
BusTUC - A natural language bus route
adviser in Prolog

Tore Amble
Knowledge Systems Group

Departm ent of Computer and Information Science
NTNU

amble@idi.ntnu.no

25. april 2000

Sam m endrag

The paper describes a natural language based expert system route
adviser for the public bus transport in Trondheim, Norway. The sy
stem is available on the Internet, and has been installed at the bus
company’s web server since the beginning of 1999. The system is bilin
gual, relying on an internal language independent logic representation.

1 Introduction
A natural language interface to a computer database provides users with
the capability of obtaining information stored in the database by querying
the system in a natural language (NL). With natural language as a means
of communication with a computer system, the users can make a question
or a statement in the way they normally think about the information being
discussed, freeing them from having to know how the computer stores or
processes the information.

The present implementation represents a a major effort in bringing na
tural language processing into practical use. A system is developed that can
answer queries about bus routes, stated in natural language texts, and made
public through the Internet World Wide Web (www. i d i . n tn u . n o /b u s tu c /).

Trondheim is a small city with a university and 140000 inhabitants. The
central bus system in Trondheim has 42 bus lines, serving 590 stations, with

Proceedings of NODALIDA 1999, pages 1-12

mailto:amble@idi.ntnu.no

1900 departures per day (in average). That gives approximately 60000 sche
duled bus station passings per day, which is somehow represented in the route
data base.

The starting point is to automate the function of a route information
agent. The following example of a system response is taken from an actual
request over telephone to the local route information company:

Hi, I l iv e in N idarvo ll and to n ig h t I must
reach a t r a i n to Oslo a t 6 oclock.

A typical answer would follow quickly:

Bus number 54 passes by N idarvo ll school a t 1710
and a r r iv e s a t Trondheim Railway S ta tio n a t 1725.

In between the question and the answer is a process of lexical analysis,
syntax analysis, semantic analysis, pragmatic reasoning and databcise query
processing and answer generation.

One could argue that the information content could be solved by an in
terrogation, whereby the customer is asked to produce 4 items: d ep artu re
s t a t io n , a r r iv a l s ta t io n , e a r l i e s t and l a t e s t a r r iv a l time. It is
a myth that natural language is better way of communication because it
is “natural language” . The challenge is to prove by demonstration that an
NL system can be made that will be preferred to the interrogative mode.
To do that, the system has to be correct, user friendly and almost complete
within the actual domain.

2 Previous Efforts, CHAT-80, PRAT-89 and
HSQL

The system, called BusTUC is built upon the classical system CHAT-80
([WP82]). CHAT-80 was a state of the art natural language system that was
impressive on its own merits, but also established Prolog as a viable and
competitive language for Artificial Intelligence in general. The system was
a brilliant masterpiece of software, efficient and sophisticated. The natural
language system was connected to a small query system for international
geography. The following query could be analysed and answered in less than
half a second:

Proceedings of NODALIDA 1999

Which country bordering th e M editerranean borders a
country th a t i s bordered by a country whose p o pu la tion
exceeds th e p o pu la tion of Ind ia?

{The answer 'Turkey’ has become incorrect as time has passed. The irony
is that Geography was chosen as a domain without time.)

The ability to answer ridiculously long queries is of course not the main
goal. The main lesson is that complex sentences are analysed with a proper
understanding without sacrificing efficiency. Any superficial pattern matching
technique would prove futile sooner or later.

2.1 Making a Norwegian CHAT-80, PRAT-89
At the University of Trondheim (NTNU), two students made a Norwegi
an version of CHAT-80,called PRAT-89 ([TV88],[TV89]). (Also, a similar
Swedish project SNACK-85 was reported).

The dictionary was changed from English to Norwegian together with
new rules for morphological analysis. The change of grammar from English
to Norwegian proved to be amazingly easy. It showed that the langauges were
more similar than one would believe, given that the languages are incompre
hensible to each other’s communities.

After changing the dictionary and grammar, the following Norwegian que
ry about the same domain could be answered correctly in a few seconds.

