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A b s t r a c t  

We present a parsing system built from a hand- 
written lexicon ~ and grammar, and trained on 
a selection of the Brown Corpus. On the sen- 
tences it can parse, the parser performs as well 
as purely corpus-based parsers. Its advantage 
lies in the fact that  its syntactic analyses read- 
ily support  semantic interpretation. Moreover, 
the system's hand-writ ten foundation allows for 
a more fully lexicalized probabilistic model, i.e. 
one sensitive to co-occurrence of lexical heads 
of phrase constituents. 

1 I n t r o d u c t i o n  

Statistical approaches to parsing have received 
a great deal of attention over recent years. 
The availability of large tagged and syntac- 
tically bracketed corpora make the program- 
matic extraction of lexica and grammars fea- 
sible. Researchers have tackled parsing by sub- 
sti tuting these  automatically derived resources 
for hand-coded ones. While these approaches 
have had som e success to date (Collins, 1997; 
Charniak, 1997a), their usability as parsers in 
systems for natural  language understanding is 
suspect. 1 The 'reconstruction of Treebank-style 
bracketings does not serve as an adequate basis 
for semantic interpretation. The phrase struc- 
ture rules a re  too numerous, and the analy- 
ses too coarse (especially at the lower levels) 
to allow association of deterministic semantic 
rules with ph~:ase structure rules. Chaxniak 
himself (1997b) notes that  most of the parses 
constructed by a "wide-coverage" grammar axe 
"pretty senseless". 

1Collins, Ch~niak,  etc. make no claims about their 
programs being Well suited as parsers for language un- 
derstanding applications. Certainly, this type of parsing 
has had success t'o-date in applications such as Informa- 
tion Retrieval. 

As an example, consider the fiat NP structures 
that  are in the Penn Treebank (Marcus et al., 
1993). Nouns, determiners, and adjectives are 
all sisters of each other in the syntactic anno- 
tation, e.g. (NP (DT t h e )  (JJ  mechan ica l )  
(NN engineering) (NN industry)). A parser 
which constructs structures such as this fails to 
solve an ambiguity problem that has generally 
been considered syntactic: Are we talking about 
the industry of mechanical engineering, or is 
the entire engineering industry perceived as me- 
chanical? If our goal is language understanding, 
including semantic interpretation, the Treebank 
bracketings must be considered underspecified. 

We describe here a system which combines 
hand-coded linguistic resources with corpus- 
derived probabilistic information to enable 
(fairly) wide-coverage syntactic parsing. Most 
importantly, the use of these linguistic resources 
allows for a better-informed probabilistic model. 

2 S e t u p  

Our lexicon is composed from two resources. 
COMLEX (Grishman et al., 1994) provides 
the syntactic and morphological information for 
39,000 lemmas. WordNet (Fellbaum, 1998) pro- 
vides the semantic information. In addition, we 
add to our lexicon approximately 47,000 "multi- 
word" nouns found in WordNet. 

SAPIR, the parser we are using, employs a 
feature-based general grammar of English that  
has been in development at The Boeing Com- 
pany over the past fifteen years (Harrison and 
Maxwell, 1986). The grammar consists of ap- 
proximately 500 rules. By mapping COM- 
LEX's lexical entries into a format understand,  
able by SAPIR, we have a general purpose, well- 
founded, English language parser. 

With  such a parser, we can use Penn's Tree- 
bank the way it was probably intended: as a set 
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of bracketing constraints for the syntactic anal- 
ysis of a sentence. The Linguistic Data Con- 
sortium provides a preliminary version (1.075) 
of the Treebank's bracketing of the Brown Cor- 
pus (Ku~era and Francis, 1967). Fortunately, 
SAPIR provides an interface whereby a sentence 
and a partially specified parse tree can be fed to 
the parser, so that only the syntactic analyses 
that conform with the provided bracketing will 
be pursued. 

