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A b s t r a c t  

This paper describes a partial parser that as- 
signs syntactic structures to sequences of part- 
of-speech tags. The program uses the maximum 
entropy parameter estimation method, which M- 
lows a flexible combination of different know- 
ledge sources: the hierarchical structure, parts 
of speech and phrasal categories. In effect, the 
parser goes beyond simple bracketing and recog- 
nises even fairly complex structures. We give 
accuracy figures for different applications of the 
parser. 

1 I n t r o d u c t i o n  

The maximum entropy framework has proved 
to be a powerful modelling tool in many ar- 
eas of natural language processing. Its ap- 
plications range from sentence boundary dis- 
ambiguation (Reynar and Ratnaparkhi, 1997) 
to part-of-speech tagging (Ratnaparkhi, 1996), 
parsing (Ratnaparkhi, 1997) and machine trans- 
lation (Berger et al., 1996). 

In the present paper, we describe a partial 
parser based on the maximum entropy mod- 
elling method. After a synopsis of the maximum 
entropy framework in section 2, we present the 
motivation for our approach and the techniques 
it exploits (sections 3 and 4). Applications and 
results are the subject of the sections 5 and 6. 

2 M a x i m u m  E n t r o p y  M o d e l l i n g  

The expressiveness and modelling power of the 
maximum entropy approach arise from its abil- 
ity to combine information coming from differ- 
ent knowledge sources. Given a set X of possi- 
ble histories and a set Y of futures, ~e can char- 
acterise events from the joint event space X, Y 
by defining a number of features, i.e., equiva- 
lence relations over X x Y. By defining these 

features, we express our insights about informa- 
tion relevant to modelling. 

In such a formalisation, the maximum en- 
tropy technique consists in finding a model that 
(a) fits the empirical expectations of the pre- 
defined features, and (b) does not assume any- 
thing specific about events that  are not sub- 
ject to constraints imposed by the features. In 
other words, we search for the maximum en- 
tropy probability distribution p*: 

p" = argmax g (p) 
pEP 

where P = {p:p meets the empirical feature ex- 
pectations} and H(p) denotes the entropy of p. 

For parameter estimation, we can use the Im- 
proved Iterative Scaling (IIS) algorithm (Berger 
et all., 1996), which assumes p to have the form: 

p(x ,  y) = 

where fi : X x Y ~ {0, 1} is the indicator func- 
tion of the i-th feature, Ai the weight assigned 
to this feature, and Z a normalisation constant. 
IIS iteratively adjusts the weights (Ai) of the 
features; the model converges to the maximum 
entropy distribution. 

One of the most attractive properties of the 
maximum entropy approach is its ability to cope 
with feature decomposition and overlapping fea- 
tures. In the following sections, we will show 
how these advantages can be exploited for par- 
tial parsing, i.e., the recognition of syntactic 
structures of limited depth. 

3 C o n t e x t  I n f o r m a t i o n  for  P a r s i n g  

An interesting feature of many partial parsers 
is that they recognise phrase boundaries mainly 
on the basis of cues provided by strictly local 
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contexts. Regardless of whether or not  abstrac- 
tions such as phrases occur in the model, most  
of the relevant information is contained directly 
in the sequence of words and part-of-speech tags 
to be processed. 

An archetypal representative of this approach 
is the method described by Church (1988), who 
used corpus frequencies to determine the bound- 
aries of simple non, recursive NPs. For each pair 
of part-of-speech tags ti, tj, the probability of an 
NP boundary (' [' or ']') occurring between ti and 
tj is computed.  On the basis of these context 
probabilities, the program inserts the symbols 
'[' and ']' into sequences of part-of-speech tags. 

Information about lexical contexts also sig- 
nificantly improves the performance of deep 
parsers. For instance, Joshi and Srinivas 
(1994) encode partial structures in the Tree Ad- 
joining Grammar framework and use tagging 
techniques to restrict a potentially very large 
amount  of alternative structures. Here, the  con- 
text incorporates information about  both  the 
terminal yield and the syntactic s t ructure  built 
so far. 

Local configurations of words and p~irts of 
speech are a particularly important  knowledge 
source for lexicalised grammars.  In the Link 
Grammar  framework (Lagerty et al., 1992; 
Della Pietra et al., 1994), strictly local contexts 
are naturally combined with long-distance in- 
formation coming from long-range trigrams. 

