
TEMPLATE DESIGN FOR INFORMATION EXTRACTION

Boyan Onyshkevych

U S D e p a r t m e n t o f D e f e n s e

Ft. M e a d e , M D 2 0 7 5 5

emaih baonysh@afterlife .ncsc .mil

1. A B S T R A C T

The design of the template for an information extraction applica-
tion (or exercise) mfieets the nature of the task and therefore cru-
cially affects the success of the attempt to capture information
from text. This paper addresses the template design requirement
by discussing the general principles or desiderata of template
design, object-oriented vs. fiat template design, and template deft-
nition notation, all reflecting the results and lessons learned in the
TIPSTER/MUC-5 template definition effort which is explicitly
discussed in a Case Study in the last section of this paper.

2. G E N E R A L C O N S I D E R A T I O N S

The design of the template needs to balance a number
of (often conflicting) goals, as reflected by these desiderata,
which apply primarily to object-oriented templates (see
below), but also have applicability to fiat-structure tem-
plates as well. Some of these desiderata reflect well-known,
good data-base design practices, whereas others are partic-
ular to Information Extraction. Some of these desiderata are
further illusl~ated in the Case Study section below.

• DESCRIPTIVE ADEQUACY - the requirement
for a template to represent all of the information
necessary for the task or application at hand. At
times the inclusion of one type of information
requires the inclusion of other, supporting, infor-
mation (for example, measurements require speci-
fication of units, and temporally dynamic relations
require temporal parametrization).

• CLARITY - the ability to represent information
in the template unambiguously, and for that infor-
mation to be manipulable by computer applica-
tions without further inference. Depending on the
application, any ambiguity in the text may result
in either representation of that ambiguity in the
template, or representation of default (or inferred)
values, or omission of that ambiguous information
altogether.

• D E T E R M I N A C Y - the requirement that there
be only one way of representing a given item or
complex of information within the template. Sig-
aificant difficulties may arise in the information
extraction application if the same interpretation of
a text can legally produce differing structures.

• PERSPICUITY - the degree to which the design
is conceptually clear to the human analysts who
will input or edit information in the template or
work with the results; this desideratum becomes
slightly less important if more sophisticated
human-machine interfaces are utilized, or if a
human is not "in the loop". Using object types
which reflect conceptual objects (or Platonic ide-
als) that are familiar to the analysts facilitates
understanding of those objects, thus the template.

• MONOTONIC1TY -a requirement that the tem-
plate design monotonically (or incrementally)
reflects the data content. Given an instantiated
template, the addition of an item of information
should only result in the addition of new object
instantiations or new fills in existing objects, but
should not result in the removal or restructuring of
existing objects or slot fills.

• APPLICATION CONSIDERATIONS - the par-
ticular task or application may impose structural
or semantic constraints on the template design; for
example, a requirement for use of a particular
evaluation methodology or system for evaluation
may impose practical limits on embeddedness and
linking.

One other consideration comes into play when there
is a current or potential requirement for multiple template
designs in similar or disparate domains.

• REUSABILITY - elements (objects) of a tem-
plate are potentially reusable in other domains;
eventually a library of such objects can be built
up, facilitating template building for new domains
or requirements.

141

3. O B J E C T - O R I E N T E D T E M P L A T E

D E S I G N

The MUC3 and MUC4 terrorist domain templates
were "flat" data structures with 24 slots; this led to consid-
erable awkwardness in representing the relationships
between data items in different slots. For example, in order
to correlate the name of a terrorist target with the national-
ity of that target, a "cross-reference" notation had to be
introduced. Additionally, large portions of the template
would remain blank if there were no discussion of that type
of information (e.g., if there were no human targets dis-
cussed at all).

In response to these difficulties, and in response to
increased movement towards object-oriented data bases in
Government and commercial applications, the template
design for the T1PSTER/MUC5 task is object-oriented. In
other words, instead of using one template to capture all the
relevant information, there are multiple sub-template types
(object types), each representing related information, as
well as the relationships to other objects. A completed tem-
plate is a set of filled-in objects of different types, repre-
senting the relevant information in a particular document.
Each object thus captures information about one thing (e.g.,
a company, a person, or a product), one event, or an interre-
lationship between things, between events, or between
things and events. A filled-in template for a particular docu-
ment may, therefore, have zero, one, or many object instan-
tiations of a given type. A completed template will typically
have multiple objects of various types, interconnected by
pointers from object to associated object. If there is no
information in the document to fill in a given object, that
object is not incorporated into the completed template. If a
document is not relevant to the domain, no objects are
instantiated beyond the "header" object which holds the
document number, date of analysis, etc.