So it is with this mechanism that we cre- 
ate our corpus. We start with the brack- 
eted (but not part-of-speech-tagged) version 
of the Treebank, and process the bracketings 
in several ways, most notably removing quo- 
tation marks and "assuaging" gaps. The lat- 
ter consists primarily of identifying the Tree- 
bank's sentential constructs which are con- 
sidered verb phrases by SAPIR, and making 
that transformation. For example, a Tree- 
bank tree like (PP in  (S (NP *) (VP going 
(NP home) ) ) ) would be mapped to (PP in  
(VP going (NP home) ) ). Since this bracketing 
is supplied to SAPIR as a constraint, the parser 
is free to construct the gerundive NP containing 
solely the VP. In fact, the bracketing correspond- 
ing to the parse found by SAPIR is: 

(PP (P IN) 
(NP 

(VP (V GOZNG) 
(NP (N" (N HOME)))))) 

(Note that postfix " indicates a one-bar level 
phrase, as per X-theory (Jackendoff, 1977).) 
Approximately 30% of the Treebank bracket- 
ings are parseable, after this assuagement, by 
our parser. These 30% comprise our corpus. 
Of course, each (parseable) bracketing does 
not always yield just one parse. SAPIR has 
some hand-coded costs on syntactic rules which 
have served as its preference mechanism to-date. 
When SAPIR finds more than one parse for a 
given bracketing, we simply choose its most pre- 
ferred one to use in our corpus. While we cer- 
tainly do not feel that this is the best way to 
create our corpus, we would like to note that 
over 25% of the parseable bracketings yield a 
unique parse, and over 50% have just one or 
two possible parses. We should also note that 
the parseable bracketings are, of course, shorter 
(on average) than the unparseable ones. The av- 

erage length of all of the sentences is 17.3 words, 
while the average for our corpus is 11.2. 

3 L a n g u a g e  M o d e l  

We noted above that we would like a more com- 
plete lexicalization than what has been used by 
recent models in statistical parsing. To this end, 
we propose a generative model which is a direct 
extension of a Probabilistic Context Free Gram- 
mar (PCFG). In our model, as in a PCFG, the 
sentence is generated via top-down expansion 
of its parse tree, beginning with the root node. 
The crucial difference, however, is that as we 
expand from a nonterminal to its children, we 
simultaneously generate both the syntactic cat- 
egory and the head word of each child. This ex- 
pansion is predicated on the category and head 
word of the mother. 

We will also make the traditional assumption 
that all sentences are generated independently 
of each other. Then, under this assumption and 
the assumed model, we can write the probability 
of a particular parse tree T as the product of all 
its expansions, or 

P(T} = H P{Y,h, rulename IX,w} (I) 
expansion ET 

where X and w are the syntactic category and 
head word of the mother node, and Yi and h.t 
are the syntactic category and head word of the 
ith daughter, rulename is the identifier for the 
rule that licenses the expansion. (Of course, all 
of these terms should be indexed appropriately 
for the expansion under consideration, but we 
leave that off for clarity.) Note that rulename 
usually determines X, and rulename and X to- 
gether always determine Y. Also note that each 
tree is assumed to be rooted at a dummy UTT 
node (with a dummy WORD head word)~ which 
serves as the parent for the "true root" of the 
tree. 

We can expand (1) via the chain rule: 

P(T) = H P(rulename IX,w) 
expansion 6 T 

× P(hl  X,w, rulename)(2) 

Note we have dropped Y from the equations, 
since as noted above, that sequence is deter- 
mined by rulename and X. This is an appealing 
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rewriting, since the first term of (2), which we 
will term the syntactic expansion probability, 
corresponds neatly to the theory of Lexical Pref- 
erence for those rules whose head constituent is 
a lexical category. Consider the following sen- 
tences, from Ford et al. (1982) 

(1) a. Mary wanted the dress on that  rack 

b. Mary PoSitioned the dress on that  rack 

LP predicts that  the preferred interpretation for 
the first sentence is the (NP t h e  d r e s s  on t h a t  
rack} structure,  while for the second, a reader 
would prefer the! flat V-NP-PP structure. This 
follows from the~ theory of Lexical Preference, 
which stipulates that  the head word of a phrase 
selects for its "most preferred" syntactic expan- 
sion. This is exactly what is modeled by the first 
term of Equation (2). "Lexical preference" has 
been around a long time, and the (correspond- 
ing) syntactic expansion probability we use has 
been used by many researchers in parsing, in- 
cluding many of those mentioned in this article. 