Hvilke a frik an sk e land som har en befo lkn ing s tø r r e
enn 3 m illio n e r og mindre enn 50 m illio n e r og e r nord
fo r Botswana og ø s t fo r Libya h ar en hovedstad som
har en befo lkn ing s tø r re enn 100 tu sen ?

(“Which African countries that have a population greater than 3 millions
and less than 50 millions and is north of Botswana and east of Libya has a
capital which has a population greater than 100 thousands ?”)

2.2 HSQL - Help System for SQL
A Nordic project HSQL (Help System for SQL) was accomplished in 1988-89
to make a joint Nordic effort interfaces to databases.

The HSQL project was led by the Swedish State Bureau (Statskontoret),
with participants from Sweden, Denmark, Finland and Norway [AKL"''90].
The aim of HSQL was to build a natural language interface to SQL databa
ses for the Scandinavian languages Swedish, Danish and Norwegian. These

Proceedings of NODALIDA 1999

languages are very similar, and the Norwegian version of CHAT-80 was eas
ily extended to the other Scandinavian languages. Instead of Geography, a
more typical application area was chosen to be a query system for hospital
administration. We decided to target an SQL database of a hospital admi
nistration which had been developed already.

The next step was then to change the domain of discourse from Geo
graphy to hospital administration, using the same knowledge representation
techniques used in CHAT-80. A semantic model of this domain was made,
and then implemented in the CHAT-80 framework.

The modelling technique that proved adequate was to use an extended
Entity Relationship (ER) model with a class (type) hierarchy, attributes
belonging to each class, single inheritance of attributes and relationships.

Connecting the system to an SQL database.

After the remodelling, the system could answer queries in “Scandinavian” to
an internal hospital database as well as CHAT-80 could answer Geography
questions. HSQL produced a Prolog-like code EOL (Eirst Order Logic) for
execution. A mapping from FOL to the data base Schema was defined, and
a translator from FOL to SQL was implemented. The example

Hvilke menn lig g e r i en kvinnes seng?

(”Which men lie in a woman’s bed?”)

was translated dryly into the SQL query:

SELECT DISTINCT T3.name,T1. sex ,T 2 .reg_no ,T 3 . sex,
T4 . reg_no,T4 .bed_no,T5 .hosp_no,T5 .ward_no

FROM PATIENT Tl,OCCUPANCY T2,PATIENT T3,
OCCUPANCY T4.WARD T5

WHERE (T l.sex = ’fO AND (T 2.reg_no=T l.reg .no) AND
(T 3.sex=’mO AND (T4.reg_no=T3.reg_no) AND
(T4.bed_no=T2.bed_no) AND (T5.hosp_no=T4.hosp_no) AND
(T5.ward_no=T4.ward_no)

2.3 The Understanding Computer
The HSQL was a valuable experience in the effort to make transportable
natural language interfaces. However, the underlying system CHAT-80 re
stricted the further development.

Proceedings of NODALIDA 1999

After the HSQL Project was finished, an internal reseach project TUC
(The Understanding Computer) was initiated at NTNU to carry on the re
sults from HSQL. The project goals differed from those of HSQL in a number
of ways, and would not be concerned with multimedia interfaces. On the ot
her hand, portability and versatility were made central issues concerning the
generality of the language and its applications. The research goals could be
summarised as to

• Give computers an operational understanding of natural language.

• Build intelligent systems with natural language capabilities.

• Study common sense reasoning in natural language.

A test criterion for the understanding capacity is that after a set of defi
nitions in a Naturally Readable Logic, NRL, the system’s answer to queries
in NRL should conform to the answers of an idealised rational agent.

Every man th a t l iv e s loves Mary. John i s a man. John l iv e s .
Who loves Mary?
==> John

NRL is defined in a closed context. Thus interfaces to other systems are in
principle defined through simulating the environment as a dialogue partner.

TUC is a prototypical natural language processor for English written
in Prolog. It is designed to be a general purpose easily adaptable natural
language processor. It consists of a general grammar for a subset of English,
a semantic knowledge base, and modules for interfaces to other interfaces like
UNIX, SQL-databases and route information services.

