
Automatically Merging Lexicons that have
Incompatible Part-of-Speech Categories

Daniel Ka-Leung C H A N and Dekai W U
HKUST

Human Language Technology Center
University of Science and Technology

Clear Water Bay, Hong Kong
{dklchan, dekai}@cs.ust.hk

Abstract

We present a new method to automatically
merge lexicons that employ different incom-
patible POS categories. Such incompatibil-
ities have hindered efforts to combine lexi-
cons to maximize coverage with reasonable
human effort. Given an "original lexicon",
our method is able to merge lexemes from
an "additional lexicon" into the original lex-
icon, converting lexemes from the additional
lexicon with about 89% precision. This level
of precision is achieved with the aid of a
device we introduce called an anti-lexicon,
which neatly summarizes all the essential in-
formation we need about the co-occurrence
of tags and lemmas. Our model is intuitive,
fast, easy to implement, and does not require
heavy computational resources nor training
corpus.

l e m m a I tag

apple INN
boy NN
calculate VB

Example entries in Brill lexicon

1 Motivation

We present a new, accurate method to auto-
matically merge lexicons that contain incom-
patible POS categories. In this paper, we
look specifically at the problem that differ-
ent lexicons employ their own part-of-speech
(POS) tagsets that are incompatible with
each other, owing to their different linguistic
backgrounds, application domains, and/or
lexical acquisition methods.

Consider the way that lemmas are typ-
ically marked with POS information in
machine-readable lexicons. For example,
here are a few entries from the lexicon in
Brill's tagger (Brill, 1994) and the Moby lex-
icon (Ward, 1996), showing simple pairs of
lemmas and POS tags:

l e m m a tag
boy N
hold V

Example entries in Moby lexicon

Perhaps the most natural first approach to
merging the lexicons is to construct a set of
POS mapping rules.

For example, we might wish to acquire the
following mapping rules:

("NN", "N"), ("VB", "V") . . .

Here, the first rule says that the "NN"
POS in the Brill lexicon should be mapped
to the "N" POS in the Moby lexicon. Of
course, not all POS tags can be accurately
translated this way, but the strategy is a rea-
sonable first approximation.

In order to incorporate entries from other
lexicons into the current knowledge base, the
mapping rules between different POS tagsets
are usually formulated by hand in ad hoc
ways. In view of this heterogeneity and hu-
man subjectiveness, some people had begun
to investigate and develop methods of learn-
ing the mapping rules between different POS
categories in different lexicons. Teufel de-
scribed a tool to support manual mapping
between different tagsets using a rule-based
approach (Teufel, 1995). This approach re-
quires heavy human intervention, and there-
fore does not scale up easily. Another ap-

247

proach was proposed by Hughes et al., to au-
tomatically extract mapping rules from cor-
pora tagged with more than one annotation
scheme (Hughes et al., 1995). However, the
dependence on multiply-annotated corpora
requires heavy annotation and/or computa-
tion resources, whereas we are investigating
methods with only the information found in
existing lexicons.

In this paper, we will begin by presenting
a basic method that generates a set of map-
ping rules. Experimental results on a vari-
ety of lexicons will be presented. We will
then introduce a mechanism called an "anti-
lexicon" that significantly improves precision
on the learned rules and merged lexicons,
though at a cost to recall.

2 B a s i c s

Our general strategy is to inspect the co-
occurrence of tags on those lemmas that are
found in both lexicons, and to use that infor-
mation as a basis for generalizing, thus yield-
ing POS mapping rules. To do this requires
several steps, as described in the following
subsections. As a preliminary step, we will
introduce a way to represent POS tags using
feature vectors. We then use these vectors
to generate mapping rules. To obtain better
accuracy, we can restrict the training exam-
ples to entries that occur in both lexicons.
The generation algorithm also requires us to
define a similarity metric between POS fea-
ture vectors.