The difficulty iwith this model, and perhaps 
the reason it has not been pursued to-date, is 
the intense d a t a  sparsity problem encountered 
in estimating the second term of equation (2), 
the lexical introduction probability. Much work 
in statistical parsing limits all probabilities to 
"binary" lexical statistics, where for any proba- 
bility of the form P(X1, . . .  ,Xrt I Y1, . . .  ,Yr~), at 
most one of the X random variables and one of 
the Y random variables is lexical. By allowing 
"vt-ary" lexical statistics, we allow an explosion 
of the probability space. 

Nevertheless, we suggest that  human parsing 
is responsive to ' the familiarity (or otherwise) 
of part icular head pat terns in rules. To com- 
bat the da ta  sparsity, we have used WordNet 
to "back off" to more general semantic classes 
when statistics on a word are unavailable. To 
back off semantically, however, we need to be 
dealing with word senses, not just  word forms. 
It is a simple refinement of our model to replace 
all instances of "head word" with "head sense". 
Additionally, a semantic concordance of a sub- 
set of the Brown. Corpus and WordNet senses is 
available (Lande's et al., 1998). Thus, our cor- 
pus, collected as  described in Section 2, can be 
augmented to use statistics on word senses in 
syntactic constructs, after alignment of this se- 
mantic concordance (of Brown) with treebank's 

labeled bracketing (of Brown). Moreover, a lan- 
guage model that  distinguishes word senses will 
tend to reflect the semantic as well as syntac- 
tic and lexical pat terns in language, and thus 
should be advantageous both in training the 
model and in using it for parsing. 

4 E s t i m a t i o n  

We have used WordNet senses so that  we might 
combat the da ta  spaxsity we encounter when 
trying to calculate the probabilities in Equa- 
tion (2). Specifically, we have employed a "se- 
mantic backoff" in estimating the probabilities, 
where the backing off is done by ascending in 
the WordNet hierarchy (following its hypernym 
relations). When a t tempt ing to calculate the 
probability of a syntactic expansion - -  the prob- 
ability of a category X with head sense w ex- 
panding as rulename - -  we search, breadth- 
first, for the first hypernym of w in Word- 
Net which occurred with X at least t times in 
our training data, where t is some threshold 
value. So the probability P(rulename I X,w) 

P(rulename [ X,p(w)) ,  where p(w)  denotes 
the hypernym we found. 

Similarly, for the probability of lexical intro- 
duction, we abstract the tuple (X,w, rulename) 
to a tuple (X, p~(w), rulename) which occurred 
sufficiently often. Once this is found, we search 
upward, again breadth-first,  2 for some abstrac- 
tion ~(h) of h which appeared at least once in 
the context of the adequate conditioning infor- 
mation. Each a(h4) is some parent of the word 
sense h4. The probability of each original word 
h4 is then conditioned on the appropriate hyper- 
nym of the found abstraction. So we approxi- 
mate: 

P(h l  X,w,  rulename) ,~ 

P(d.(~t) I (X,p ' (w) ,  rulename)) 

x ] - I  P(h~l a(~))  (3) 

Note that p(w) in the first estimation may 
not equal p~(w) in the second. Also note that 
backing off completely, to the TOP of the ontol- 
ogy, for the word in the conditioning informa- 
tion, is equivalent to dropping it from the condi- 
tioning information. Backing off completely in 

2Bread th- f i r s t  is a first  a p p r o x i m a t i o n  as t h e  search  
mechan i sm;  we i n t e n d  to  pu r sue  th i s  issue in fu tu re  work. 
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search for the abstraction when calculating the 
probability of lexical introduction effectively re- 
duces that probability to I-It P(ht) .3 

