~ered off "developed" 
The process is not CVD 
The process is not LITHOGRAPHY of UKN type 
The process is not ETCHING 
The entity is not triggered off "from" 

0.14 
0.03 
0.04 
0.06 
0.12 

Figure 13: ME-CAPABILITY developer features 

FEATURE RELATION CERTAINTY AFTER FEATURE 
0.38 
0.47 The process is not packaging 

The entity is not in a PP 
A CN marked the entity as an entity 
The process is not layering type s0uttering 

0.58 
0.55 
0.40 

Figure 14: ME-CAPABILITY distributor features 

"Nikon Corp." is picked up by both a CN triggered 
off of "plans to market" and by two KCNs, one that 
looks for "Corp." and another that looks for the lead 
NP in the story. 

Unfortunately, our system did not get any lithography 
objects for this story. On our list of things to get to 
if time permitted was creating a lithography object for 

an otherwise orphaned stepper. We would have only 
gotten one lithography object since we merged all 
mentions of "stepper" into one memory token. 

We created a synthetic version of the system that 
inserted a lithography memory token corresponding to 
each stepper. One was discard by 'rrG and another 
was created because there were two different 
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equipment objects attached to the remaining 
lithography object. The features that 'FIG used to 
hypothesize a new ME_CAPABILITY are illustrative 
of one of the weaknesses of this particular method. 
TTG used the features in Figure 13 to decide not to 
generate an MI~_CAPABILITY developer. 

All of the features are negative, and the absence of 
each feature reduces the certainty that the relation 
holds, because each feature's presence, broadly 
speaking, is positive evidence of a relation. 
Therefore, the node of the decision tree that is found 
is a grouping of cases that have no particular positive 
evidence to support the relation, but also no negative 
evidence. With the relation threshold set at 0.3, this 
yields a negative identification of a relation. 
However, there are strong indications of a relation 
here. For example, the trigger "plans to market" is 
good evidence of a relation, however, the nature 
decision tree algorithms (recursively splitting the 
training data) causes us to lose that feature (in favor 
of other, better features). Figure 14 shows what 
features "I'FG used to generate an MIX_CAPABILITY 
distributor. 

Again, we do not see here the features that we would 
expect, given the text. A human generating rules 
would say that "plans to market" is a good indication 
of a MECAPABILITY distributor. 

W H A T  W O R K S  AND W H A T  NEEDS 
WORK 

When we look at individual texts and work up a walk 
through analysis of what is and is not working, we 
find that many of our trainable language components 
are working very well. The dictionary coverage 
provided by AutoSlog appears to be quite adequate. 
OTB is operating reliably enough for subsequent 
sentence analysis. When we run into difficulties with 
our trainable components, we often fred that many of 
these difficulties stem from a mismatch of training 
data with test data. For example, when we trained the 
coreference interface for appositive recognition, we 
eliminated from the training data all candidate pairs 
involving locations because the location specialist 
should be identifying locations for us. If the 
coreference classifier were operating in an ideal 
environment, it would never encounter unrecognized 
locations. Unfortunately, as we saw with EJV 0592, 
the location specialist does not trap all the locations, 
and this led to a bad coreference decision. In an earlier 
version of the coreference classifier we had trained it 
on imperfect data containing unrecognized locations, 
but as the location specialist improved, we felt that 
the training for the coreference classifier was falling 
increasingly out of sync with the rest of the system 

so we updated it by eliminating all the location 
instances. Then when the coreference classifier was 
confronted with an unrecognized location, it failed to 
classify it correctly. When upstream system 
components are continually evolving (as they were 
during our TIPSTER development cycle), it is 
difficult to synchronize downstream dependencies in 
training data. A better system development cycle 
would stabilize upstream components before training 
downstream components in order to maintain the best 
possible synchronization across trainable 
components. 

The importance of reliable representative training 
materials was demonstrated to us with even more 
impact after the final 24-month EME evaluation 
when we discovered that the EME test materials used 
for the 18-month evaluation were not representative 
of the test materials used for the 24-month 
evaluation. As explained earlier, our EME system 
was tuned for shorter texts than we encountered in the 
official test sets. With a trainable system, it is crucial 
to use representative texts for all parameter tuning. 
TTG was easy to tune by straightforward 
experimentation with different parameter settings, but 
we failed to demonstrate its full utility in EME 
because of the differences between Tips2 and Tips3. 

'VFG nevertheless enhanced the output of CIRCUS 
and other discourse processing modules. In module- 
specific testing TTG typically added 6-12% of 
accuracy in identifying domain objects and 
relationships. That added value is measured against 
picking that most likely class (yes or no) for a 
particular domain object (e.g. JV-ENTITY or ME- 
LITHOGRAPHY) or relationship (e.g. JV-TIE-UP or 
ME-MICROELECTRONICS -CAPABILITY). How- 
ever, TTG fell far below our expectations for correctly 
filtering and connecting the parser's output. We find 
two reasons for this short fall. First, some amount 
of the deficit can be attributed to the system 
development cycle since TFG sits at the end of the 
cycle of training and testing various modules. 

