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Abstract 

We present a new method to automatically 
merge lexicons that employ different incom- 
patible POS categories. Such incompatibil- 
ities have hindered efforts to combine lexi- 
cons to maximize coverage with reasonable 
human effort. Given an "original lexicon", 
our method is able to merge lexemes from 
an "additional lexicon" into the original lex- 
icon, converting lexemes from the additional 
lexicon with about 89% precision. This level 
of precision is achieved with the aid of a 
device we introduce called an anti-lexicon, 
which neatly summarizes all the essential in- 
formation we need about the co-occurrence 
of tags and lemmas. Our model is intuitive, 
fast, easy to implement, and does not require 
heavy computational resources nor training 
corpus. 

l e m m a  I tag 

apple INN 
boy NN 
calculate VB 

Example entries in Brill lexicon 

1 Motivation 

We present a new, accurate method to auto- 
matically merge lexicons that  contain incom- 
patible POS categories. In this paper, we 
look specifically at the problem that differ- 
ent lexicons employ their own part-of-speech 
(POS) tagsets that are incompatible with 
each other, owing to their different linguistic 
backgrounds, application domains, and/or 
lexical acquisition methods. 

Consider the way that lemmas are typ- 
ically marked with POS information in 
machine-readable lexicons. For example, 
here are a few entries from the lexicon in 
Brill's tagger (Brill, 1994) and the Moby lex- 
icon (Ward, 1996), showing simple pairs of 
lemmas and POS tags: 

l e m m a  tag 
boy N 
hold V 

Example entries in Moby lexicon 

Perhaps the most natural first approach to 
merging the lexicons is to construct a set of 
POS mapping rules. 

For example, we might wish to acquire the 
following mapping rules: 

( "NN",  "N" ), ( "VB",  "V" ) . . .  

Here, the first rule says that  the "NN" 
POS in the Brill lexicon should be mapped 
to the "N" POS in the Moby lexicon. Of 
course, not all POS tags can be accurately 
translated this way, but the strategy is a rea- 
sonable first approximation. 

In order to incorporate entries from other 
lexicons into the current knowledge base, the 
mapping rules between different POS tagsets 
are usually formulated by hand in ad hoc 
ways. In view of this heterogeneity and hu- 
man subjectiveness, some people had begun 
to investigate and develop methods of learn- 
ing the mapping rules between different POS 
categories in different lexicons. Teufel de- 
scribed a tool to support manual mapping 
between different tagsets using a rule-based 
approach (Teufel, 1995). This approach re- 
quires heavy human intervention, and there- 
fore does not scale up easily. Another ap- 
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proach was proposed by Hughes et al., to au- 
tomatically extract mapping rules from cor- 
pora tagged with more than one annotation 
scheme (Hughes et al., 1995). However, the 
dependence on multiply-annotated corpora 
requires heavy annotation and/or computa- 
tion resources, whereas we are investigating 
methods with only the information found in 
existing lexicons. 

In this paper, we will begin by presenting 
a basic method that  generates a set of map- 
ping rules. Experimental results on a vari- 
ety of lexicons will be presented. We will 
then introduce a mechanism called an "anti- 
lexicon" that  significantly improves precision 
on the learned rules and merged lexicons, 
though at a cost to recall. 

2 B a s i c s  

Our general strategy is to inspect the co- 
occurrence of tags on those lemmas that  are 
found in both lexicons, and to use that  infor- 
mation as a basis for generalizing, thus yield- 
ing POS mapping rules. To do this requires 
several steps, as described in the following 
subsections. As a preliminary step, we will 
introduce a way to represent POS tags using 
feature vectors. We then use these vectors 
to generate mapping rules. To obtain better 
accuracy, we can restrict the training exam- 
ples to entries that  occur in both lexicons. 
The generation algorithm also requires us to 
define a similarity metric between POS fea- 
ture vectors. 