5 E x p e r i m e n t a l  R e s u l t s  

We sequestered 421 sentences from our corpus 
of 4892 sentences (with trees and sense-tags), 
and used the balance for training the probabil- 
ities in equation (2). These 4892 are the parse- 
able segment of the 16,374 trees for which we 
were able to "match up" the Treebank syntac- 
tic annotation with the semantic concordance. 
(Random errors and inconsistencies seem to ac- 
count for why not all 19,843 trees align. In fact, 
these 19,843 themselves exclude all trees which 
appear to be headlines or some other irregular 
text. We do not, however, exclude any trees 
on the basis of the type of their root category. 
The corpus contains sentences as well as verb 
phrases, noun phrases, etc..) 

We then tested the parser varying two binary 
parameters: 

• whether or not the semantic backoff pro- 
cedure was used - -  If not, an unobserved 
conditioning event would immediately have 
us drop the lexical information. For exam- 
ple, (X,w / would immediately be backed 
off to simply (X). 

• whether or not we simply estimated the 
joint probability P(~tl X,w, rulename) as 
I-~i y (kt ] X, w,  rulename ). This we will call 
the "binary" assumption, as opposed to 
"rt-ary". Effectively, it means that each 
daughter's head word sense is introduced 
independently of the others. 

Tables 1 and 2 display the results for the 
four different settings, along with the results for 
a straight PCFG model (as a baseline). Note 
that t, our threshold parameter from above, was 
set to 10 for these experiments. Labeled pre- 
cision and recall (Table 1) are the same as in 
other reports on statistical parsing: they mea- 
sure how often a particular syntactic category 
was correctly calculated to span a particular 
portion of the input. Recall that our corpus 

aWe actually stop short of this in our estimations. We 
search upward for the top-most nodes in WordNet, but 
we do not continue to the synthetic T0P node. Instead, 
we drop the lexeme from the conditioning information 
and restart the search. 

was derived using a hand-crafted grammar. It 
makes sense, then, to add an additional crite- 
rion for correctness: we can check the actual ex- 
pansions (rulenames) used and see if they were 
correct. This metric speaks to an issue raised 
by Charniak (1997b) when he notes that the 
rule NP -> NP NP has (at least) two different 
interpretations: one for appositive NPs and one 
for "unit" phrases like "5 dollars a share".4 A 
hand-written grammar will differentiate these 
two constructions. Thus Table 2 shows preci- 
sion and recall figures for this more strict crite- 
rion, for the four models in question plus PCFG 
again as a baseline. Note also that since Table 2 
is for syntactic expansions, it does not include 
lexical level bracketings. 

Sem backoff No sem backoff 
binary 91.2/87.1 90.6/86.4 
rt-ary 91.3/87.8 90.1/86.2 

PCFG 

Table 1: 
Results 

78.9/80.3 

Labeled Bracketing Precision/Recall 

binary 
n-ary 

PCFG 

Sere backoff No sem backoff 
82.5/78.8 81.3/77.6 
82.7/79.6 80.6/77.3 

65.5/66.3 

Table 2: Syntactic Expansion Precision/Recall 
Results 

First note that the degree of improvement 
over baseline of even the most minimal model 
is approximately what other researchers, using 
purely corpus-driven techniques, have reported 
(Charniak, 1997a). 

Also note that the "full" model, using both rL- 
ary lexical statistics and semantic backoff, per- 
forms (statistically) significantly better than both 
of the models which do not use semantic back- 
off. The lone exception is that the precision of 
the labeled bracketings is not significantly dif- 
ferent for the "full" model and the "minimal" 
model. 5 

4In fact there should be syntactic differences for these 
two constructions, since phrases like "the dollars the 
share" are syntactically ill-formed unit noun phrases. 

~Two-sided tests were used, with o¢ = 0.05. 
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Interestingly, the "minimal" model is not sig- 
nificantly different from either of the two mod- 
els gotten by adding one o/ rt-axy statistics or 
semantic backoff. The improvement is only sig- 
nificant when both features are added. 