2.1 P a r t - o f - s p e e c h f ea tu re vec tor

A necessary preliminary step of our method
is to introduce POS feature vectors. A fea-
ture vector is a useful representation of a
POS tag, because it neatly summarizes all
the information we need about which lem-
mas can and cannot have that POS tag, il-
lustrated as follows.
Given:

• a lemma set .h4 ={ "apple", "boy",
"calculate"}

• a set of POS tags T' ={"NN","VB"}

A tiny example lexicon consisting of lemma
and POS tag pairs might be as follows, where
each cell with • indicates the existence of
that lemma-POS pair in the lexicon:

II apple boy calculate
NN • •
VB •

which, when represented as POS feature vec-
tors, will be:

p l : < 1, 1, 0, >
p2: < 0, 0 1, >

where p1 here is the "NN" POS represented
by the set of words that can be nouns in
a given lexicon, in this example { "apple",
"boy" } and p2 similarly is the "VB" POS.

The feature value for feature f in g can be
either:

• 0 to indicate that we are not sure
whether p is a tag of f ;

• 1 to indicate that p is a tag for f;

• 2 to indicate that p can never be a tag
for lemma f .

Obtaining information about the last of
these (the value 2) is a non-trivial problem,
which we will return to later in this paper.
With ordinary lexicons, we only directly ob-
tain feature vectors containing 0 and 1 val-
ues.

2.2 Mapping rule learning algorithm
Given a feature vector for every POS tag in
both lexicons--say, Brill's lexicon and the
Moby lexicon--we use the following algo-
rithm to learn mapping rules from POS tags
in Brill's tagset to POS tags in the Moby
tagset. The idea is to assume that a mapping
rule between two POS tags holds if the sim-
ilarity between their feature vectors exceeds
a preset threshold, called a sim-threshold T.
The similarity metric (SimScore) will be de-
scribed later, but let's first look at the learn-
ing algorithm, as described in algorithm 1.

This algorithm does not exclude m-to-n
mappings; that is, any Brill POS tag could
in principle get mapped to any number of
Moby POS tags.

2 4 8

mapper ('P ,Q)

i n p u t • Two sets of feature vectors of POS tags
p =

e = , (}

o u t p u t • A mapping table represented as a set of pairs of feature vectors
B= {<F,¢>,.. .}

a lgor i thm:

foreach ~ in P do
foreach ~ e Q do

if SimScore(~,~) > sire_threshold ~- t h e n

B Bu >};
end

end
end.

Algorithm 1: Mapping rule learning algorithm

2.3 I m p r o v i n g t h e t r a i n i n g set by
i n t e r s e c t i n g t h e lexicons

We can obtain better results by considering
only those lemmas that occur in both lexi-
cons. This has the effect of eliminating un-
reliable features in the POS feature vectors,
since lemmas that do not occur in both lex-
icons cannot be relied upon when judging
similarity. This results in pruned versions of
both lexicons.

For example, pretend that the following
are the only entries in the Brill and Moby
lexicons:

lemma tag
apple NN
boy NN
calculate VB

Brill lexicon

l e m m a tag
boy N
hold V
Moby lexicon

In this case, intersecting the lexicons
would result in the following pruned lexi-
cons:

lemma I tag
boy INN
Brill' lexicon

lemma I tag
boy [N
Moby' lexicon

After pruning, the only remaining lemma
is "boy", and the new POS feature vectors
for "NN" and "N" have just one dimension
corresponding to "boy":

NN: < 1 >
N: < 1 >

Of course, in reality the lexicons are much
bigger and the effect is not so drastic.

In all experiments in this paper, we used
lexicon intersection to prune the lexicons.

2.4 S i m i l a r i t y m e t r i c

The similarity function we use calculates a
similarity score between two feature vectors
by counting the number of features with the
same feature value 1 or 2, indicating that
a lemma either can or cannot belong to
that POS category. (Recall that the value

249

0 means "don't know", so we simply ignore
any features with value 0.) The score is nor-
malized by the length of the feature vector.
We also require that there be at least one
positive match in the sense that some lemma
is shared by both of the POS categories; oth-
erwise, if there are only negative matches
(i.e., lemmas that cannot belong to either
POS category), we consider the evidence t o
be too weak and the similarity score is then
defined to be zero. The whole algorithm is
described in algorithm 2.