2.1 P a r t - o f - s p e e c h  f ea tu re  vec tor  

A necessary preliminary step of our method 
is to introduce POS feature vectors. A fea- 
ture vector is a useful representation of a 
POS tag, because it neatly summarizes all 
the information we need about which lem- 
mas can and cannot have that  POS tag, il- 
lustrated as follows. 
Given: 

• a lemma set .h4 ={ "apple", "boy", 
"calculate"} 

• a set of POS tags T' ={"NN","VB"} 

A tiny example lexicon consisting of lemma 
and POS tag pairs might be as follows, where 
each cell with • indicates the existence of 
that  lemma-POS pair in the lexicon: 

II apple boy calculate 
NN • • 
VB • 

which, when represented as POS feature vec- 
tors, will be: 

p l :  < 1, 1, 0, > 
p2: < 0, 0 1, > 

where p1 here is the "NN" POS represented 
by the set of words that  can be nouns in 
a given lexicon, in this example { "apple", 
"boy" } and p2 similarly is the "VB" POS. 

The feature value for feature f in g can be 
either: 

• 0 to indicate that  we are not sure 
whether p is a tag of f ;  

• 1 to indicate that  p is a tag for f;  

• 2 to indicate that  p can never be a tag 
for lemma f .  

Obtaining information about the last of 
these (the value 2) is a non-trivial problem, 
which we will return to later in this paper. 
With ordinary lexicons, we only directly ob- 
tain feature vectors containing 0 and 1 val- 
ues. 

2.2 Mapping rule learning algorithm 
Given a feature vector for every POS tag in 
both lexicons--say, Brill's lexicon and the 
Moby lexicon--we use the following algo- 
rithm to learn mapping rules from POS tags 
in Brill's tagset to POS tags in the Moby 
tagset. The idea is to assume that  a mapping 
rule between two POS tags holds if the sim- 
ilarity between their feature vectors exceeds 
a preset threshold, called a sim-threshold T. 
The similarity metric (SimScore) will be de- 
scribed later, but let's first look at the learn- 
ing algorithm, as described in algorithm 1. 

This algorithm does not exclude m-to-n 
mappings; that  is, any Brill POS tag could 
in principle get mapped to any number of 
Moby POS tags. 

2 4 8  



mapper ( 'P ,Q)  

i n p u t  • Two sets of feature vectors of POS tags 
p = 

e =  , (  } 

o u t p u t  • A mapping table represented as a set of pairs of feature vectors 
B= {<F,¢>,.. .}  

a lgor i thm:  

foreach ~ in P do 
foreach ~ e Q do 

if SimScore(~,~) > sire_threshold ~- t h e n  

B Bu >}; 
end 

end 
end. 

Algorithm 1: Mapping rule learning algorithm 

2.3 I m p r o v i n g  t h e  t r a i n i n g  set  by  
i n t e r s e c t i n g  t h e  lexicons  

We can obtain better results by considering 
only those lemmas that  occur in both lexi- 
cons. This has the effect of eliminating un- 
reliable features in the POS feature vectors, 
since lemmas that do not occur in both lex- 
icons cannot be relied upon when judging 
similarity. This results in pruned versions of 
both lexicons. 

For example, pretend that the following 
are the only entries in the Brill and Moby 
lexicons: 

lemma tag 
apple NN 
boy NN 
calculate VB 

Brill lexicon 

l e m m a  tag 
boy N 
hold V 
Moby lexicon 

In this case, intersecting the lexicons 
would result in the following pruned lexi- 
cons: 

lemma I tag 
boy INN 
Brill' lexicon 

lemma I tag 
boy [ N 
Moby' lexicon 

After pruning, the only remaining lemma 
is "boy", and the new POS feature vectors 
for "NN" and "N" have just one dimension 
corresponding to "boy": 

NN: < 1 > 
N: < 1 > 

Of course, in reality the lexicons are much 
bigger and the effect is not so drastic. 

In all experiments in this paper, we used 
lexicon intersection to prune the lexicons. 

2.4 S i m i l a r i t y  m e t r i c  

The similarity function we use calculates a 
similarity score between two feature vectors 
by counting the number of features with the 
same feature value 1 or 2, indicating that 
a lemma either can or cannot belong to 
that POS category. (Recall that  the value 
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0 means "don't know", so we simply ignore 
any features with value 0.) The score is nor- 
malized by the length of the feature vector. 
We also require that there be at least one 
positive match in the sense that some lemma 
is shared by both of the POS categories; oth- 
erwise, if there are only negative matches 
(i.e., lemmas that cannot belong to either 
POS category), we consider the evidence t o  
be too weak and the similarity score is then 
defined to be zero. The whole algorithm is 
described in algorithm 2. 