For example, both MUC5/TIPSTER domains had an
object type ENTITY, which captured information about
companies, organizations, or governments. Each company
participating in a joint venture (in the JV domain) would be
represented by a separate ENTITY object, with information
about the NAME of the company (or government or organi-
zation), any ALIASES that are used to refer to it in the text,
its TYPE (specifically COMPAN~ GOVERNMENT, or
ORGANIZATION), its LOCATION, its NATIONALITY
(e.g., Honda USA Inc. is a Japanese company located in the
US), pointers to objects representing PERSONS and
FACILITYs associated with that company, as well as
pointers to objects representing joint venture or parent-
child relationships in which the company participates.

Although the task in MUC-5 and TIPSTER was to

build a separate template for each document, the use of this
object-oriented approach, and leveraging the current boom
of object-oriented data bases and analysis tools, will facili-
tate the migration of this technology to a data base-building
effort.

4. C A S E S T U D Y : T I P S T E R / M U C 5

The template definition process in the TIPSTER/
MUC-5 exercise consisted of a lengthy process of reconcili-
ation of multiple, often contradictory, goals. In addition to
the desiderata mentioned above (or an earlier, less well-
understood version of that fist), the templates needed to sat-
isfy the programmatic goals of TIPSTER and the represen-
tativeness requirements of the participating government
Agencies. The TIPSTER program was chartered to push the
state of the art in Information Extraction in order to reach a
breakthrough which would allow the wide-spread transfer
of this technology to operational use; additionally, TIP-
STER intended to chart out the capabilities of the technol-
ogy.

To meet these goals, the tasks and templates were
designed to (implicitly) cover a range of linguistic phenom-
ena (e.g., coreference resolution, metonymy, implicature)
and to (explicitly) require the full range of Information
Extraction techniques (e.g., string fills, normalization,
small-set classification, large-set classification). The task
had to be structured in such a way that the management of
the various funding Agencies would see that the technology
had applicability to the type and size of tasks addressed by
their Agency. This set of goals resulted in a need to define a
set of tasks which would be substantially more challenging
and extensive than the tasks from previous MUCs or current
operational systems. Although still considered to be very
substantial and extensive, the final template design reflect
substantial trimming and reduction of information content
from earlier versions, reflecting pragmatic programmatic
considerations.

In the TIPSTER/MUC-5 exercise, templates were
defined for two domains (see "Tasks, Domains, and Lan-
guages for Information Extraction" in this volume). The
template is defined in a BNF-llke formalism which specifies
the syntax of the template (the formalism is defined in
Appendix A below); the semantics are defined in the Fill
Rules document that was developed for each language/
domain pair (see "Corpora and Data Preparation for Infor-
marion Extraction" in this volume).

The template that evolved over time didn't meet the
Monotonicity desideratum in some cases. Although the
"data bases" being built in the TIPSTER/MUC5 tasks were
not dynamic over time, a small omission in a system tern-

142

plate (vs. the "key" or answer template)at times reflected a
Monotonicity failure in that the small omission resulted in
major differences in the templates. For example, in the Joint
Ventures domain, an ACTIVITY object could point to two
(or more) INDUSTRY objects; however, if REVENUE (or
START TIME or END TIME) information within that
ACTIVITY were only applicable to one of the INDUS-
TRYs, that one ACTIVITY object would be split into two
ACTIVlTYs, each pointing to an individual INDUSTRY,
along with any information specific to that ACTIVITY.
Figure 1, for example illustrates how a (hypothetical) cor-

~ ACTIVITY-1)

/,
~ ACTIVITY-2)

Figurel: Example of a correct template structure

rect template structure piece might appear (diagrammati-
cally); note two ACTIVITY objects. In Figure 2

/ \

In the TIPSTER/MUC-5 template for Joint Ventures,
executives (and others) of the companies involved in the tie
ups were represented in objects called PERSON, which rep-
resented the name and position of those individuals.
Because the position information is not an intrinsic static
property of that individual but rather transitory relational
information (i.e., it reflects the nature of that individual's
relation to a given company), the template design caused
problems when the individual in question changed positions
(often an executive of a parent company would become the
president or director of a child company). Thus the Descrip-
tive Adequacy desideratum was violated, since the template
was not able to represent the change in that relationships
between the individual and the companies. If we created a
new object for a person for each position, we would violate
the Perspicuity desideratum (since a PERSON object
wouldn't represent a person per se, but a person in a panic-
ular job). Thus it would have preferable to either represent
that relational information with the appropriate parameters
(time and associated entity) or not at all.