2.5 T h e " c o m p l e t e lex icon"
a s s u m p t i o n

As mentioned earlier, ordinary lexicons do
not explicitly contain information about
which parts of speech a lemma can not
be used as. We have two choices. In
the examples up till now, we used a value
of 0 for any lemma-tag pair not explicitly
listed in the lexicon, signifying that we don't
know whether the POS category can include
that lemma. However, having many "don't
know" values significantly weakens our sim-
ilarity scoring method. Alternatively, we
can choose to assume that our lexicons are
complete--a kind of closed world assump-
tion. In this case, we assume that any
lemma-tag pair not found in the lexicon is
not merely an omission, but really can never
occur. This means we use the value 2 instead
of the value 0.

The "complete lexicon" assumption only
makes sense when we are dealing with large,
broad coverage lexicons (as is the case in this
paper). It is not reasonable when dealing
with small or specialized sublexicons.

3 Ant i - lex icon
Based on the above intuition on utilizing
negative information, we propose an im-
proved model using something we call an
anti-lexicon, that indicates the POS tags
that a lemma cannot have, which we will call
its anti-tags. A POS tag p is called an anti-
tag a of a lemma m if p can never be a tag
of m.

The anti-lexicon consists of a set of pieces
of this negative information, each called an

anti-lexeme ~l:

dej

where -~p is the anti-tag of lemma m, and p
is a POS used in the lexicon.

Some examples of anti-lexemes are:

(happy,-~IN)
(run, -~JJ }
(in,--~VB)

where "IN","JJ" and "VB" are the preposi-
tion, adjective and verb tags in Brill lexicon
respectively.

Similar to a traditional lexicon which con-
tains lexemes in the form of pairs of lemmas
and their corresponding possible POS tag(s),
an anti-lexicon contains anti-lexemes which
are simple pairs that associate a lemma with
an anti-tag.

The anti-lexicon can be automatically
generated quickly and easily. To illustrate
the idea, consider an example lexicon where
we add the lemma "Central" and the POS
"NP" to the example lexicon we have been
working with.

II apple boy calculate
NN • •
VB
NP

Central

Suppose we want to know whether "Cen-
tral" can be a "NN", and whether "calcu-
late" can be a "NN". The fact that "apple"
can be tagged by both "NN" and "NP", but
not "VB", gives "Central" (a lemma that
is already known to be able to serve as an
"NP") a higher likelihood of possibly serv-
ing as an "NN" than "calculate" (a lemma
that is not known to be able to serve as an
"NP").

Based on this assumption that lexemes
with similar semantics will have similar POS
tags, we conceptualize this kind of pattern
in terms of "cohesion" between lemmas and
POS tags in a lexicon. The "cohesion" of a
lemma I and a POS tag p measures the like-
lihood of a POS tag p being a possible tag
of a lemma l, and is defined as:

250

SimScore(/Y, q~

i n p u t : Two POS feature vectors of integers with values {0, 1, 2}
(representing P O S tags that may come f rom different tagsets)
P= {Pl,P2,..-,Pn}
q '= {ql ,q2, . . . ,q,}

• A score in the range (0, 1) representing the similari ty between iff and (o u t p u t

a l g o r i t h m :
num_agree +-- 0
num_known +- 0
all_negative_agree +-- true

f o r e a c h i from 1 to n do
if Pi ¢ 0 and qi ¢ 0 t h e n

num_known ~ num_known + 1
if p~ = qi t h e n

num_agree +- num_agree + 1
if Pi = 1 t h e n

all_negative_agree +-- false
e n d

e n d
e n d

e n d
if all_negative_agree t h e n

return 0
e n d
else

return num_agree -- num_known
e n d

Algori thm 2: Similari ty scoring algori thm

cohesion (/, p) =

Pr(plPl,P2, ,Pn),
~0,

if (l, p) in lexicon;

if F (p l , p 2 , . . . ,Pn) > 0;
otherwise

set {P, pl ,p2, ,p~} to the the lem-
mas tha t can have all the POS in the set
{ P l , P 2 , . • . , P n } .

