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Abstract 
Automatic accent inser·tion (AAI) is the problem of 
re-inserting accents (diacritics) into a text where they 
are missing. Unaccented French texts are still quite 
common in electronic media, as a result of a long his
tory of character encoding problems and the lack of 
well-established conventions for typing accented char
acters on computer keyboards. We present an AAI 
method for French, based on a stochastic language 
model. This method was implemented into a program 
and G library of functions, which are now commer
cially available. Our experiments show that French 
text processed with this program contains less than 
one accent error per 130 words. We also show how our 
AAI method can be nsed to do on-the-fly accent in
sertions within a word-processing environment, which 
makes it possible to write in French without having 
to type accents. A prototype of such a_ s'ystem was 
integrated into the Emacs editor, and iS now avail
able to all students and employees of t}1e Universite 
de Montreal's computer science department. 

1 Introduction 
Even in this era of flashy, high-speed multimC::dia in
formation, unaccented French texts (i.e texts without 
diacritics) are still routinely encountered in electronic 
media. Two factors account for this: first, the com
puter field has long suffered from a lack of sufficiently 
widespread standards for encoding accented charac
ters, which has resulted in a plethora of problems in 
the electronic transfer and processing of French texts. 
Even now, it is not uncommon for one of the soft
ware links in an E-mail distribution chain to delib
erately remove accents in order to avoid subsequent 
problems. Secondly, when nsing a computer keyboard 
that is not specifically designed for French, keying 
in French accented characters can turn out to be a 
laborious activity. This is a matter of both stan
dards and ergonomics. As a result, a large number of 
French-speaking users systematically avoid using ac
cented characters, at least in informal communication. 

If this situation remains tolerable in practice, it is 
essentially because it is extremely rare that the ab-

sence of accents renders a French text incomprehen
sible to the human reader. Cases of ambiguity do 
nonetheless occur: for instance, "Ce chantier ferme 
a cause des emeutes" could be interpreted as '\Ce 
chan tier ferme a cause des CmeuteS11 C'This work-site 
is closing because of the riots") or \\Ce chan tier fermi 
a cause des Cmeutesn ("This closed work-site [more 
naturally put, this work-site closure] has caused riot
s',). From a linguistic point of view, the lack of accents 
in French simply increases the relative degree of am
biguity inherent in the language. At worst, it slows 
down reading and proves awkward, much as a text 

. written entirely in capital letters might do. 
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The fact remains, however, that while unaccented 
ri·ench text may be tolerated under certain circum
stances, it is not acceptable in common usage, espe
cially in the case of printed documents. Furthermore, 
unaccented texts pose serious problems for automatic 
processing: NLP-based applications such as informa
tiOn retrieval, information extraction, machine trans
latjon, human-machine conversation, speech synthe
sis, as well as many others, will usually require that 
French texts be properly accented to begin with. 

Actually, for human readers, unaccented texts is 
probably the most benign of a more general class of ill 
treatments to which French texts are subjected. For 
example, it is not uncommon for older programs that 
are not "8-bit clean', to "strip" the eighth bit of each 
character, thus irreversibly mapping French charac
ters onto the basic ASCII set. When this treatment 
is applied to an ISO-Latin text, 'C' becomes 'i,, 'C' 
becomes 'h', etc. Other programs will simply delete 
accented characters, or replace them with a unique 
character, such as a question mark. The texts that 
result rapidly become unreadable. 

All of the above factors prompted the initial in
terest in methods of automatic accent insertion (or 
A AI). Of course, as standards such as Unicode (mul
tilingual character-coding standard) and MIME (mul
tipurpose Internet mail extensions) gain ground, the 
accent legacy problem slowly disappears. The prob
lem of typing accents, however, is likely to remain. 
For this reason, we have become interested in meth-



ods that would perform automatic accent insertion on
the-fly, in real time. It appears to us that such a tool 
would be a valuable addition to any word-processing 
environment, equally useful for native and non-native 
speakers of Ftench. 

In what follows, we first present a general auto
matic accent insertion method, based on a stocha.s
tic language model. This method was implemented 
into a program called Reacc, which is now commer
cially available through Alis Technologies 1 We then 
examine how this method can be adapted to perform 
accent insertions on-the-fly within a word-processing 
environment. As we go along, we describe the various 
experiments we designed to evaluate the performance 
of the system in different contexts, and present the 
results obtained. Finally, we briefly describe how a 
prototype "on-the-fly accentuation" ( OTFA) system 
was implemented within the Emacs text-editor. 