2.4 The TABOR Project
It so happened that a Universtity project was starteded in 1996, called
TABOR (“Speech based user interfaces and reasoning systems"), with the
aim of building an automatic public transport route oracle, available over
the public telephone. At the onset of the project, the World Wide Web was
fresh, and not as widespread as today, and the telephone was still regarded
as the main source of information for the public. Since then, the Internet has
become the dominant medium, and it is as likeley to find a computer with
Internet connection, as finding a telephone, or a local busroute booklet for
that matter.

It was decided that a text based information system should be built,
regardless of the status of the speech rocgnition and speech synthesis effort,
which proved to lag behind after a while.

Proceedings of NODALIDA 1999

The resulting system BusTUC grew out as a natural application of TUC,
and an English prototype could be built within a few months ([Bra97]).
Since the summer 1996, the prototype was put onto the Internet, and has
been developed and tested more or less continually since then. The most
important extension was that the system was made bilingual (Norwegian
and English) during the fall 1996.

In the spring 1999, the BusTUC was finally adopted by the local bus com
pany in Trondheim (A/S Trondheim Trafikkselskap), which set up a server
(300 MHz PC with Linux).

Until today, over 150.000 questions have been answered, and BusTUC
seems to stabilize and grow increasingly popular.

3 Anatom y of the bus route oracle
The main components of the bus route information systems are;

• A parser system, consisting of a dictionary, a lexical processor, a gram
mar and a parser.

• A knowledge base (KB), divided into a semantic KB and an application
KB

• A query processor, containg a routing logic system, and a route data
base.

The system is bilingual and contains a double set of dictionary, morpho
logy and grammar. Actually, it detects which language is most probable by
counting the number of unknown words related to each language, and acts
accordingly. The grammars are surprisingly similar, but no effort is made to
coalesce them. The Norwegian grammar is slightly bigger than the English
grammar, mostly because it is more elaborated but also because Norwegian
allows a freer word order.

T h e B u s T U C s y s te m

3.1 Features of BussTUC
For the Norwegian system, the figures give an indication of the size of the
domain: 420 nouns, 150 verbs, 165 adjectives, 60 prepositions, etc.

There are 1300 grammar rules (810 for English) although half of the rules
are at a low lexical level.

The semantic net described below contains about 4000 entries.

Proceedings of NODALIDA 1999

A big name table of 3050 names in addition to the official station names,
is required to capture the variety of nameings. A simple spell correction is
part of the system (essentially 1 character errors).

The pragmatic reasoning is needed to translate the output from the parser
to a route database query language. This is done by a production system
called Pragma, which acts like an advanced rewriting system with 580 rules.

In addition, there is another rule base for actually generating the natural
language answers (120 rules).

The system is mainly written in Prolog (Sicstus Prolog 3.7), with some
Perl programs for the communication and CGI-scripts.

At the moment, there are about 35000 lines of programmed Prolog code
(in addition to route tables which are also in Prolog). Sicstus Prolog proved
to be extremely efficient and reliable for the application.

Average response time is usually less than 2 seconds, but there are queries
that demand up to 10 seconds.

The error rate for the single, correct, complete and relevant questions is
about 2 percent.

3.2 The Parser System
The Grammar System

The grammar is based on a simple grammar for statements, while questions
and commands are derived by the use of movements. The grammar formalism
which is called Consensical Grammar, (CONtext SENSItive CompositionAL
Grammar) is an easy to use variant of Extraposition Grammar ([PW80]),
which is a generalisation of Definite Clause Grammars. Semantically, a phrase
is composed of the semantics of the subphrases; the basic constituents being
generalized verb complements. As for Extraposition grammars, a grammar
is translated to Definite Clause Grammars, and executed as such.

A characteristic syntactic expression in Consensical Grammar may define
an incomplete construct in terms of a “difference ” between complete con
structs. This implements various kinds of movements by using the subtracted
parts instead of reading from the input, immediately or after a gap.