Our results for word sense disambiguation (ob- 
tained as a by-product of parsing) are shown in 
Table 3. Clearly, using WordNet to back off 
semantically enables the parser to do a better 
job at getting Senses right. The sense recall 
figures for the two models which use semantic 
backoff are significantly better than for those 
models which do not. Additionally, the im- 
provement over baseline is significantly better 
for those models which use semantic backoff (11 
percentage points improvement) than for those 
which do not (4 points better). 6 

Sem backoff No sem backoff 
binary 40.8/51.6 40.8/45.0 
u-ary 41'.1/52.1 40.8/45.1 

Table 3: Sense Recall: baseline/model. The 
baseline results:are gotten by choosing the most 
frequent sense for the word, given the part of 
speech assigned by the parser. (Hence it may be 
different across,different models for the parser.) 

6 R e l a t e d  W o r k  

As our framework and corpus are rather differ- 
ent from other work on parsing and sense dis- 
ambiguation, it is difficult to make quantitative 
comparisons. Many researchers have achieved 
sense disambiguation rates above 90% (e.g. Gale 
et al. (1992)),: but this work has typically fo- 
cussed on disambiguating a few polysemous words 
with "coarse" sense distinctions using a large 
corpus. Here, we are disambiguating all words 
with WordNet isenses and not very much data. 
Ng and Lee (1996) report results on disambiguat- 

÷ 

6The improvement gotten for moving from binary to 
rt-ary relations, when using WordNet, is not significant. 
This is most likely due to the small percentage of expan- 
sions which are likely to be helped by rt-ary statistics - -  
less than 1%. In fact, there were only s e v e n  instances, 
over the 421-sentence test set, where an n-ary rule was 
correctly selectedl by the parser and  the head of that 
phrase was also 'correctly selected. Given such small 
numbers, we would not expect to see a significant im- 
provement, when using n-ary statistics, for word sense 
disambiguation. 

ing among WordNet senses for the most fre- 
quent 191 nouns and verbs (together, they ac- 
count for 20% of all nouns and verbs we ex- 
pect to encounter in a random selection of text). 
They get an improvement of 6.9 percentage points 
(54.0 over 47.1 percent) in disambiguating in- 
stances of these words in the Brown Corpus. 
Since the most frequent words are typically the 
most polysemous, the ambiguity problem is more 
severe for this subset, but there is also more 
data: we have about 24,000 instances of 10,000 
distinct senses in our corpus, and Ng and Lee 
(1996) use 192,800 occurrences of their 191 words. 

Carroll et al. (1998) report results on a par- 
ser, similarly based on linguistically well-founded 
resources, using corpus-derived subcategoriza- 
tion probabilities (the first term in Equation (2)). 
They report a significant increase in parsing ac- 
curacy, measured using a system of grammat- 
ical relations. Their corpus is annotated with 
grammatical relations like subj and ccomp, and 
the parser can then output these relations as 
a component of a parse. Carroll et al. (1998) 
argue that these relations enable a more accu- 
rate metric for parsing than labeled bracketing 
and recall. Our evaluation of phrase structure 
rules used in a parse is a crude attempt at this 
higher-level evaluation. 

As mentioned above, much recent work on 
lexicalizing parsers has focused on binary lexi- 
cal relations, specifically head-head relations of 
mother and daughter constituents e.g. (Carroll 
and Rooth, 1998; Collins, 1996). Some have 
used word classes to combat the sparsity prob- 
lem (Charniak, 1997a). Link grammars allow 
for a probabilistic model with ternary head-head- 
head relations (Lafferty et al., 1992). The link 
grammar website reports that, on a test of their 
parser on 100 sentences (average length 25 words) 
of Wall Street Journal text, over 82% of the la- 
beled constituents were correctly calculated/  

Some limited work has been done using u-ary 
lexical statistics. Hogenhout and Matsumoto 
(1996) describe a lexicalization of context free 
grammars very similar to ours, but without pre- 
senting a generative model. The probabilities 
used, as a result, ignore valuable conditioning 
information, such as the head word of constituent 
helping to predict its syntactic expansion. Nev- 
ertheless, they are able to achieve approximately 

7http://bobo.link.cs.cmu.edu/link/improvements.html 
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95% labeled bracketing precision and recall on 
their corpus. Note that they use a small fi- 
nite number of word classes, rather than lexical 
items, in their statistics. 