Since modelling syntactic context is a very 
knowledge-intensive problem, the maximum en- 
tropy framework seems to be a particularly ap- 
propriate approach. Ratnaparkhi  (1997) intro- 
duces several conteztual predicates which pro- 
vide rich information about the syntactic con- 
text of nodes in a tree (basically, the s tructure 
and category of nodes dominated by or dom- 
inating the current phrase). These predicates 
are used to guide the actions of a parser. 

The  use of a rich set of contextual features is 
also the basic idea of the approach taken by Her- 
mjakob and Mooney (1997), who employ predi- 
cates capturing syntactic and semantic context 
in their parsing and machine translation system. 

4 A P a r t i a l  P a r s e r  fo r  G e r m a n  

The basic idea underlying our appr*oach to par- 
tial parsing can be characterised as follows: 

• An appropriate encoding format makes it 

possible to express all relevant lexical, cat- 
egorial and structural  information in a fi- 
nite alphabet of structural tags assigned to 
words (section 4.1). 

• Given a sequence of words tagged with 
part-of-speech labels, a Markov model  is 
used to determine the  most probable se- 
quence of structural  tags (section 4.2). 

• Parameter estimation is based on the  max- 
imum entropy technique, which takes full 
advantage of the multi-dimensional charac- 
ter of the structural tags (section 4.3). 

The details of the me thod  employed are ex- 
plained in the remainder of this section. 

4 . 1  R e l e v a n t  C o n t e x t u a l  I n f o r m a t i o n  

Three pieces of information associated with a 
word wi are considered relevant to the parser: 

• the part-of-speech tag ti assigned to wi 

• the structural relation ri between wi and 
its predecessor wi-1 

• the syntactic category ca of parent(wi) 

On the basis of these three dimensions, struc- 
tural tags are defined as triples of the form 
Si = (ti,ri,ca). For bet ter  readability, we will 
sometimes use attr ibute-value matrices to de- 
note such tags. 

= 

Since we consider s t ructures of l imited depth,  
only seven values of the REL at t r ibute  are dis- 
tinguished. 

r / =  

0 if parent(wi) = parent(wi_l)  
+ if parent(wi) = parent2(wi_l) 

+ +  if parent(wi) = parent3(wi_l) 
- if parent2(wi) = parent(wi_l)  

- -  if parent3(wi) = parent(wi_l)  
= if parent2(wi) = parent2(wi_t) 
1 else 

If more than  one of the conditions above are 
met, the first of the corresponding tags in the 
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list is assigned. Figure 1 exemplifies the encod- 
ing format. 

r 2 = 0  7 . 2 = +  r 2 = + +  

7"2 = - -  

-_ 

7" 2 = - - - -  

° - ~ ° "  

v~ 
m 

r 2 - -  

Figure 1: Tags r 2 assigned to word w2 

These seven values of the ri attribute are 
mostly sufficient to represent the structure of 
even fairly complex NPs, PPs and APs, involv- 
ing PP and genitive NP attachment as well as 
complex prenominal modifiers. The only NP 
components that are not treated here are rela- 
tive clauses and infinitival complements. A Ger- 
man prepositional phrase and its encoding are 
shown in figure 2. 

etwa 50 000 
ADV CARD CARD 
-- ".OatR." ".O=tSg 

approx. 50 000 

mit DM 
APPR NN 

- -  " . D l J t  R 

1 ++ 

with DM 

pro Jahr 
APPR NN 

- -  " . O . t ~  

- 0 

per year 

4.2 A M a r k o v i a n  P a r s e r  

The task of the parser is to determine the best 
sequence of triples (ti, ri, Ci ) for a given sequence 
of part-of-speech tags (to, t l , . . . tn) .  Since the 
attributes TAG, REL and CAT can take only 
a finite number of values, the number of such 
triples will also be finite, and they can be used 
to construct a 2-nd order Markov model. The 
triples Si = (ti,ri,ci) are states of the model, 
which emits POS tags (tj) as signals. 

In this respect, our approach does not much 
differ from standard part-of-speech tagging 
techniques. We simply assign the most probable 
sequence of structural tags S = (So, &, . . . ,  & )  
to a sequence of part-of-speech tags T = 
(to, t t , . . . , tn) .  Assuming the Markov property, 
we obtain: 

argmax P( SIT) (1) 
S 

= argmax P ( S ) .  P (T IS )  
R 

k 

= argmax r I  P(Si lS i -2 ,  S i - t )P( t i lS i )  
R i=1  

The part-of-speech tags are encoded in the 
structural tag (the ti dimension), so S uniquely 
determines T. Therefore, we have P(ti[Si) = 1 
if Si = (ti, ri, ci) and 0 otherwise, which simpli- 

• ties calculations. 