In the last example,

where

F (p, Pl , P 2 , . • - , P__.__n)
Pr(p]pl ,p2, ' P ") = ~ i - ,P,)

which F (p l , p 2 , . . . ,p~) denotes the total
number of lemmas in the lexicon for which
p l , p 2 , . . . ,p,~ are all legal POS tags of l,
and the probabil i ty P r (p l p l , p 2 , . . . ,Pn) is
just a simple relative frequency of the lem-
mas tha t can have all the POS in the

cohesion("Central" , "NN") = 0.5

cohesion("calculate" , "NN") = 0

Therefore "NN" is more likely to be asso-
ciated to "Central" than "calculate", which
implies "NN" will be less likely to be the
valid POS to "calculate" than to "Central"•

Under this intuition, we create an anti-
lexicon by considering the cohesion of all
possible combinations of lemmas and POS

251

tags. Entries with low cohesion will be con-
sidered as anti-lexemes and inserted into the
anti-lexicon.

An anti-lexicon A is created by:

A = ,,4 U (l, a) iff cohesion(l, a) < A

where A is a threshold called anti-threshold,
usually a very small real number between 0
and 1.

In our example, if we set anti-threshold
to 0.4, "NN" will become an anti-tag for
"calculate" but not for "Central". Since
the lemmas in actual lexicons usually have
many possible POS tags, their cohesion to
any POS tag will in turn be smaller than
the cohesion in our simple example. To cre-
ate a more accurate anti-lexicon, we should
set the anti-threshold to smaller value.

4 L e x i c o n m e r g i n g a l g o r i t h m

Given a POS mapping table B between the
POS tagset 7:' used by the original lexicon 12 q
and the POS tagset Q used by the additional
lexicon £P, we merge the entries from the
additional lexicon into the original lexicon
by an algorithm as shown in algorithm 3.

This algorithm does not exclude m-to-n
POS mappings; that is, a lexeme in the ad-
ditional lexicon can generate more than one
lexeme and we can merge all of them into
the original lexicon.

5 E x p e r i m e n t

5.1 Se tup

We tested the above method in a set
of experiments using four commonly-used
machine-readable dictionaries. They are
Brill's lexicon, the Moby lexicon, the Collins
lexicon, the Oxford machine-readable dic-
tionary, with characteristics as summarized
in table 1. The lexicons use distinct POS
tagsets of different tag granularities, as sum-
marized in table 2.

With these four training lexicons we can
test twelve pairwise lexicon merging tasks,
as shown in table 3. For each pairs of lex-
icon combination, we intersect them by the
strategy mentioned before and produced a

lexicon POS tagset number of
tagset lexemes

Brill Penn TreeBank 105199
Collins Collins tagset 100566

250441 Moby
Oxford

Moby tagset
Oxford tagset 84588

Table 1: Summary of English monolingual
lexicons

new set of training lexicons in each task.
Note that the trimmed down Brill lexi-
con in the "Brill-to-Collins" task is not the
same as the trimmed down Brill lexicon in
"Brill-to-Moby".

In order to evaluate the accuracy of our
methods, we asked a linguist to manually
create twelve "gold standard" sets of POS
mapping rules, TO, one for each of the twelve
pairwise lexicons on the semantics between
the POS tag only. We then ran the exper-
iments to automatically generate two sets
of POS mapping tables, with one under the
complete world assumption and another us-
ing an anti-lexicon in each merging task. We
evaluated precision and recall on POS map-
ping rules as follows:

precision on POS mapping rules - I$ ' I IEI

where

• g is the resulting tagset mapping table
containing all mapping rules obtained
from experiment;

• £t is the subset of £ which contains all
correct mapping rules in "R,. (£ E 7~)

recall on POS mapping rules - [g ' [Jnl

Using an anti-threshold A = 0.00001, we cre-
ated twelve anti-lexicons which can then be
used in our algorithm. We obtained the POS
mapping results as shown in table 4.