Although our research focuses on unaccented 
French texts, we believe that our approach could be 
adapted to other languages that use diacritical marks, 
as well as to other types of text corruption, such as 
those mentioned above. The AAI problem and the 
solutions that we propose are also related to the more 
general problems of word-sense disambiguation and 
spelling and grammar checking. 

2 Basic Automatic Accent Insertion 
In its simplest form, the autornatic accent insertion 
problem can be formulated this way: we are given as 
input an unaccented French text, in the form of a se
quence of unaccented words w1 w2 . . Wn. To every one 
of these input words Wi may correspond any number 
of valid words (accented or not) wil ... Wim: our task 
is to disambiguate each word, i.e. to select the correct 
words WiJ..~; at every position in the text, in order to 
produce a properly accented text. 

An examination of the problem reveals that the vast 
majority (approximately 85%) of the words in French 
texts carry no accents at all, and that the correct form 
of more than half of the remaining words can be de
duced deterministically on the basis of the unaccented 
form. Consequently, with the use of a good dictionary, 
accents can be restored to an unaccented text with a 
success rate of nearly 95o/o (i.e., an error in accen
tuation will occur in approximately every 20 words). 
The problems that remain at this point mostly re
volve around ambiguous unaccented words, i.e. words 
to which more than one valid form may correspond, 
whether accented or not2 . 

Obviously, for many such ambiguities in French, a 
simple solution is to systematically select the most 
frequent alternative. For instance, the most frequent 

1 A lis Technologies: http: //YYY. alis. com 
2 As we will see later on, other problems are caused by un

known words , i.e. words for which no valid forms are known. 
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word in most French texts is usually the preposition 
de, which turns out to be ambiguous, because there is 
also a French word de, meaning either dice or thimble. 
If we simply ignore the latter form, we are likely to 
produce the correct form over 99% of the time, even 
in texts related to gambling and sewing' This general 
strategy can be implemented by determining a pri
ori the most frequent alternative for each set of am
biguous words in a dictionary, by means of frequency 
statistics extracted from a corpus of properly accented 
French text. Using this simple method, we achieve a 
success rate of approximately 97%, i.e. roughly one 
error per 35 words. 

Clearly, to attain better performances than these, 
an automatic accent insertion system will need to ex
amine the context within which a given ambiguous 
word appears, and then resort to some form of lin
guistic knowledge. Statistical langnage models seem 
to be particularly well fit to this task, because they 
provide us with quantitative means of comparing al
ternatives. 

We propose an automatie accent insertion (AAI) 
method that proceeds in two steps. 

1. Hypotheses generation: identify for each in
put word the list of valid alternatives to which it 
may correspond; 

2. Candidate Selection: select the best candidate 
in each list of hypotheses. 

This is illustrated in Figure 1. 

2.1 Hypotheses Generation 

Hypotheses generation produces, for each word VJi of 
the input, a list of possible words 'Wil . . W 1:m to which 
it may correspond. For example, the form pousse 
may correspond to either pou..sse or poussi; cote to 
cote, cOte, cote or cOte; the only valid form for fran
cais is jran9ais (with a cedilla), and ordinateur is its 
own unique correct form. In theory, nothing precludes 
generating invalid as well as valid hypotheses at. this 
stage: for instance, for cote, also generate ciitc~ and 
9ote. But to limit the number of possibilities that the 
system must consider, hypotheses are produced using 
a list of known French word-forms, indexed on their 
unaccented version. On the other hand, when the hy
potheses generator encounters word-forms that it does 
not know, it simply reproduces them verbatim. 

2.2 Candidate Selection 

Once lists of hypotheses have been identified for each 
input word, the best candidate of each list. must be 
identified. For this, we rely on a stochastic lan
guage model, which can assign a score to any sequence 
of words, corresponding to the probability that. the 
model generate this sequence. Given an input se
quence of words w1 w2 .•. Wn, and for each word Wi 



Input text: 
Mais, la cote une fois rejointe,il nous eut fallu retrouver l'escale. 

Hypotheses generation: 

-[ 
Mais ]- -[ 
Ma~a ' ·-

Candidate selection: 

-[ 
Mais]-, 
Mals 

Figure 1: Automatic accent insertion method 

in the sequence, a list of hypotheses ( wil,,, , , Wim), 

our goal can be reformulated as finding the sequence 
of hypotheses wlk1w2k 2 , , , Wnk, that maximizes the 
overall likelihood of the output sequence. 