4.3 P a r a m e t e r  E s t i m a t i o n  

The more interesting aspect of our parser is the 
estimation of contextual probabilities, i.e., cal- 
culating the probability of a structural tag Si 
(the "future") conditional on its immediate pre- 
decessors Si-  1 and Si-2 (the "history"). 

history future 

CAT: c/-2] 

ti-2J 

"CAT: ~_ I] 
R E L :  r i - 1  / 
TAG: t i - l J  

"CAT: ci] 
REL: ri 
TAG: ti 

Figure 2: A sample structure. 
explained in Appendix B. 

The labels are In the following two subsections, we contrast 
the traditional HMM estimation method and 
the maximum entropy approach. 
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4.3.1 L i n e a r  I n t e r p o l a t i o n  
One possible way of parameter  est imation is to 
use standard HMM techniques while treating 
the triples Si = (ti, ci,ri} as atoms. Trigram 
probabilities are estimated from an annota ted 
corpus by using relative frequencies r: 

=/(&-2,&-l ,&) 
/ (S i -2 ,  Si-1) 

A s tandard method of handling sparse da ta  is to 
use a linear combination of unigrams, bigrams, 
and trigrams/5: 

/5(&l&-2,&-,) = Air(&) 
+X2r(S/l&-1) 

+Aar (&l&-2 ,  & - l )  

The  Ai denote weights for different context sizes 
and sum up to 1. They are commonly est imated 
by deleted interpolation (Brown et hi., 1992). 

4 .3.2 F e a t u r e s  
A disadvantage of the traditional method  is that  
it considers only full n-grams Si -n+l ,  ..., Si and 
ignores a lot of contextual information, such 
as regular behaviour of the single at tr ibutes 
TAG, REL and CAT. The maximum entropy 
approach offers an attractive alternative in this 
respect since we are now free to define fea- 
tures accessing different constellations of the at- 
tributes. For instance, we can abstract  over one 
or more dimensions, like in the context descrip- 
tion in figure 1. 

history future 

[REL: 0 REL: 
!TAG: NNJ 

Table 1: A partial tr igram feature 

Such "partial n-grams" permit  a bet ter  ex- 
ploitation of information coming from con- 
texts observed in the training data.  We 
say that  a feature fk defined by the triple 
(Mi-2, Mi-1, Mi) of attribute-value matrices is 
active on a trigram context (S~_2, S~_i, S~) (i.e., 
fk(S~_ 2, S~_1, S~) = 1) iff Mj unifies with the 
attribute-value matrix /t'I~ encoding the infor- 
mation contained in S~ for j = i - 2, i - 1, i. A 

novel context would on average activate more 
features than in the standard HMM approach, 
which treats the (ti, ri, c~> triples as atoms. 

The actual features are extracted from the 
training corpus in the following way: we first de- 
fine a number of feature patterns that  say which 
attributes of a trigram context are relevant. All 
feature pat tern instantiations tha t  occur in the 
training corpus are stored; this procedure yields 
several thousands of features for each pat tern.  

After computing the weights Ai of the fea- 
tures occurring in the training sample, we can 
calculate the contextual probabili ty of a multi- 
dimensional structural tag Si following the two 
tags Si-2 and Si-l: 

1 . e~,'~i'Ii(Si-2'&-"sd p(&l&-2, &-,) = E 

We achieved the best results with 22 empir- 
ically determined feature pat terns  comprising 
full and partial n-grams, n _< 3. These pat terns  
are listed in Appendix A. 

5 A p p l i c a t i o n s  

Below, we discuss two applications of our  max- 
imum entropy parser: t reebank annota t ion and 
chunk parsing of unrestricted text. For precise 
results, see section 6. 

5.1 T r e e b a n k  A n n o t a t i o n  

The partial parser described here is used for cor- 
p u s  annotation in a t reebank project,  cf. (Skut 
et hi., 1997). The annotat ion process is more in- 
teractive than in the Penn Treebank approach 
(Marcus et hi., 1994), where a sentence is first 
preprocessed by a partial parser and then edited 
by a human annotator.  In our method,  man- 
ual and automatic annotat ion steps are closely 
interleaved. Figure 3 exemplifies the human- 
computer interaction during annotat ion.  