The effect is the same as for Extraposition grammars, but this format
allows a more intuitive reading. Examples of grammar rules:

statem ent(P) ---->
noun_phrase(X,VP,P),
verb_phrase(X ,V P).

statem ent(Q) ---->

Proceedings of NODALIDA 1999

verb_complementsO(VC) , */. i n i t i a l o p tio n a l verb_complements
statem ent(Q) . '/, may be in s e r te d a f te r a gap

verb_complementsO(VC).

w h o seq (P)----> */, whose dog barked?
[whose],
noun(N),
whoq(P) - ([who] , [has] , [a] ,noun(N), [t h a t]) . '/, w ithout gap

whoq(P) ---->
[who] ,
whichq(P) - ([w hich], [p erso n]) .

whichq(whichCX): :P) ---->
[w hich],
sta tem ent(P) - the(X).

Example:

Whose dog barked?

is analysed as if the sentence had been

Who has a dog th a t barked?

which is analysed as

Which person has a dog th a t barked?

which is analysed as

fo r which X i s i t tru e th a t
th e (X) person has a dog th a t barked?

where the Icist line is analysed as a statem ent.
Movement is easily handled in Consensical Grammar without making

special phrase rules for each kind of movement. The following example shows
how TUC manages a variety of analyses using movements:

Max sa id B i l l thought Joe b e liev ed Fido Barked.

Who sa id B i l l thought Joe b e liev ed Fido barked? ==> Max
Who d id Max say thought Joe b e liev ed Fido barked? ==> B il l
Who d id Max say B i l l thought b e liev ed Fido barked? ==> Joe

Proceedings of NODALIDA 1999

The experiences with Consensical grammars are a bit mixed however. The
main problem is the parsing method itself, which is top down with back
tracking. Many principles that would prove elegant for small domains turned
out to be to costly for larger domains, due to the wide variety of modes
of expressions, the incredible ambiguity and the sheer size of the covered
language.

These problems also made it imperative to introduce a timeout on the
parsing process of embarassing 10 seconds. Although most sentences would
be parsed within a second, some legal sentences of moderate size actually
need this time.

The disambiguation is a major problem for small grammars and large
languages, and was solved by the following guidelines:

• a semantic type checking was integrated into the parser, and would
help to discard semantically wrong parses from the start.

• a heuristics proved almost irreproachable: The longest possible phrase
of a category that is semantically correct is in most cases the preferred
interpretation.

• due to the perplexity of the language, some committed choices (cuts)
had to be inserted into the grammar at strategic places. As one could
fear however, this implied that wrong choices being made at some point
in the parsing could not be recovered by backtracking.

T h e p arser

3.3 The semantic knowledge base
Adaptability means that the system does not need to be reprogrammed for
each new application.

The design principle of TUC is that most of the changes are made in a
tabular semantic knowledge base, while there is one general grammar and
dictionary. In general, the logic is generated automatically from the semantic
knowledge base.

The nouns play a key role in the understanding part as they constitute
the class or type hierarchy. Nouns are defined in an a -k in d -o f hierarchy.
The hierarchy is tree-structured with single inheritance. The top level also
constitute the top level ontology of TUC’s world.

In fact, a type check of the compliances of verbs, nouns adjectives and
prepositions is not only necessary for the semantic processing but is essen
tial for the disambiguation in the syntax analysis. In TUC, a declaration

Proceedings of NODALIDA 1999

10

of the legal combinations are carefully assembled in the semantic network,
which then serves a dual purpose. These semantic definitions are necessary
for disambiguating prepositional attachments, for instance in the following
sentences

The dog saw a man w ith a te le sc o p e .
The man saw a dog w ith a te le sc o p e .

to be treated differently because w ith te le sc o p e may modify the noun man
but not the noun dog, while w ith te le sc o p e modifies the verb see, restric
ted to person.

3.4 The Query Processor
Event Calculus

The semantics of the phrases are built up by a kind of verb compelements,
where the event play a central role.