The stochastic model we use is a Hidden Markov 
Model (HMM), within which a text is viewed as there
sult of two distinct stochastic processes. The first pro
cess generates a sequence of abstract symbols. In our 
case, these symbols correspond to morpho-syntactic 
tags, e.g. 11common noun, masculine-singular", averb, 
present indicative form, third person plural". In an 
N-tag HMM, the production of a tag depends on the 
N - 1 preceding tags, so that the probal)ility of ob
serving a given tag ti in a given context f{)llows a con
ditional distribution P(t;it;-N ... t;-r). 

Then, for each tag in this first sequehce, a second 
stochastic process generates a second symbol: in our 
case, these symbols correspond to actual words in the 
language. 

The parameters that define the model arc: 

• P(t;lh,_1 ): the probability of observing tag t;, 
given the previous N -- 1 tags (h+-l designates 
the series of N- 1 tags ending at position i- 1); 

• P(w;lt;): the probability of observing word w; 
given the underlying tag ti. 

Given these parameters, the probability of generat
ing some sequence of words w = WI w2 ... Wn can be 
evaluated. If T is the tag alphabet, and T" denotes 
the set of all possible sequences of n tags ofT, then: 

P(w) = L IT P(t;lh;-r)P(w;it,) 
tE7'" i::::l 

The direct calculation of this equation requires a 
number of calculation that is exponential in the length 
of the sequence. However 1 there exists an algorithm 

that computes the value of P(w) in polynomial time 
(Rabiner and Juang, 1986). 

To find the sequence of hypotheses that maximizes 
the probability of the text, each individual combina
tion of hypotheses is examined. Because the number 
of possible combinations grows exponentially with the 
length of the text, we will want to segment the text 
into smaller pieces 1 whose probabilities can be maxi-

. mized individually. Sentences are usually considered 
to be syntactically independent, and so we may as
sume that maximizing the probability of each sentence 
will yield the same result as maximizing the whole 
text. Even within sentences, it is sometimes possible 
to find subsegments that are ((relatively" independent 
of' one another, Typically, the inner punctuation of 
se~1tences (semicolons, commas, etc.) separates seg
ments that are likely to be independent of one an
other. In the absence of inner punctuation, it is still 
possible to segment a sentence around regions of ((low 
ambiguity", 
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Our AAI method relies on a heuristic segmentation 
method 1 which cuts up each sentence into a number of 
segments, such that the number of combinations of hy
potheses to examine in each segment does not exceed 
a certain fixed threshold, while minimizing dependen
cies between segments. This segmentation strategy 
effectively guarantees that the accent-insertion can be 
done in polynomial time. But we sometimes end up 
segmenting the text at ((sub-optimar' locations. This 
will have consequences on performance) as we will see 
in the next section. 

Segments are processed in a. left-to-right fashion. In 
practice) we have realized that one way of minimizing 
the negative impact of sub-optimal segmentations is 
to prepend to each segment the last few words of the 
previous segment, as output by the AAI system. This 
seems to have the effect of "priming" the model. The 
prepended words are then simply dropped when the 
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final result is pieced together. 

2.3 Implementation 

The method presented in the previous section was 
implemented in a program called Reacc. This pro
gram, given a hypotheses generator, the parameters 
of a HMM and an input, unaccented French text, pro
duces an accented version of that text on the output. 

The hypotheses generator we used was produced 
from a list. of over 250 000 valid f\·ench words, ex
tracted from our French morpho:-syntactic electronic 
dictionary. Such a large dictionary is probably 
overkill, and in fact, it may even be the case that 
it uselessly slows down processing, by proposing ex
tremely rare (although probably valid) words. (The 
only francophones we met that had heard of a le were 
crossword puzzle addicts.) 

The language model used is a 2-tag HMM, based 
on a set of approximately 350 morpho-syntactic tags. 
The parameters of the HMM were first estimated by 
direct frequency counts on a 60 000 words, hand
tagged extract of the Canadian Hansard. The pa
rameters were then refined, using Baum-Welch reesti
mation (Baum, 1972), on a 3 million word (untagged) 
corpus consisting of equal parts of Hansards, Cana
dian National Defense docmnents and French press 
revues (Radio~ France International). 

2.4 Performance Evaluation 

One of the interesting properties of the AAI prob
lem is that the performance assessment of a given 
program is a very straightforward affair: all we need 
is a- corpus of correctly accented French text, and a 
"de-accentuation" program. Performance can be mea
sured by counting the number of words that differ in 
the original text and its re-acccnted counterpart. 