The second, and by far the dominant effect comes 
from the combination of the training algorithm (ID3) 
and the amount of data. As mentioned previously, 
there are two types of features used by TI'G: (1) 
closed class (e.g. token type, semantic features, and 
CN patterns) and (2) open class features (i.e. CN 
trigger words). Using open class features can be 
difficult, because most algorithms cannot detect 
reliable discriminating features if there are too many 
features---reliable features cannot be separated from 
noise. Using trigger words in conjunction relations 
between memory token results in 3,000-5,000 binary 
features. With no noise suppression added to the 
algorithm and given a large number of features, ID3 
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will create very deep decision trees that classify 
stories in the training set based on noise. 

We ran two sets of decision trees in deciding how to 
configure our system for the final test run. MIN- 
TREES using only dosed class features and no noise 
suppression and MAX-TREE using dosed class and 
open class features and a noise suppression rule. The 
noise suppression was a termination condition on the 
recursion of the ID3 algorithm. Recursion was 
terminated when all features resulted in creating a 
node that classified examples from few than 10 
different source texts. Using closed class features 
rarely resulted in a terminal node that classified 
examples from fewer than 10 stories. In all tests the 
MAX-trees performed better. However, as a result of 
the noise suppression, no decision tree contained very 
many discriminations on a trigger. The performance 
of the MAX-trees indicated that individual words are 
good discriminators, however their scarcity in the 
decision trees indicates that we are not using the 
appropriate algorithm. We believe that data-lean 
algorithms (such as explanation-based learning) in 
concert with shared knowledge bases might be 
effective. 

In attributing performance to various components, we 
measured 25 random texts in EME. At the memory 
token stage we found that CIRCUS had extracted 
string-fills and set-fills with a recall/precision of 
68/54. However our score output for those slots was 
32/45 (measured only on the slots we attempted). 
Even when the thresholds for TrG were lowered to 
0.0, so that all output came through, the recall was 
not anywhere near 68. Therefore it would appear that 
the difficult part of the template task is not finding 
good things to put in the template, but figuring how 
to split and merge objects. We do not (yet) have a 
trainable component that handles splitting and 
merging decisions in general. 

The EJV and EME systems that we tested in our 
official evaluation were in many ways incomplete 
systems. Although our upstream components were 
operating reasonably well, additional feedback cycles 
were badly needed for other components operating 
downstream. In particular, trainable coreference and 
trainable template generation did not received the lime 
and attention they deserve. We are generally 
encouraged by the success of our trainable 
components for part-of-speech tagging, dictionary 
generation, noun phrase analysis, semantic feature 
tagging, and coreference based on appositive 
recognition. But we encountered substantial 
difficulties with general coreference prior to template 
generation. This appears to be the greatest challenge 
remaining for trainable components supporting 
information extraction. We know from our earlier 

work in the domain of terrorism that coreference 
resolution can be reasonably well-managed on the 
basis of hand-coded heuristics [Lehnert et al. 1992b]. 
But this type of solution does not port across 
domains and therefore represents a significant system 
development bottleneck. True portability will only be 
achieved with trainable coxeference capabilities. 

We believe that trainable discourse analysis was the 
major stumbling block standing between our Tipster 
system and the performance levels attained by 
systems incorporating hand-coded discourse analysis. 
We remain optimistic that state-of-the-art performance 
will be obtained by corpus-driven machine learning 
techniques but it is clear that more research is needed 
to meet this very important challenge. To facilitate 
research in this area by other sites, UMass will make 
concept extraction training d~!~ (CIRCUS output) for 
the full EJV and EME corpora available to research 
laboratories with internet access. When paired with 
Tipster key templates available from the Linguistic 
Data Consortium, this data will allow a wide range of 
researchers who may not be experts in natural 
language to tackle the challenge of trainable 
coreference and template generation as problems in 
machine learning. We believe it is important for the 
NLP community to encourage and support the 
involvement of a wider research community in our 
quest for practical information extraction 
technologies. 

SYSTEM REQUIREMENTS 

The final 24-month evaluation was conducted on one 
DECstation 5000/240 and two DECstation 
5000/133s. Each machine was configured with 64MB 
RAM and a 300 MB internal disk. Two of these 
machines also had 1.35 GB external disks. The 
5000/240 was running at 40 MHz and the 5000/133s 
ran at 33 MHz. All of our code was written in 
Allegro Common Lisp 4.1 and ran under the Ultrix 
4.2 operating system. 

Our source code occupies about 3.6 MB of disk space. 
The data used in the evaluation (including response 
templates and trace files for both EJV and E/vIE) takes 
up 26.9 MB. It took 27 hours of run time (distributed 
across the three machines) to complete the EJV test 
sets. It took 12 hours to complete the EME test sets. 
The difference in these run times is due to the fact 
that we used the MayTag semantic feature tagger on 
the EJV texts but not the E/VIE texts. No attempt was 
made to optimize runtimes in either system. 

Additional system development was also conducted on 
a number of Mac IIs configured with Macintosh 
Common Lisp 2.0. Both of our Tipster systems can 

255 



be run on a Mac (a minimum of 8 MB RAM is 
recommended). The AutoSlog training interface, OTB 
training interface, and appositive training interface 
were all implemented and run on MACs using the 
Macintosh Common Lisp Interface Toolkit, as was 
the system demo presented at the 24-month meeting. 
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