2.5 T h e  " c o m p l e t e  lex icon"  
a s s u m p t i o n  

As mentioned earlier, ordinary lexicons do 
not explicitly contain information about 
which parts of speech a lemma can not 
be used as. We have two choices. In 
the examples up till now, we used a value 
of 0 for any lemma-tag pair not explicitly 
listed in the lexicon, signifying that we don't 
know whether the POS category can include 
that lemma. However, having many "don't 
know" values significantly weakens our sim- 
ilarity scoring method. Alternatively, we 
can choose to assume that our lexicons are 
complete--a kind of closed world assump- 
tion. In this case, we assume that any 
lemma-tag pair not found in the lexicon is 
not merely an omission, but really can never 
occur. This means we use the value 2 instead 
of the value 0. 

The "complete lexicon" assumption only 
makes sense when we are dealing with large, 
broad coverage lexicons (as is the case in this 
paper). It is not reasonable when dealing 
with small or specialized sublexicons. 

3 Ant i - lex icon 
Based on the above intuition on utilizing 
negative information, we propose an im- 
proved model using something we call an 
anti-lexicon, that indicates the POS tags 
that a lemma cannot have, which we will call 
its anti-tags. A POS tag p is called an anti- 
tag a of a lemma m if p can never be a tag 
of  m.  

The anti-lexicon consists of a set of pieces 
of this negative information, each called an 

anti-lexeme ~l: 

dej 

where -~p is the anti-tag of lemma m, and p 
is a POS used in the lexicon. 

Some examples of anti-lexemes are: 

( happy,-~IN ) 
( run, -~JJ } 
(in,--~VB ) 

where "IN","JJ" and "VB" are the preposi- 
tion, adjective and verb tags in Brill lexicon 
respectively. 

Similar to a traditional lexicon which con- 
tains lexemes in the form of pairs of lemmas 
and their corresponding possible POS tag(s), 
an anti-lexicon contains anti-lexemes which 
are simple pairs that associate a lemma with 
an anti-tag. 

The anti-lexicon can be automatically 
generated quickly and easily. To illustrate 
the idea, consider an example lexicon where 
we add the lemma "Central" and the POS 
"NP" to the example lexicon we have been 
working with. 

II apple boy calculate 
NN • • 
VB 
NP 

Central 

Suppose we want to know whether "Cen- 
tral" can be a "NN", and whether "calcu- 
late" can be a "NN". The fact that "apple" 
can be tagged by both "NN" and "NP", but 
not "VB", gives "Central" (a lemma that 
is already known to be able to serve as an 
"NP") a higher likelihood of possibly serv- 
ing as an "NN" than "calculate" (a lemma 
that is not known to be able to serve as an 
"NP"). 

Based on this assumption that lexemes 
with similar semantics will have similar POS 
tags, we conceptualize this kind of pattern 
in terms of "cohesion" between lemmas and 
POS tags in a lexicon. The "cohesion" of a 
lemma I and a POS tag p measures the like- 
lihood of a POS tag p being a possible tag 
of a lemma l, and is defined as: 
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SimScore(/Y, q~ 

i n p u t  : Two POS feature vectors of integers with values {0, 1, 2} 
(representing P O S  tags that may  come f rom different tagsets) 
P=  {Pl,P2,..-,Pn} 
q '=  {ql ,q2, . . .  ,q,} 

• A score in the range (0, 1) representing the similari ty between iff and ( o u t p u t  

a l g o r i t h m :  
num_agree +-- 0 
num_known +- 0 
all_negative_agree +-- true 

f o r e a c h  i from 1 to n do  
if  Pi ¢ 0 and qi ¢ 0 t h e n  

num_known ~ num_known + 1 
if  p~ = qi t h e n  

num_agree +- num_agree + 1 
if  Pi = 1 t h e n  

all_negative_agree +-- false 
e n d  

e n d  
e n d  

e n d  
if  all_negative_agree t h e n  

return 0 
e n d  
else 

return num_agree -- num_known 
e n d  

Algori thm 2: Similari ty scoring algori thm 

cohesion (/, p) = 

Pr(plPl,P2, .... ,Pn), 
~0, 

if (l, p) in lexicon; 

if F ( p l , p 2 , . . .  ,Pn) > 0; 
otherwise 

set {P, pl ,p2,  . . . . . .  ,p~} to the the lem- 
mas tha t  can have all the POS in the set 
{ P l , P 2 ,  . • . , P n } .  