Utsuro and Matsumoto (1997) present a very 
interesting mechanism for learning semantic case 
frames for Japanese verbs: each case frame is a 
tuple of independent component frames (each 
of which may have an n-tuple of slots). More- 
over, they use an ontology rather than simply 
word classes when finding the case frames. In 
this way, the work is essentially a generaliza- 
tion of the work of Resnik (1993). They report 
results on disambiguating whether a nominal 
argument in a complex Japanese sentence be- 
longs to the subordinate clause verb or the ma- 
trix clause verb. Their evaluation covers three 
Japanese verbs, and achieves accuracy of 96% 
on this disambiguation task. 

Chang et al. (1992) describe a model for ma- 
chine translation which can accommodate n-ary 
lexical statistics. They report no improvement 
in parsing accuracy for n~ > 2. Their results 
most likely suffer from sparse data (they had 
only about 1000 sentences), although they did 
use semantic classes rather than lexical items. 
They report that their total sentence accuracy 
(percent of test sentences whose calculated brack- 
eting is completely correct) is approximately 58%. 

7 F u t u r e  W o r k  

There are many directions to take this work. 
One advantage of our well-founded framework is 
that it allows more linguistic information, e.g. 
features like tense and agreement, to be used 
in the language model, s For example, a verb 
phrase in the imperfect may often be modified 
by an adjunctive, durative PP:for .  We would 
like to use the techniques of corpus-based pars- 
ing to extract these statistical patterns auto- 
matically. The model easily extends to incor- 
porate a host of syntactic features (Seagull and 
Schubert, 1998). 

SNore that  these particular features are in theory 
available to a purely corpus-based parser, as part-of- 
speech tags in the Penn Treebank are marked for tense 
and agreement. But that  information is not available 
to the phrase-level constituent unless a notion of heads 
and feature passing is added to the mechanism. It seems 
that  foot features, unless explicitly realized at the phrase 
level (e.g. WHPP) would be even more difficult to percolate 
without an a priori  notion of features and grammar. 

Currently the parser uses a pruning scheme 
that filters as it creates the parse bottom-up. 
The filtering is done based on the probability of 
the individual nodes, irrespective of the global 
context. The pruning procedure needs refine- 
ment, as our full model was not able to arrive 
at a parse for eight of the 421 sentences in the 
test set. 

We would certainly like to expand our cor- 
pus by increasing the coverage of our grammar. 
Also, adding a constituent size/distance effect, 
as described by Schubert (1986) and as used 
by some researchers in parsing (e.g. Lesmo and 
Torasso (1985) and Collins (1997)) would al- 
most certainly improve parsing. 

Most likely, WordNet senses are more fine- 
grained than we need for syntactic disambigua- 
tion. We may investigate methods of automat- 
ically collapsing senses which are similar. Also, 
we may use more data on word sense frequen- 
cies, outside of the data we get from our "parse- 
able bracketings'. We used WordNet for these 
experiments both because WordNet provides an 
ontology, and because there was an extant cor- 
pus which was annotated with both syntactic 
and word sense information. Using a corpus 
that is tagged with "coarser" senses will almost 
certainly yield better results, on both sense dis- 
ambiguation and parsing. 

8 C o n c l u s i o n  

This work suggests that despite their low fre- 
quency, vt-ary lexical statistics can be combined 
with an ontology, such as WordNet, to be used 
to aid parsing and word sense disambiguation. 
More interestingly, results from our small cor- 
pus indicate that WordNet (or some ontology) is 
necessary for n-ary statistics to be useful. In ad- 
dition, these results can be obtained within the 
framework of a well-founded grammar and lexi- 
con. All of this together yields a broad-coverage 
parser that lends itself to applications requiring 
natural language understanding. In the future, 
we hope to improve our model and expand our 
corpus, and thus to improve our parsing accu- 
racy further. 
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