For the purpose of our evaluation, we used a test 
corpus made up of various types of text. It contains 
Hansard, National Defense and RFI documents (dis
tinct from those used in training), but also United 
Nations documents, court transeripts, computer man
uals as well as some literary texts. The whole corpus 
contains 57 966 words (as counted by the standard we 
UNIX program). 

Apart from the hypotheses generator and the lan
guage model parameters, a number of parameters af
fect the performance of the program. The most im
portant of these is the maximum number of combina
tions per subsegmcnt, that it used in the segmentation 
heuristic. In what follows, we refer to this parameter 
as S. The results obtained for different values of S are 
presented in Table 1. All tests were done on a Spare
STATION 10 computer, with 32MB of memory. 

A cursory look at the results reveals that there is 
much to be gained by allowing the system to work on 
longer segments. However, beyond a certain limit, the 

quality of the results tends to level off, while the run
ning time increases radically. Depending on the con
text of application of the program and the resources 
available, it would seem that acceptable results can be 
obtained with S set at around 16 or 32. In this set
ting, the system will process anywhere between 10 000 
and 20 000 words per minute. 

It is interesting to look at where R6acc goes wrong. 
Table 2 provides a rough classification of accent
restoration errors made by the program on our test 
corpus with S set at 16. The largest category of ac
centuation errors includes a rather liberal grouping of 
errors that have a common feature: they are the result 
of an incorrect choice pertaining to an acute accent on 
a final e. In most cases (although not all), this corre
sponds to an ambiguity between a finite and participle 
forms of a verb, e.g. aime as opposed to aimC. The 
next group of errors are those that stem from inad
equacies in the hypotheses generator ·~· i.e. cases in 
which the generator simply does not know the correct. 
accented form. In most cases (nearly half), proper 
nouns are involved, but, especially in more techni
cal texts, there are also many abbreviations, non
F'rench words and neologisms (e.g. niamCnagement, 
sCropositivite'). The next category concerns a unique 
word pair: the preposition a, and a, the third person 
singular present indicative form of the verb avoiT. 

2.5 Related Work 

El-Beze et al. (1994) present an AAI method that 
is very similar to ours. It also proceeds in two steps: 
hypotheses generation, which is based on a list of valid 
words, and candidate selection, which also relies on a 
Hidden Markov Model. The main difference between 
their method and ours is how the HMM is used to 
score competing hypotheses. While we segment the 
text into "independent segments1

' and maximize the 
probability of these segments, their program processes 
the text from left to right, using a fixed width "sliding 
window,,: 

llil For each word 'Wi, the hypotheses generator pro
duces a list of possible wonljtag alternatives: 
( 'Wii 1 ti.I), ... , ( Wik 1 tik); 
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• Candidate Selection proceeds by selecting a spe
cific pair ( Wij, t;j) at each position; the goal is to 
find the sequence of word/tag pairs whose prob
ability is maximum according to the model: 

n 

IT P(w;;, It;;, )P(t;;, 1t,_ 1j,_,, t,_ 2;,_,) 

i=l 

e To avoid combinatorial problems, instead of com
puting this product for all possible sequences, the 
system finds at each position i in the sequence 
the pair ( 'WiJ 1 tiJ) that locally maximizes that pari 



Max. no. of Running time Total number of Average distance 
combinations (seconds) errors (words) between errors 

per segment (S) (words) 
2 68 821 70 
4 85 560 103 
8 132 466 124 
16 169 441 130 
32 277 429 134 
64 429 425 136 
128 '----- 731 -- 420 137 

--~~--~---

Table 1: Results of AAI Experiments on 58K-word Test Corpus 

Type of error Number of occurrences Percentage 
-e VS. -c ending 171 38.8% 
Unknown words 111 25.2% 

" vs. a 69 15.7% 
Other 90 20.4% 
Total 441 100.0% 

Table 2: Classification of Accent Restoration Errors (S = 16) 

of the global c:ornputation within whieh it is in
volved: 

pi X Pi-/-1 X pi+2 

where P, = P(wij; iti;, )P(ti;, it;-r;, _,, ti···2j,_,). 
o These eomputations proceed from left to right, so 

that the optimal tag found for position i will be 
used in the computation of the optimal word/tag 
pairs at positions i + 1 and i + 2. 