In the last example, 

where 

F (p, Pl , P 2  , . • - , P__.__n ) 
Pr(p]pl ,p2,  .... ' P " ) =  ~ i -  ,P,)  

which F ( p l , p 2 , . . .  ,p~) denotes the total  
number of lemmas in the lexicon for which 
p l , p 2 , . . .  ,p,~ are all legal POS tags of l, 
and the probabil i ty P r ( p l p l , p 2 , . . .  ,Pn) is 
just  a simple relative frequency of the lem- 
mas tha t  can have all the POS in the 

cohesion(  "Central" , "NN") = 0.5 

cohesion(  "calculate" , "NN") = 0 

Therefore "NN" is more likely to be asso- 
ciated to "Central" than "calculate", which 
implies "NN" will be less likely to be the 
valid POS to "calculate" than to "Central"• 

Under this intuition, we create an anti- 
lexicon by considering the cohesion of all 
possible combinations of lemmas and POS 
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tags. Entries with low cohesion will be con- 
sidered as anti-lexemes and inserted into the 
anti-lexicon. 

An anti-lexicon A is created by: 

A = ,,4 U (l, a) iff cohesion(l, a) < A 

where A is a threshold called anti-threshold, 
usually a very small real number between 0 
and 1. 

In our example, if we set anti-threshold 
to 0.4, "NN" will become an anti-tag for 
"calculate" but not for "Central". Since 
the lemmas in actual lexicons usually have 
many possible POS tags, their cohesion to 
any POS tag will in turn be smaller than 
the cohesion in our simple example. To cre- 
ate a more accurate anti-lexicon, we should 
set the anti-threshold to smaller value. 

4 L e x i c o n  m e r g i n g  a l g o r i t h m  

Given a POS mapping table B between the 
POS tagset 7:' used by the original lexicon 12 q 
and the POS tagset Q used by the additional 
lexicon £P, we merge the entries from the 
additional lexicon into the original lexicon 
by an algorithm as shown in algorithm 3. 

This algorithm does not exclude m-to-n 
POS mappings; that is, a lexeme in the ad- 
ditional lexicon can generate more than one 
lexeme and we can merge all of them into 
the original lexicon. 

5 E x p e r i m e n t  

5.1 Se tup  

We tested the above method in a set 
of experiments using four commonly-used 
machine-readable dictionaries. They are 
Brill's lexicon, the Moby lexicon, the Collins 
lexicon, the Oxford machine-readable dic- 
tionary, with characteristics as summarized 
in table 1. The lexicons use distinct POS 
tagsets of different tag granularities, as sum- 
marized in table 2. 

With these four training lexicons we can 
test twelve pairwise lexicon merging tasks, 
as shown in table 3. For each pairs of lex- 
icon combination, we intersect them by the 
strategy mentioned before and produced a 

lexicon POS tagset number of 
tagset lexemes 

Brill Penn TreeBank 105199 
Collins Collins tagset 100566 

250441 Moby 
Oxford 

Moby tagset 
Oxford tagset 84588 

Table 1: Summary of English monolingual 
lexicons 

new set of training lexicons in each task. 
Note that the trimmed down Brill lexi- 
con in the "Brill-to-Collins" task is not the 
same as the trimmed down Brill lexicon in 
"Brill-to-Moby". 