In the baseline model, the precision is very
low, mainly due to data sparseness caused

2 5 2

tagset granularity

Penn TreeBank fine
Collins tagset fine
Moby tagset coarse

Oxford tagset coarse

size example tags on
noun, proper noun, adjective, verb

43 NN, NP, J J, VV
32 n, n, adj, vb
15 n, n, a, v
20 K, G, M, N

Table 2: Summary of original POS tagsets in lexicons

task

b m

bc
bo
cm
o m

c o

o c

m o

m e

ob
cb
mb

additional size after original size after
lexicon lexicon lexicon lexicon

intersection intersection
Brill 48097 Moby 47486
Brill 29861 Collins 35933
Brill 48154 Oxford 46952

Collins 96149 Moby 90255
Oxford 50562 Moby 52508
Collins 42146 Oxford 33056
Oxford 33056 Collins 42146
Moby 52508

90255 Moby
Oxford
Collins

50562
96149

Oxford 46952 Brill 48154
Collins 35933 Brill 29861
Moby 47486 Brill 48097

Table 3: Size of trimmed lexicons after lexicon intersection

task precision
W/o anti-lexicon

precision
w/anti-lexicon

recall
w/o anti-lexicon

recall
w/anti-lexicon

bm 0.1606 1.0000 0.4070 0.0349
bc 0.1399 1.0000 0.4409 0.0215
bo 0.1944 0.2727 0.6222 0.0667
cm 0.1419 0.7143 0.3929 0.1786
om 0.1811 1.0000 0.5897 0.0513
co 0.1358 0.5714 0.4314 0.0784
oc 0.1420 0.7500 0.5227 0.0682
mo 0.1811 0.6667 0.6216 0.1081
me 0.1290 1.0000 0.4762 0.1904
ob 0.1979 0.3333 0.6333 0.0444
cb 0.1434 0.2500 0.4118 0.0392
mb 0.1651 0.3750 0.4932 0.0822

average II 0.1594 0.6611 I 0.5036 0.0803

Table 4: Results for POS mapping rule learning

253

lexico n_insertor (£P,£ q)
i n p u t : 1. Two sets of lexemes, each lexeme in the form of a pair of lemma and

POS.
z:p =

C q : {<mk ,q l> , . . . }
2. A POS mapping table B from the POS tagset P to POS tagset Q

B = { (p~,qu) . . . }

output : A n enlarged set of lexemes in £ q, which contains newly inserted lexemes
converted from £P.
c q ' = . . , (mr,
where (Pj,qs) E B, and (mr, qs) ~ ~q for all k , l ,p ,q , r , s

a lgo r i t hm:
foreach (mi,pj) in £P do

foreach (pj, qsI in B do
if (mi, qs) not in £q t h e n

12 q +-- ~q U (mi, q~) }
end

end
end

Algorithm 3: Lexicon merging algorithm

by the fact that machine readable lexicons
usually do not contain full lexeme coverage.
This means our "complete lexicon assump-
tion" which says that we can interpret en-
tries not being in the lexicon as "negative
examples" is not correct.

In the anti-lexicon model, the precision
greatly improves, with some experiments
even achieving 100% precision. Unfortu-
nately, the recall suffers sharply.

After automatically constructing the POS
mapping tables from training, we proceeded
to merge lexicons in each testing task us-
ing the lexicon merging algorithm described
above, and evaluated the accuracy of the
merged lexicons as follow.

In each merging task, we randomly se-
lected 100 lexemes from the additional lexi-
con. Given these 100 lexemes, a linguist first
manually constructs a set of correctly con-
verted lexemes, which will be used as the
"gold standard" set of lexemes, T~ n. Similar
to the evaluation criteria outlined for POS

mappings, we define the precision and recall
on lexicon merging as the following:

IEL'I
precision on lexicon m e r g i n g - i $ L I

where

• E L is the set of lexemes generated by the
lexicon insertor.

• E L' is the subset of E L that contains all
lexemes in ~n .