The experimental results reported in El-BE:ze et al. 
(1994) indicate success levels slightly superior to ours. 
This may be explained in part by the use of a better 
language model (their HMM is three-tag, ours is two
tag). It must be said, however, that their test-corpus 
was relatively small (in all, a little over 8000 words), 
and that the performances varied wildly from text to 
text, with average distances between errors varying 
between 100 and 600 words. 

A method which exploits different sources of infor
mation in the candidate selection task is described in 
Yarowsky (1994b): this system relies on local context 
(e.g., words within a 2- or 4-word window around the 
current word), global context (e.g. a 40-word window), 
part-of-speech of surrounding words, etc. These arc 
combined within a unifying framework known as de
cision lists. \Vithin this framework, the system bases 
its decision for each individual candidate selection on 
the single most reliable piece of evidence. 

Although the work described in Yarowsky (1994b) 
does address the problem of l<'rcnch automatic accen
tuation, it mostly focuses on the Spanish language. 
Furthermore, the evaluation focuses on specific am
biguities, from which it is impossible to get a global 
performance measure. As a result, it is unfortunately 
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not currently possible to compare these findings with 
ours in a quantitative way. 

In Yarowsky (1994a), the author compares his 
method with one based on the stochastic part-of
speech tagger of Church (1988), a method which ob
viously has a number of points in common with ours. 
In Mr Yarowsky 1s experiments) this method is clearly 
outperformed by the one based on decision lists. This 
is most apparent in situations where competing hy
potheses are "syntactically interchangeable'): pairs 
of words with identical morpho-syntactic features, or 
with differences that have no direct syntactic effects, 
e.g. present/preterite verb tenses. Such ambiguities 
are better resolved with non-local context 1 such as 
temporal indicators. As it happens, however, while 
such situations are very common in Spanish, they are 
rare in French .. Furthermore, Mr Yarowsky's language 
model was admittedly quite weak in the absence of 
a hand-tagged training corpus, he based his model on 
an ad hoc set of tags. 

3 On-the-fly Automatic Accent 
Insertion 

As mentioned earlier) the existence of unaccented 
French texts can in· part be explained by the lack 
of a standard keying convention for French accents: 
conventions vary from computer to computer, from 
keyboard to keyboard, sometimes even from program 
to program. Many users type French texts without 
accents simply because they are unfamiliar with the 
conventions in a particular environment, or because 
these conventions are too complicated (e.g. hitting 
three keys in sequence to type a single accented char
acter). 
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Clearly, in some situations, automatic accent inser
tion offers a simple solution to this problem: type the 
text without accents, run an AAI program on the text, 
and revise the output for accentuation mistakes. Of 
course, such a solution, if acceptable for one-time pro
duction of short texts, is not very practical in general. 
If a text is subjected to a number of editions and re
editions, or if it is produced cooperatively by several 
authors working in different environments, then it may 
need to go through a series of local re-accentuations. 
This process, if managed by hand, is error-prone and, 
in the end, probably more laborious than typing the 
accents by hand. 

If, however, the accents are automatically inserted 
on-the-fly, as the user types the text, then accent re
vision and corrections can also be done as the text 
is typed. If such an on-the-fly accent?Wtion ( OTFA) 
system is capable of producing acceptable results in 
real-time, it may become a realistic alternative to the 
manual insertion of accents. In what follows, we ex
amine how this may be done. 

3.1 Method 

How does OTFA differ from the basic AAI problem? 
In Section 2, the input was considered to be a static 
and (hopefully) complete text. In OTFA, the text. is 
dynamic: it changes with every edit operation per
formed by the user. Therefore, the OTFA method 
that is conceptually the simplest is to re-compute the 
accentuation of the whole text after each edit, i.e. re
peatedly apply to the entire text an AAI method such 
as that proposed earlier. 

Of course, such a method is impractical, mainly be
cause it. will likely be computationally excessively ex
pensive. It is also overkill, because changes in one 
region of the text are unlikely to affect the accentu
ation of the text in more or less distant regions. In 
fact, if we use the AAI method of Section 2, changes 
in one location will have no effects outside the sen
tence within which the edit occurs, because sentences 
are all treated independently. Because sentences are 
themselves sub-segmented, it is tempting to think that 
the effect of a given edit will be even further restricted, 
to the segment of the sentence within which it takes 
place. This, however, is not generally true, firstly be
cause an edit is likely to affect the sub-segmentation 
process itself, and also because changes in one seg
ment can have cascading effects on the subsequent seg
ments, as the last words of each segment arc prefixed 
to the following segment as additional context. 