In order to evaluate the accuracy of our 
methods, we asked a linguist to manually 
create twelve "gold standard" sets of POS 
mapping rules, TO, one for each of the twelve 
pairwise lexicons on the semantics between 
the POS tag only. We then ran the exper- 
iments to automatically generate two sets 
of POS mapping tables, with one under the 
complete world assumption and another us- 
ing an anti-lexicon in each merging task. We 
evaluated precision and recall on POS map- 
ping rules as follows: 

precision on POS mapping rules - I$ '  I IEI 

where 

• g is the resulting tagset mapping table 
containing all mapping rules obtained 
from experiment; 

• £t is the subset of £ which contains all 
correct mapping rules in "R,. (£ E 7~) 

recall on POS mapping rules - [g '  [ Jnl 

Using an anti-threshold A = 0.00001, we cre- 
ated twelve anti-lexicons which can then be 
used in our algorithm. We obtained the POS 
mapping results as shown in table 4. 

In the baseline model, the precision is very 
low, mainly due to data sparseness caused 
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tagset granularity 

Penn TreeBank fine 
Collins tagset fine 
Moby tagset coarse 

Oxford tagset coarse 

size example tags on 
noun, proper noun, adjective, verb 

43 NN, NP, J J, VV 
32 n, n, adj, vb 
15 n, n, a, v 
20 K, G, M, N 

Table 2: Summary of original POS tagsets in lexicons 

task 

b m  

bc 
bo 
cm 
o m  

c o  

o c  

m o  

m e  

ob 
cb 
mb 

additional size after original size after 
lexicon lexicon lexicon lexicon 

intersection intersection 
Brill 48097 Moby 47486 
Brill 29861 Collins 35933 
Brill 48154 Oxford 46952 

Collins 96149 Moby 90255 
Oxford 50562 Moby 52508 
Collins 42146 Oxford 33056 
Oxford 33056 Collins 42146 
Moby 52508 

90255 Moby 
Oxford 
Collins 

50562 
96149 

Oxford 46952 Brill 48154 
Collins 35933 Brill 29861 
Moby 47486 Brill 48097 

Table 3: Size of trimmed lexicons after lexicon intersection 

task precision 
W/o anti-lexicon 

precision 
w/anti-lexicon 

recall 
w/o anti-lexicon 

recall 
w/anti-lexicon 

bm 0.1606 1.0000 0.4070 0.0349 
bc 0.1399 1.0000 0.4409 0.0215 
bo 0.1944 0.2727 0.6222 0.0667 
cm 0.1419 0.7143 0.3929 0.1786 
om 0.1811 1.0000 0.5897 0.0513 
co 0.1358 0.5714 0.4314 0.0784 
oc 0.1420 0.7500 0.5227 0.0682 
mo 0.1811 0.6667 0.6216 0.1081 
me 0.1290 1.0000 0.4762 0.1904 
ob 0.1979 0.3333 0.6333 0.0444 
cb 0.1434 0.2500 0.4118 0.0392 
mb 0.1651 0.3750 0.4932 0.0822 

average II 0.1594 0.6611 I 0.5036 0.0803 

Table 4: Results for POS mapping rule learning 

253 



lexico n_insertor ( £P,£ q ) 
i n p u t  : 1. Two sets of lexemes, each lexeme in the form of a pair of lemma and 

POS. 
z:p = 

C q : {<mk ,q l> , . . .  } 
2. A POS mapping table B from the POS tagset P to POS tagset Q 

B = { (p~,qu) . . . }  

output : A n  enlarged set of lexemes in £ q, which contains newly inserted lexemes 
converted from £P. 
c q ' =  . . ,  (mr,  
where (Pj,qs) E B, and (mr, qs) ~ ~q for all k , l ,p ,q , r , s  

a lgo r i t hm:  
foreach  (mi,pj) in £P do 

foreach  (pj, qsI in B do 
if  (mi, qs) not in £q t h e n  

12 q +-- ~q U (mi, q~) } 
end  

end  
end  

Algorithm 3: Lexicon merging algorithm 

by the fact that machine readable lexicons 
usually do not contain full lexeme coverage. 
This means our "complete lexicon assump- 
tion" which says that  we can interpret en- 
tries not being in the lexicon as "negative 
examples" is not correct. 

In the anti-lexicon model, the precision 
greatly improves, with some experiments 
even achieving 100% precision. Unfortu- 
nately, the recall suffers sharply. 

After automatically constructing the POS 
mapping tables from training, we proceeded 
to merge lexicons in each testing task us- 
ing the lexicon merging algorithm described 
above, and evaluated the accuracy of the 
merged lexicons as follow. 