J EL'I
recall on lexicon merg ing- 17~L I

5.2 Results
We obtain the results on lexicon merging as
shown at table 5.

The anti-lexicon model significantly im-
proves the precision in both the generated
POS mapping rules and merged lexicons.
Most of the 12 lexicon merging tasks achieve

254

task

bm
bc
bo
c m

o m

CO

OC

precision
w/o anti-lexicon

0.2263
0.1111
0.1147
0.2758
0.1413
0.1355
0.1625

precision
w/anti-lexicon

0.9841

0.1029

0.9429
0.8800
0.8276
1.0000
0.8667
1.0000

recall
w/o anti-lexicon

0.3410
0.3789

0.9615

0.6356
0.7333
0.4514
0.3592
0.6193

mo 0.1233 0.6000 0.4907
mc 0.1813 0.9899 0.6946
ob 0.0592 0.7692 0.5315
cb 0.1114 0.9286 0.3546
mb

0.8959 average 0.1454
0.3165

I 0.4922

recall
w/anti-lexicon

0.2857
0.1737
0.1864
0.1778
0.3194
0.1262
0.2081
0.2222
0.5868
0.0699
0.0922
0.1582
0.2172

Table 5: Results for lexicon merging

nearly more than 92% precision, which can-
not be obtained by using even the gold stan-
dard mapping rules, as shown in table 6.

The recall degradation using anti-lexicon
is lower in lexicon merging than in POS map-
ping rule learning, owing to the fact that
not all POS tags appear in lexicons with
same frequency. For example, nouns and
verbs occur far more frequently than prepo-
sitions and adverbs. High recall in POS
mapping rules will not necessarily yield more
accurate converted lexemes, if all the map-
ping rules obtained are only those rarely-
occurring POS tags. Conversely, the suc-
cessful generation of a single correct map-
ping rule for a frequently-occuring POS tag
greatly improves recall. The mapping rules
generated by our anti-lexicon model confirm
this assumption: recall for POS mapping
rules is 8%, but for lexicon merging it im-
proves to about 22%.

Recall suffers sharply, but precision is
more important than recall in lexicon merg-
ing. This is because the cost of post-lexicon
clean up on lexemes with incorrect POS tag
in a lexicon after merging is very expensive.

A set of high precision POS mapping rules
guarantees a much cleaner resulting lexicon
after merging. Thus during lexicon merg-
ing, a conservative algorithm, which gener-

ates fewer but more exact lexemes is prefer-
able.

task I precision recall
bm 0.6953 0.8203
bc 0.5081 0.8263
bo 0.3478 0.8136
cm 0.3697 0.9037
om 0.4006 0.9236
co 0.3103 0.9612
oc 0.4804 0.9340
mo 0.3160 0.9537
mc 0.3996 0.9162
ob 0.1590 0.8671
cb 0.2272 0.9007
mb 0.2157 0.8861
average I 0.3664 0.8922

Table 6: Lexicon merging results using
gold standard POS mapping rules

To show how anti-lexicons affect the pre-
cision and recall on lexicon merging, we also
ran experiments using different combina-
tions of sim-thresholds and anti-thresholds.
In most cases, the precision of lexicon merg-
ing obtained from anti-lexicon are much
higher than those without. The results are
summarized in table 7 and table 8. The

255

T

0.5
0.6
0.7
0.8
0.9
0.99

11 baseline II A = o.1
0.1159 0.0803
0.1178 = 0.1316
0.1208 0.1166
0.1454 0.0918
0.1636 0.0980
0.2450 ~ 0.2171

0.001
0.2294
0.5392
0.5747
0.6444
0.5475
0.1488

0.0001
0.7068
0.7981
0.8711
0.8945
0.5454
0.2449

0.00001
0.7189
0.8094
0.8832
0.8959
0.5457
0.1408

Table 7: Average precision on lexicon merging using different sire-thresholds 7 and anti-
thresholds A

Table 8: Average
thresholds A

T

0.5
0.6
0.7
0.8
0.9
0.99

[[baseline [[A = 0.1 0.001 0.0001 0.00001
0.8082 ' 0.5591 0.4152 0.4063 0.4181
0.7512 I 0.4493 0.3475 0.3383 0.3501
0.6318 0.6444

0.1847 0.4922
0.2745
0.2092

0.0918
0.2152

0.2864
0.2172

0.2404 0.1090 0.0884 0.0973 0.0973
0.0458 0.0341 0.0135 0.0458 0.0366

recall on lexicon merging using different sim-thresholds v and anti-

best precision for lexicon merging is obtained
from 7 = 0.8 and A = 0.00001 in a grid-
search.