So a more practical solution is to process only the 
sentence within which the latest edit occurred. There 
are still problems with this approach, however. While 
the user is editing a sentence, chances are that at any 
given time, this sentence is "incomplete'). Further
more, although modern text-editors allow insertions 

and deletions to be performed in any order and at 
any position of the text, in a normal text-editing con
text) given the natural tendency of humans to write in 
a beginning-to-end fashion, the majority of the edits 
in a French text will be left-to-right insertions at the 
end of sentences. This means that at any given time) 
the text to the left of the latest edit is likely to consti
tute relevant context for the AAI task, while the text 
to the right is likely not to btl relevant. In fact, taking 
this text into consideration could very well mislead 
the AAI process) as it may belong to a completely 
different sentence. 

This suggests a further refinement: after each edit, 
process only that part of the current sentence that lies 
to the left of the location where the edit took place. 

Also, it seems that there is no real need to take any 
action while the user is modifying a given word) and 
that it would be wiser to wait until all edits on that 
particular word are finished before processing it. By 
doing so) we will not only save computational tirnc, we 
will also avoid annoying the user with irrelevant accen~ 
tuations on ''partial" words. Notice, however, that de
tecting the exact moment when the user has "finished" 
typing or modifying a word can be a tricky business. 
We will deal with this question in Section 3.4. 

One of the potential beneflts of performing accen
tuation on-the-fly, as opposed to a posteriori AAll is 
that the user can correct accent errors as they hap
pen. In turn, because accentuation errors sometimes 
cascade, such on-the-fly corrections may help the AAI 
"stay on the right track". 

If we want to capitalize on user-corrections) we will 
need to: 

1. somehow distinguish "corrections// /TOm other 
types of edits: the reason is that we don't want 
to override the user's decisions when performing 
AAI. This question will also be dealt. with when 
we discuss implementation details (Section 3.4). 
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2. limit the scope of the A A Is to a small number of 
words aronnd the location of the last edit: the user 
can only correct the error that he sees; in theory, 
the effect of AAI after each edit is limited to the 
current sentence, but sentences come in all sizes. 
If a given "round" of AAI affects text too far away 
from the site of the last edit, which is usually also 
the focus of the user's attention, then he is likely 
not to notice that change. For this reason, it 
seems reasonable to restrict the actual scope of 
the AAI process to just a few words: intuitively, 
three or four words would be reasonable. Note 
that this doesn )t imply restricting the amount of 
context that we provide the AAI with, but only 
limiting the size of the region that it is allowed to 
modify. 
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To summarize, the OTFA method that we propose 
essentially follows these lines: 

• OTFA is performed by repeatedly applying an 
AAI method (such as that of Section 2) on the 
text. 

• AAI rounds arc triggered every time the user fin
ishes editing a word. 

• The scope of AAI (which we call the AAI win
dow) is limited to a fixed number of words to the 
left of the last word edited. 

• If this can be useful to the AAI process, more con
text can be given, in the form of additional words 
belonging t.o the same sentence to the left of the 
AAI window (what we call the context window). 

3.2 Performance Evaluation 

The ultimate goal of OTFA is to facilitate the editing 
of French texts. Therefore, it would be logical t.o eval
uate the performance of an OTFA system in those 
terms. Unfortunately, the ~~case of typingn is a no
tion that is hard to quantify. In theory, typing speed 
would seem to be the most objective criterion. But 
measuring performance using such a criterion would 
obviously require setting up a complex (~xperimental 
protocol. On the other hand, the number and nature 
of parameters involved prohibits a ('theoretical'' eval
uation in these terms. 

Vlhat we can reliably evaluate, however, is the ab
solute performance of an OTFA system, in terms of 
the number of accentuation errors, for a giren editing 
;\session". Such a measure gives us an irituitive idea 
of the impact of the OTFA system on the '(case of 
typing)'. ' 

Y..,Te conducted a number of experiments along this 
line, to evaluate how an OTFA system based on the 
AAI system of Section 2 would perform. All experi
ments were done by simulation, using the same corpus 
that was used in Section 2.4. The editing "session" we 
simulated followed a very simple scenario: the user 
types the whole test corpus, from beginning to end, 
without typing accents, without making errors, and 
without correcting those made by the OTFA system. 