In each merging task, we randomly se- 
lected 100 lexemes from the additional lexi- 
con. Given these 100 lexemes, a linguist first 
manually constructs a set of correctly con- 
verted lexemes, which will be used as the 
"gold standard" set of lexemes, T~ n. Similar 
to the evaluation criteria outlined for POS 

mappings, we define the precision and recall 
on lexicon merging as the following: 

IEL'I 
precision on lexicon m e r g i n g -  i $  L I 

where 

• E L is the set of lexemes generated by the 
lexicon insertor. 

• E L' is the subset of E L that  contains all 
lexemes in ~n .  

J EL'I 
recall on lexicon merg ing-  17~L I 

5.2 Results  
We obtain the results on lexicon merging as 
shown at table 5. 

The anti-lexicon model significantly im- 
proves the precision in both the generated 
POS mapping rules and merged lexicons. 
Most of the 12 lexicon merging tasks achieve 
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task 

bm 
bc 
bo 
c m  

o m  

CO 

OC 

precision 
w/o anti-lexicon 

0.2263 
0.1111 
0.1147 
0.2758 
0.1413 
0.1355 
0.1625 

precision 
w/anti-lexicon 

0.9841 

0.1029 

0.9429 
0.8800 
0.8276 
1.0000 
0.8667 
1.0000 

recall 
w/o anti-lexicon 

0.3410 
0.3789 

0.9615 

0.6356 
0.7333 
0.4514 
0.3592 
0.6193 

mo 0.1233 0.6000 0.4907 
mc 0.1813 0.9899 0.6946 
ob 0.0592 0.7692 0.5315 
cb 0.1114 0.9286 0.3546 
mb 

0.8959 average 0.1454 
0.3165 

I 0.4922 

recall 
w/anti-lexicon 

0.2857 
0.1737 
0.1864 
0.1778 
0.3194 
0.1262 
0.2081 
0.2222 
0.5868 
0.0699 
0.0922 
0.1582 
0.2172 

Table 5: Results for lexicon merging 

nearly more than 92% precision, which can- 
not be obtained by using even the gold stan- 
dard mapping rules, as shown in table 6. 

The recall degradation using anti-lexicon 
is lower in lexicon merging than in POS map- 
ping rule learning, owing to the fact that 
not all POS tags appear in lexicons with 
same frequency. For example, nouns and 
verbs occur far more frequently than prepo- 
sitions and adverbs. High recall in POS 
mapping rules will not necessarily yield more 
accurate converted lexemes, if all the map- 
ping rules obtained are only those rarely- 
occurring POS tags. Conversely, the suc- 
cessful generation of a single correct map- 
ping rule for a frequently-occuring POS tag 
greatly improves recall. The mapping rules 
generated by our anti-lexicon model confirm 
this assumption: recall for POS mapping 
rules is 8%, but for lexicon merging it im- 
proves to about 22%. 

Recall suffers sharply, but precision is 
more important than recall in lexicon merg- 
ing. This is because the cost of post-lexicon 
clean up on lexemes with incorrect POS tag 
in a lexicon after merging is very expensive. 

A set of high precision POS mapping rules 
guarantees a much cleaner resulting lexicon 
after merging. Thus during lexicon merg- 
ing, a conservative algorithm, which gener- 

ates fewer but more exact lexemes is prefer- 
able. 

task I precision recall 
bm 0.6953 0.8203 
bc 0.5081 0.8263 
bo 0.3478 0.8136 
cm 0.3697 0.9037 
om 0.4006 0.9236 
co 0.3103 0.9612 
oc 0.4804 0.9340 
mo 0.3160 0.9537 
mc 0.3996 0.9162 
ob 0.1590 0.8671 
cb 0.2272 0.9007 
mb 0.2157 0.8861 
average I 0.3664 0.8922 

Table 6: Lexicon merging results using 
gold standard POS mapping rules 

To show how anti-lexicons affect the pre- 
cision and recall on lexicon merging, we also 
ran experiments using different combina- 
tions of sim-thresholds and anti-thresholds. 
In most cases, the precision of lexicon merg- 
ing obtained from anti-lexicon are much 
higher than those without. The results are 
summarized in table 7 and table 8. The 
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T 