A Determinacy desideratum inadequacy became
apparent when it was noticed that the analysts who filled the
templates had differing notions of how to represent multiple
products in the JV domain. If two products, say "diesel
trucks" and "four-door sedans" were to be manufactured as
the ACTIVITY of a tie up, some analysts would instantiate
one INDUSTRY object, then have multiple fills for the
PRODUCT/SERVICE. Other analysts, however, would
instantiate two INDUSTRY objects, put one product in each,
then reference both INDUSTRYs from the same ACTIV-
ITY. Although this was clarified in the Fill Rules, the ana-
lysts would occasionally err. A preferable solution would
have been to allow only one PRODUCT~SERVICE per
INDUSTRY, thus avoiding any possible Determinacy failure
on this point (and ameliorating the Monotonicity failure dis-
cussed above).

Figure2: Same template without REVENUE

(representing a template missing the REVENUE informa-
tion) the omission of REVENUE information would not only
result in a missing REVENUE object, it would also result in
a spurious INDUSTRY fill on the ACTIVITY object (as
well as an entire missing ACTIVITY object). Within the
scope of the evaluation conducted in TIPSTER/MUC-5,
this difference would result in a scoring penalty far greater
than for one object.

143

5. APPENDIX A: NOTATION

< . . . > data object type (i.e., if indicated as a filler, any instantiation of
that data object type is allowable). Every new instantiation is named by
the type concatenated with: ' - I , the normalized document number, ' - I , and
a one-up number for uniqueness. The angle-brackets are retained in the
instantiation, as a type identifier/delimiter.

what follows is the structure of the data object

what follows is a specification of the allowable fillers for this slot

what follows is the set itemization

choose one of the elements from the ... list. Note that one of the ele-
ments (typically "OTHER") may be a string fill where information which
does not fit any of the other classes is represented (as a string); this
set element would be identified by double quotes in the definition, and
delimited by double quotes in the fill.

({ . . .)) choose one element from the set named by ... (like {...) except that the
list is too long to fit on the line)

#<... (...)#>these delimiters identify a hierarchical set fill item. The first term
after #< is the head of the subtree being defined in this term, and is
itself a legal set fill term. What follows that term is a set of terms
which are also allowable set fill choices, but are more specific than the
head term. The most specific term specified by the text needs to be cho-
sen. For example, the term #<RAM (DRAM, SRAM)#> means that RAM, DRAM, and
SRAM are all legal fills; if the text specifies DRAM, then choose D W ,
but if the text specifies just RAM, then select RAM. In scoring, special
consideration will be given when an ancestor of a term is selected instead
of the required one (as opposed to scoring 0 as in the case of a flat set
fill). Note that items in the set (i.e., inside the { . . . 1) can them-
selves be hierarchical item. Note that one of the elements (typically
"OTHER") may be a string fill where information which does not fit any of
the other classes is represented (as a string); this set element would be
identified by double quotes in the definition, and delimited by double
quotes in the fill.

one or more of the previous structure; newline character separates

multiple structures

zero or more of the previous structure; newline character separates multi-
ple structures; if zero, leave blank

zero or one of the previous structure, but if zero, use the symbol \'-"

instead of leaving position blank

exactly one of the previous structure

I OR (refers to specification, not answers or instantiations)

(. . .) delimiters, no meaning (don't appear in instantiations) NB: DOES NOT MEAN
'OPTIONAL'

((. . . I) delimiters, doesn't appear in instantiation, but contents are OPTIONAL but
either all the contents appear, or none of them, in the case where there
are no connectors (e.g., 1) or operators (e.g., + or ") within these
delimiters: for example, with A ((B C)) D, only A D and A B C D are legal.
If there is a connector inside these delimiters, then the either null or
one of the forms are allowed fills: ((A I C)) means that the legal fills
are 1) empty 2) A, and 3) C. Note that these delimiters essentially mean
that the contents appear zero or one times. Also nbte that "OPTIONALu
here means that the position are left blank if no info, not that scoring
treats these terms as optional.