5.3 D i s c u s s i o n

As mentioned earlier, the mapping rule
learning algorithm we used permits
m- to -n mappings so long as the map-
ping rules created for every tag in a
lexicon reach the sim-threshold, that is,
the confidence level specified by the lexi-
cographer. An alternative approach that
we are experimenting with is to allow
only m-to-1 mappings, by simply choosing
the mapping rule with highest similarity
score. In theory, this would seem to limit
the possible accuracy of the algorithm,
but empirically we have found that this
approach often yields higher precision and
recall. Further investigation is needed.

Different similarity scoring functions can
also be used. If data sparseness is a serious
problem, we can use a similarity score which
counts only the lemmas which are tagged,
but not the lemmas which are not tagged.
One effect of ignoring unlikely tags in this

way is that the need for an anti-lexicon is
eliminated. We are also currently investi-
gating the mapping power of such variant
methods.

In general, we have observed different be-
haviors depending on factors such as the
granularity of the tagsets, the linguistic the-
ories behind the tagsets, and the coverage of
the lexicons.

Finally, in addition to lexicon merging,
POS mapping table is also useful in other
applications. Wu and Wong apply them
in their SITG channel model to give bet-
ter performance in their translation applica-
tion (Wu and Wong, 1998).

There is a serious problem of low recall on
our anti-lexicon model. This is because our
model prunes out many possible POS map-
ping rules which results in very conservative
lexeme selection during the lexicon merg-
ing process. Moreover, our model cannot
discover which POS tags in original lexicon
have no corresponding tag in the additional
lexicon.

Our model took POS mapping rules as
a natural starting point since this repre-

256

sentation has been used in earlier related
work. However, our experiments showing
low precision on lexicon merging even using
the human-generated gold standard map-
ping rules indicates it might not be a good
approach to use POS mapping rules at all
to tackle the lexicon merging problems. Our
next step will be to investigate models that
are not constrained by the POS mapping
rule representation.

6 Conclus ion
We present a new method to automatically
merge lexicons that employ different incom-
patible POS categories, which merges lex-
emes from an additional lexicon into an orig-
inal lexicon with 89% in average precision.
We showed how precision in the final merged
lexicon can be improved by introducing a
model called anti-lexicon, which neatly sum-
marizes all the essential information we need
about the co-occurrence of tags and lemmas.
Our model is intuitive, fast, easy to imple-
ment, and does not require heavy computa-
tional resources nor training corpus.

7 A c k n o w l e d g m e n t s
Many thanks to Josephine Kwan and Harriet
Lee for their help on hand-crafting the gold
standard POS mapping rules and lexeme
sets in the evaluation phrase. We also thank
the SILC members, Aboy Wong, Hong-sing
Wong, Vincent Chow, James Pang for their
rigorous constructive criticisms on our model
and experiments.

References
Eric Brill. 1994 . Some Advances in

Transformation-Based Part of Speech
Tagging. In Twelfth National Conference
on Artificial Intelligence (AAAI-9~).

Edward Fox, R. Wohlwend, P. Sheldon,
Q. Chen, , and R. France. 1986. Coder
Lexicon: The Collins English Dictionary
and its Adverb Definitions. Technical Re-
port TR-86-23, Department of Computer
and Information Science, Virginia Tech,
Oct.

A. S. Hornby. 1995. Oxford Machine Read-
able Dictionary http://info.ox.ac.uk/.

archive/ota.html.
John Hughes, Clive Souter, and E. Atwell.

1995. Automatic Extraction of Tagset
Mappings from Parallel-Annotated Cor-
pora. Computation and Language.

Beatrice Santorini. 1990. Part-of-speech
Tagging Guidelines for the Penn Treebank
Project. Technical Report MS-CIS-90-47,
Department of Computer and Information
Science, University of Pennsylvania.

Simone Teufel. 1995. A Support Tool for
Tagset Mapping. In EACL-Sigdat 95.

Grady Ward. 1 9 9 6 . Moby Lexicon.
http://www.dcs.shef.ac.uk/research/ilash
/Moby/.

Dekai Wu and H. S. Wong. 1998. Ma-
chine Translation with a Stochastic Gram-
matical Channel. In Coling-ACL98, pages
1408-1415.

257