0.5 
0.6 
0.7 
0.8 
0.9 
0.99 

11 baseline II A = o.1 
0.1159 0.0803 
0.1178 = 0.1316 
0.1208 0.1166 
0.1454 0.0918 
0.1636 0.0980 
0.2450 ~ 0.2171 

0.001 
0.2294 
0.5392 
0.5747 
0.6444 
0.5475 
0.1488 

0.0001 
0.7068 
0.7981 
0.8711 
0.8945 
0.5454 
0.2449 

0.00001 
0.7189 
0.8094 
0.8832 
0.8959 
0.5457 
0.1408 

Table 7: Average precision on lexicon merging using different sire-thresholds 7 and anti- 
thresholds A 

Table 8: Average 
thresholds A 

T 

0.5 
0.6 
0.7 
0.8 
0.9 
0.99 

[[ baseline [[ A = 0.1 0.001 0.0001 0.00001 
0.8082 ' 0.5591 0.4152 0.4063 0.4181 
0.7512 I 0.4493 0.3475 0.3383 0.3501 
0.6318 0.6444 

0.1847 0.4922 
0.2745 
0.2092 

0.0918 
0.2152 

0.2864 
0.2172 

0.2404 0.1090 0.0884 0.0973 0.0973 
0.0458 0.0341 0.0135 0.0458 0.0366 

recall on lexicon merging using different sim-thresholds v and anti- 

best precision for lexicon merging is obtained 
from 7 = 0.8 and A = 0.00001 in a grid- 
search. 

5.3 D i s c u s s i o n  

As mentioned earlier, the mapping rule 
learning algorithm we used permits 
m- to -n  mappings so long as the map- 
ping rules created for every tag in a 
lexicon reach the sim-threshold, that  is, 
the confidence level specified by the lexi- 
cographer. An alternative approach that 
we are experimenting with is to allow 
only m-to-1 mappings, by simply choosing 
the mapping rule with highest similarity 
score. In theory, this would seem to limit 
the possible accuracy of the algorithm, 
but empirically we have found that this 
approach often yields higher precision and 
recall. Further investigation is needed. 

Different similarity scoring functions can 
also be used. If data sparseness is a serious 
problem, we can use a similarity score which 
counts only the lemmas which are tagged, 
but not the lemmas which are not tagged. 
One effect of ignoring unlikely tags in this 

way is that  the need for an anti-lexicon is 
eliminated. We are also currently investi- 
gating the mapping power of such variant 
methods. 

In general, we have observed different be- 
haviors depending on factors such as the 
granularity of the tagsets, the linguistic the- 
ories behind the tagsets, and the coverage of 
the lexicons. 

Finally, in addition to lexicon merging, 
POS mapping table is also useful in other 
applications. Wu and Wong apply them 
in their SITG channel model to give bet- 
ter performance in their translation applica- 
tion (Wu and Wong, 1998). 

There is a serious problem of low recall on 
our anti-lexicon model. This is because our 
model prunes out many possible POS map- 
ping rules which results in very conservative 
lexeme selection during the lexicon merg- 
ing process. Moreover, our model cannot 
discover which POS tags in original lexicon 
have no corresponding tag in the additional 
lexicon. 

Our model took POS mapping rules as 
a natural starting point since this repre- 

256 



sentation has been used in earlier related 
work. However, our experiments showing 
low precision on lexicon merging even using 
the human-generated gold standard map- 
ping rules indicates it might not be a good 
approach to use POS mapping rules at all 
to tackle the lexicon merging problems. Our 
next step will be to investigate models that 
are not constrained by the POS mapping 
rule representation. 

6 Conclus ion  
We present a new method to automatically 
merge lexicons that employ different incom- 
patible POS categories, which merges lex- 
emes from an additional lexicon into an orig- 
inal lexicon with 89% in average precision. 
We showed how precision in the final merged 
lexicon can be improved by introducing a 
model called anti-lexicon, which neatly sum- 
marizes all the essential information we need 
about the co-occurrence of tags and lemmas. 
Our model is intuitive, fast, easy to imple- 
ment, and does not require heavy computa- 
tional resources nor training corpus. 
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