As was the case with the Reacc program, several 
parameters affect the quality of the results and the 
computation time required. The only parameter that 
is specific to our OTFA method, however, is the size 
of the AAI window. This parameter, which we refer 
to as TV, is measured in words. We conducted distinct 
experiments with various values for W, the results of 
which arc summarized in Table 3. In all of these ex-· 
periments, the segmentation factor S was set at 16. 

The first conclusion that we can draw from Table 3 
is that there is much to be gained in using an AAI 
window of more than one word: setting W ::::: 2 al
lows to cut down the number of errors by almost 60%. 
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Performance quickly levels off, however, so that near
optimal results are obtained with a three- or four-word 
window. This is encouraging, because it seems reason
able to assume that the user can effectively monitor a 
window of that size, and therefore detect accentuation 
errors when they occur. 

Another point that is very encouraging\ and per
haps surprising, is that with W = 3, the performance 
of our OTFA system rivals with that of the basic AAI 
experiments reported in Section 2.4. One possible ex
planation is that because the OTFA works with only 
a small number of words at each round (i.e. only the 
words in the AAI window), the system never has more 
than S ::::::::: 16 combinations to examine, and therefore 
never needs to segment sentences into smaller pieces. 
In the end, both ways of proceeding are probably 
more or less equivalent, although more experimenta
tion would be required to determine this for sure. The 
major difference, of course, is that since OTFA recom
putes accentuation with every new word, its compu
tational cost is accordingly higher. However, as seen 
in Section 2.4, our AAI system can process 20 000 
words per minute. Since very few typists can enter 
more than 100 words per minute, even a straightfor
ward OTFA implementation should be able to handle 
the required computations in real-time. 

3.3 User-feedback 

We mentioned earlier that one of the expected benefits 
of OTFA, as opposed to applying AAI on a text a pos
teriori, is that the user can spot accent errors as soon 
as they happen, and correct them right away. In fad, 
we believe that this form of user-feedback can even be 
fm;t.her exploited, to improve the performance of the 
system itself. As pointed out. in Section 2.4, about. a 
quarter of AAI errors arc caused by unknown words, 
i.e. words in the correctly accented version of the text 
which are unknown to the hypotheses generator. This 
suggests an easy way of exploiting user-feedback: sys
tematically add to the hypotheses generator all user
corrected words whose form is unknown. 

In principle, if we add such a mechanism to our 
OTFA system, and if the user corrects the AAI er
rors as soon as they happen, unknown words will be 
lexicalized right after their first appearance, and the 
system should only make one error per unknown word. 
In preliminary experiments with this idea, the average 
distance between errors passed from 138 to 156 words, 
a reduction of almost 12% on the total number of er
rors. Our test. corpus being heterogeneous by design, 
unknown words do not repeat very often. VVe suspect 
that even better improvements would be observed on 
homogeneous texts of similar size. 

This idea of exploiting user-feedback to modify the 
parameters of the OTFA dynamically can actually be 
pushed further. One of the current problems with 



AAI window (W) Total errors Average distance 
(words) between errors 

(words) 
I 1125 52 
2 461 126 
3 420 138 
4 417 139 
8 417 139 
16 417 139 . ·-

Table 3: OTFA Simulation Results 

our OTFA system is its sometimes annoying tendency 
to systematically select the most frequent alternative 
when confronted with syntactically interchangeable 
words. For example, the two French words cote and 
cOte have similar morpho-syntactic features (common 
noun, feminine singular) and so, from a grammatical 
point of view, are totally interchangeable. It so hap
pens, however, that in the language model's training 
corpus, the second form, which is highly polysemous, 
is much more frequent. Therefore, the OTFA will sys
tematically produce that form rather than the other. 
If the user of the system is writing about the stock 
market for example, he is likely to want to use the 
first form cote, and therefore to react negatively to 
the system's insistence on putting a circumflex accent 
where none should appear. 

T'o solve this problern 1 some form of dynamic lan
gttage modeling is required. We have begun experi
nwnting with an approach initially proposed by Kuhn 
and Mori (1990) to solve a similar problem in speech 
recognition applications. Essentially) they suggest us
ing local context to estimate the parameters of a. un
igram Markov model, and to use this model in eon
junction with the static Hl\!ll\!1 to evaluate competing 
alternatives. Preliminary results with this approach 
are encouraging1 although much work remains to be 
done. 

3.4 Implementation 

As mentioned earlier 1 the AAI method presented in 
Section 2 has been implemented as a program and C 
function library. Based on this implementation, a pro
totype OTFA system was developed and integrated to 
the Emacs text-editor. Although Emacs is not gen
erally viewed as a true word-processing environment, 
it was a natural choice for prototyping because of its 
openness and extendibility. 