The annotations encode four kinds of linguis- 
tic information: 1) parts of speech and inflec- 
tion, 2) structure, 3) phrasal categories (node 
labels), 4) grammatical  functions (edge labels). 

Part-of-speech tags are assigned in a prepro- 
cessing step. The  automatic  instantiat ion of la- 
bels is integrated into the assignment of struc- 
tures. The annotator  marks the words and 
phrases to be grouped into a new substructure,  
and the node and edge labels are inserted by the 
program, cf. (Brants et al., 1997). 
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Das Volumen lag in besseren Zeiten bei etwa 
ART NN VVFIN APPR ADJA NN APPR ADV 

Oef.Ne~.Norn.Sg Neut.Nom.Sg." 3.Sg.Past.lnd Oat Comp.'.DaLP1.SI Fem.Dat.Pt" Dat - -  

acht Mil l ionen Tonnen 
CARD NN NN 

Fern.DatPl." Fem.Nom.P1." 

$. 
N 

Figure 3: A chunked sentence (in better times, the volume was around eight million tons). Gram- 
matical function labels: NK nominal kernel component, AC adposition, NMC number  component, 
MO modifier. 

Initially, such annotation increments were 
just  local trees of depth one. In this mode, the 
annotation of the PP  bei etwa acht Millionen 
Tonnen ([at] around eight million tons) involves 
three annotation steps (first the number  phrase 
acht Millionen, then the AP, and the PP).  Each 
time, the annotator highlights the immediate 
constituents of the phrase being constructed. 

The use of the partial parser described in this 
paper makes it possible to construct  the whole 
PP  in only one step: The annotator  marks the 
words dominated by the PP  node, and the inter- 
nal structure of the new phrase is assigned auto- 
matically. This significantly reduces the amount  
of manual annotation work. The method  yields 
reliable results in the case of phrases that  ex- 
hibit a fairly rigid internal structure. More than 
88% of all NPs, PPs and APs are assigned the 
correct structure, including PP  at tachment  and 
complex prenominal modifiers. 

Further examples of structures recognised by 
the parser are shown in figure 4. A more de- 
tailed description of the annotat ion mode can 
be found in (Brants and Skut, 1998). 

5.2 N P  C h u n k e r  

Apart  from treebank annotation, our partial 
parser can be used to chunk part-of-speech 
tagged text into major phrases. Unlike in the 
previous application, the tool now has to deter- 
mine not only the internal structure, but also 
the external boundaries of phrases. This makes 
the task more difficult; especially for determin- 
ing FP attachment.  

However, if we restrict the coverage of the 
parser to the prenominal part  of the N P / P P ,  it 

performs quite well, correctly assigning almost 
95% of all structural tags, which corresponds to 
a bracketing precision of ca. 87%. 

6 R e s u l t s  

In this section, we report the results of a cross- 
validation of the parser carried out on the Ne- 
Gra Treebank (Skut et al., 1997). The corpus 
was converted into structural  tags and parti- 
tioned into a training and a testing part  (90% 
and 10%, respectively). We repeated this proce- 
dure ten times with different par t i t ionings ; the  
results of these test runs were averaged. 

The weights of the features used by the 
maximum entropy parser were determined with 
the help of the Maximum Entropy Modelling 
Toolkit ,  cf. (Ristad, 1996). The  number of fea- 
tures reached 120,000 for the full training cor- 
pus (12,000 sentences). Interestingly, tagging 
accuracy decreased after after 4-5 iterations of 
Improved Iterative Scaling, so only 3 iterations 
were carried out  in each of the test runs. 

The accuracy measures employed are ex- 
plained as follows. 

tags:  the percentage of s tructural  tags with the 
correct value r~ of the REL attribute,  

b r acke t ing :  the percentage of correctly recog- 
nised nodes, 

l abe l led  b r a c k e t i n g :  like bracketing, but  in- 
cluding the syntactic category of the nodes, 

s t r u c t u r a l  m a t c h :  the percentage of correctly 
recognised tree structures (top-level chunks 
only, labelling is ignored). 
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D 
'3 