The text is translated from Natural language into a form called TQL
(Temporal Query Language/TUC Query Language) which is a first order
event calculus expression, a self contained expression containing the literal
meaning of an utterance.

The formalism TQL that was defined, inspired by the Event Calculus by
Kowalski and Sergot ([KS86]). The TQL expressions consist of predicates,
functions, constants and variables. The textual words of nouns and verbs
are translated to generic predicates using the selected interpretation. The
following question

Do you know whether th e bus goes to N idarvo ll on Saturday ?

would give the TQL expression below. Typically, the Norwegian equivalent

Vet du om bussen går t i l N idarvo ll på søndag ?

gives exactly the same code.

test::

isafreal.program,bustuc),

isa(real,bus,A),

isa(real,Saturday,B),
isaCreal,place,nidarvoll),
event(real,D),

know(id,whether,bustuc,C ,D)

event(C,E),

’/. Type of question

*/, bustuc i s a r e a l program
'/, A i s a r e a l bus
'/, B i s a Saturday
7, n id a rv o ll i s a p lace
7. D is an event
7i C is a statem ent known a t D
7. E is an event in C

Proceedings of NODALIDA 1999

11

a c tio n (g o ,E) ,
a c to r(A .E),
s r e l (t o , p la c e ,n id a rv o l l .E) ,
s re l(o n ,t im e ,B ,E) .

'/, the ac tio n of E i s ’go ’
'/, th e a c to r of E i s A
y, E i s re la te d to n id a rv o ll
y. E is related on the Saturday B

The event parameter plays an important role in the semantics. It is used
for various purposes. The most salient role is to identify a subset of time and
space in which an action or event occured. Both the actual time and space
coordinates are connected to the actions through the event parameter.

Pragmatic reasoning

The TQL is translated to a route database query language (BusLOG) which
is actually a Prolog program. This is done by a production system called
Pragma, which acts like an advanced rewriting system with 580 rules.

4 Conclusions
The TUG approach has as its goal to automate the creation of new natural
language interfaces for a well defined subset of the language and with a
minimum of explicit programming.

The implemented system has proved its worth, and is interesting if for
no other reason. There is also an increasing interest from other bus compa
nies and route information companies alike to get a similar system for their
customers.

Further work remains to make the parser really efficient, and much work
remains to make the language coverage complete within reasonable limits.

It is an open question whether the system of this kind will be a preferred
way of offering information to the public.

If it is, it is a fair amount of work to make it a portable system that can
be implemented elsewhere, also connecting various travelling agencies.

If not, it will remain a curiosity. But anyway, a system like this will be a
contribution to the development of intelligent systems.

Referanser
[AKL+90] Tore Amble, Erik Knudsen, Aarno Lehtola, Jan Ljungberg, and

Ole Ravnholt. Naturlig Språk och Grafik - nya vägar inn i databa
ser. Statskontoret, 1990. Rapport om HSQL, ett kunskapsbaseret
hjälpsystem för SQL.

Proceedings of NODALIDA 1999

12

[Bra97] Jon S. Bratscth. BusTUC - A Natural Language Bus Traffic
Informations System. Master’s thesis, The Norwegian University
of Science and Technology, 1997.

[KS86] R. Kowalski and M. Sergot. A logic based calculus of events. New
Generation Computing, 8(0):67-95, 1986.

[PW80] F.C.N. Pereira and D.H.D. Warren. Definite clause grammar for
language analysis. Artificial Intelligence, 0(3), 1980.

[TV88] J. Teigen and V. Vetland. Syntax analysis of norwegian language.
Technical report. The Norwegian Institute of Technology, 1988.

[TV89] J. Teigen and V. Vetland. Handling reasonable questions beyond
the linguistic and conceptual coverage of
natural language interfaces. Master’s thesis. The Norwegian In
stitute of Technology, 1989.

[WP82] D.H.D Warren and F.C.N. Pereira. An efficient and easily adap
table system for interpreting natural language queries. Computa
tional Linguistics, 8(3-4), 1982.

Proceedings of NODALIDA 1999