In our implementation, the user of Emacs has access 
to a special editing mode called Reacc-mode (techni
cally speaking, a minor-mode). When in this mode, 
the user has access to all the usual editing functions: 
he can move the cursor around, insert, delete 1 etc. 
The main difference with the normal ''fundamcntar' 
mode is that now, accents are automatically inserted 
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a.s words are typed, without the user having to explic
itly type them. 

The implementation follows the general lines of the 
OTFA method presented in Section 3.1: every time 
a new word is inserted, the system identifies the AAI 
window, submits the words that fall within this win
dow to the AAI system, and replaces the content of 
the window with the newly accented words. 

In practice, Emacs and the AAI program run as 
separate processes, and communicate asynchronously: 
when a new word is typed 1 Emacs sends the AAI win
dow to the AAI process, along with other relevant 
information (context, position, etc.), and returns the 
control to the user. The AAI program processes the 
''accentuation request'1 in the background, and sends 
the results back to Emacs as soon as they are ready. 
\¥hen this happc-'.ns, Emacs interrupts whatever it was 
doing, and replaces the original contents of the AAI 
window with the newly arrived words. This way, user
interaction is not significantly slowed down by the AAI 
process, because time-consuming computations typi
cally take place during the editor 1s idle time, between 
keystrokes. 

It is the editing process, responsibility to initi
ate AAI rounds, and therefore to determine when a 
new word has been typed. After experimenting with 
various strategies, we opted for a relatively simple 
method, based on the possibility to mark individual 
characters of the text with specific ''propertics1

' in 
Emacs. When words are processed by the AAI pro
gram and re-inserted into the text, they are systemat
ically marked as auto-accented. By contrast, charac
ters typed by the user do not carry this mark. Every 
time the user types a space or newline character, we 
examine the word immediately preceding the cursor: 
if all its characters are unmarked 1 then a new AAI 
round must be initiated. 

We mentioned earlier that it was important for an 
OTFA system not to override the usees decisions. 
Two situations are particularly important to consider: 
when the user manually types an accent within a new 
word 1 and when the user corrects the accentuation of a 
word. In both cases, it is undesirable that the OTFA 
modify the words in question. The character mark-



ing capabilities of Emacs are also used to detect these 
situations. The first case (new word with accents) 
will be identified easily by the presence of accented 
characters within an unmarked word. The second sit
uation (accent corrections) is more difficult to detect~ 
but in general, a mix of marked and unmarked char
acters within a single word is a good indicator that 
corrections have taken place. 

VVhen these two situations occur, not only do we not 
initiate an AAI round, we also inhibit any further re
acccntuations on these words, by marking their char
acters as nser-validated. Words bearing this mark will 
never be touched by AAL This type of marking is not 
limited to user-inserted accents and user-corrections: 
when the user turns Reacc-rnodc on, all existing text is 
initially marked that way. Later on, when AAI rounds 
are initiated and the system locates the AAI window, 
all text outside this window is also marked as user
validated. This way of proceeding, while allowing the 
OTFA system to do its work during simple text inser
tions, lil;1its the possibility of "unpleasant surprises)) 
when more complex interactions take place (deletions, 
corrections, cut-and-paste operations, etc.). 

4 Conclusion 
We have presented a method for automatically insert
ing accents into French text 1 based on a stochastic 
language model. This method was implemented into 
a program and C library of functions, which are com
mercially available from Alis Technologies. We have 
also shown how this method can be use~f to do on
the-fly accent insertions within a word-prOcessing en-· 
vironmcnt. A. prototype OTFA system ,was also im
plemented and integrated into the Emacs editor. 

Text processed with our system contains less than 
one accent error per 130 words on average, regardless 
of whether the system is used on its own or within 
an OTFA environment. On a Sun SparcSTATION 
10 computer, with 32 MB, the system will process 
approximately 20 000 words per minute. Within the 
Emacs OTFA prototype, because AAI is performed 
asynchronously, the performance of the editor itself is 
not. affected, and accents arc inserted faster than this 
typist can type3 . 

The program has been made available to students 
and crnployees of the Universite de J\1ontr6al's com
puter science department, and initial feedback has 
been positive. We are currently examining the pos
sibility of integrating ~ur OTFA method to a ((realn 
word-processor, such as Microsoft Word. 
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