( 

° I ° 
Ein geradezu pathetischer Aufruf zum 

ART ADV ADJA NN APPRART 

An almost pathetic call for a 

gemeinsamen Kampf 

ADJA NN 

joint fight 

+ 
for einen gerechten Frieden 

APPR ART ADJA NN 

for a just peace 

® 

t0r Oklob4r geplsnlen 

APF'f~ NN AJDJA 

for Oclob,~. ptan:,',ed 

Eine Kostprobe lu l l  emem Progrsmm 

ART NN APtPR ART NN 

A samc~e ol • ~ogt=m 

T 
~Jer  ell>l~',memellen 

A ~  ART M3JA 

Vedo,~'~,duf~l zw, lchen Rock-  ~ Chormu~k 

NN AP'PR TRUNC KON NN 

betweert rock and ¢ho~ m u t ¢  

E'3 

® 

irn Nachtragshaushalt vorgesehene 

APPRART NN AOJA 

in the additional budget planned 

Ober die Stellenverteilung 

APPR ART NN 

about the allocation of jobs 

in der Verwaltung 

APPR ART NN 

in the administration 

Figure 4: Examples of complex NPs and PPs correctly recognised by the parser. In the treebank 
application, such phrases are part of larger structures. The external boundaries (the first and 
the last word of the examples) are highlighted by an annotator, the parser recognises the internal 
boundaries and assigns labels. 

6.1 T r e e b a n k  A p p l i c a t i o n  

In the treebank application, information about 
the external boundaries of a phrase is supplied 
by an annotator. To imitate this situation, we 
extracted from the NeGra corpus all sequences 
of part-of-speech tags spanned by NPs PPs, 
APs and complex adverbials. Other tags were 
left out since they do not appear in chunks 
recognised by the parser. Thus, the sentence 

shown in figure 3 contributed three substrings 
to the chunk corpus: ART NN, APPR ADJA NN 
and APPR ADV CARD NN NN, which would also 
be typical annotator input. A designated sepa- 
rator character was used to mark chunk bound- 
aries. 

Table 2 shows the performance of the parser 
on the chunk corpus. 
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Table 2: Recall and precision results for the in- 
teractive annotation mode. 

measure 
tags 
bracketing 
lab. brack. 
struct, match 

total correct 
129822 123435 
56715 49715 
56715 47415 
37942 33450 

recall I prec. 
95.1% 

87.7% 89.1% 
83.6% 84.8% 
88.2% 88.0% 

6.2 C h u n k i n g  A p p l i c a t i o n  

Table 3 shows precision and recall for the chunk- 
ing application, i.e., the recognition of kernel 
NPs and PPs in part-of-speech tagged text. 
Post-nominal PP attachment is ignored. Un- 
like in the treebank application, there is no pre- 
editing by a human expert. The absolute num- 
bers differ from those in table 2 because cer- 
tain structures are ignored. The total number 
of structural tags is higher since we now parse 
whole sentences rather then separate chunks. 

In addition to the four accuracy measures 
defined above, we also give the percentage 
of chunks with correctly recognised external 
boundaries (irrespective of whether or not there 
are errors concerning their internal structure). 

Table 3: Recall and precision for the chunk- 
ing application. The parser recognises only the 
prenominal part of the N P / P P  (without focus 
adverbs such as also, only, etc.). 

measure 
tags 
bracketing 
lab. brack. 
struct, match 
ext. bounds 

total 
166995 
51912 
51912 
46599 
46599 

correct 
158541 
45241 
43813 
41422 
43833 

recall I prec. 
94.9% 

87.2% 86.9% 
84.4% 84.2% 
88.9% 87.6% 
94.1% 93.4% 

6.3 C o m p a r i s o n  to  a S t a n d a r d  Tagge r  

In the following, we compare the performance of 
the maximum-entropy parser with the precision 
of a standard HMM-based approach trained on 
the same data, but using only the frequencies 
of complete trigrams, bigrams and unigrams, 
whose probabilities are smoothed by linear in- 
terpolation, as described in section 4.3.1. 

Figure 5 shows the percentage of correctly as- 
signed values ri of the R.EL attribute depending 

on the size of the training corpus. Generally, the 
maximum entropy approach outperforms the 
linear extrapolation technique by about 0.5% - 
1.5%, which corresponds to a 1% - 3% difference 
in structural match. The difference decreases as 
the size of the training sample grows. For the 
full corpus consisting of 12,000 sentences, the 
linear interpolation tagger is still inferior to the 
maximum entropy one, but the difference in pre- 
cision becomes insignificant (0.2%). Thus, the 
maximum entropy technique seems to particu- 
larly advantageous in the case of sparse data. 

7 Conclusion 

We have demonstrated a partial parser capa- 
ble of recognising simple and complex NPs, 
PPs and APs in unrestricted German text. 
The maximum entropy parameter estimation 
method allows us to optimally use the con- 
text information contained in the training sam- 
ple. On the other hand, the parser can still be 
viewed as a Markov model, which guarantees 
high efficiency (processing in linear time). The 
program can be trained even with a relatively 
small amount of treebank data; then it can be J 
used for parsing unrestricted pre-tagged text. 

As far as coverage is concerned, our parser 
can handle recursive structures, which is an ad- 
vantage compared to simpler techniques such 
as that described by Church (1988). On the 
other hand, the Markov assumption underlying 
our approach means that  only strictly local de- 
pendencies are recognised. For full parsing, one 
would probably need non-local contextual infor- 
mation, such as the long-range trigrams in Link 
Grammar (Della Pietra et al., 1994). 

Our future research will focus on exploiting 
morphological and lexical knowledge for partial 
parsing. Lexical context is particularly relevant 
for the recognition of genitive NP and PP at- 
tachment, as well as complex proper names. We 
hope that our approach will benefit from re- 
lated work on this subject, cf. (Ratnaparkhi 
et al., 1994). Further precision gain can also 
be achieved by enriching the structural context, 
e.g. with information about the category of the 
grandparent node. 

8 A c k n o w l e d g e m e n t s  

This work is part of the DFG Collaborative Re- 
search Programme 378 Resource-Adaptive. Cog- 
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9~ correct 

95 

90 

95.1% 

94.9% 

I i I I I 

0 2000 4000 6000 8000 10000 12000 
# training sentences 

Figure 5: Tagging precision achieved by the maximum entropy parser (-t-) and a tagger using 
linear interpolation (--e--). Precision is shown for different numbers of training sentences. 

rive Processes, Project C3 Concurrent Gram- 
mar Processing. 

Many thanks go to Eric S. Ristad. We used 
his freely available Maximum Entropy. Mod- 
elling Toolkit to estimate context probabilities. 
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A p p e n d i x  A:  F e a t u r e  P a t t e r n s  

Below, we give the 22 n-gram feature patterns 
used in our experiments. 

tad 

¢2 
ht~ 

. M  

history 
r, t, c r, t, c 

r sibl , t, c r, t, c 

r, C r, C 
t r sibl , C 

r sibl , t r, t 

r , t  r t , c  

r ,c  r t , c  

r r t , c  

r , t , c  r t,C 

r , t , c  r t,C 

t r t , C  

r t , c  

r t , c  

r t , C  
r sibl, t 

r ,  t 

c 

t 
r 

future 
r ,  t ,  C 

r, t, C 

r, t, C 

r, t, C 

r, t 

r, t 

r, c 

r 

r, t 

r~ c 

r, c 

r ,  t ,  C 

r ,  t 

r ,  c 

r ,  t 

r ,  t 

r~ c 

r ,  t . 

r 

r ,  t ,  C 

r ,  t 
r sibl , t 

The symbols r (REL), t (TAG), and c (CAT) 
indicate which attr ibutes are taken into account 
when generating a feature according to a partic- 
ular pattern, r sibl is a binary-valued at tr ibute 
saying whether the word under  consideration 
and its immediate predecessor are siblings (i.e., 
whether or not r = 0). 

A p p e n d i x  B :  T a g s e t s  

This section contains descriptions of tags used 
in  this paper. These are not complete lists. 

B.1 P a r t - o f - S p e e c h  T a g s  

We use the Stuttgart-T/.ibingen-Tagset. The 
complete set is described in (Thielen and 
Schiller, 1995). 

A D J A  attributive adjective 
ADV adverb 
APPR preposition 
APPRART preposition with determiner 
ART article 
C A R D  cardinal number 
KON Conjunction 
NE proper noun 
NN common noun 
PROAV pronominal adverb 
TRUNC first part of truncated noun 
VAFIN finite auxiliary 
VAINF infinite auxiliary 
VMFIN finite modal verb 
WFIN finite verb 
WPP past participle of main verb 

B.2 P h r a s a l  C a t e g o r i e s  
AP adjective phrase 
MPN multi-word proper noun 
N M multi token numeral 
NP noun phrase 
PP prepositional phrase 
S sentence 
VP verb phrase 

B.3 G r a m m a t i c a l  F u n c t i o n s  
AC adpositional case marker 
HD head 
MO modifier 
MNR post-nominal modifier 
NG negation 
NK noun kernel 
NMC numerical component 
OA accusative object 
OC clausal object 
PNC proper noun component 
$8 subject 
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