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A b s t r a c t  

A verb paradigm is a set of inflectional cate- 
gories for a single verb lemma. To obtain verb 
paradigms we extracted left and right bigrams 
for the 400 most frequent verbs from over 100 
million words of text, calculated the Kullback 
Leibler distance for each pair of verbs for left 
and right contexts separately, and ran a hier- 
archical clustering algorithm for each context. 
Our new method for finding unsupervised cut 
points in the cluster trees produced results that 
compared favorably with results obtained using 
supervised methods, such as gain ratio, a re- 
vised gain ratio and number of correctly classi- 
fied items. Left context clusters correspond to 
inflectional categories, and right context clus- 
ters correspond to verb lemmas. For our test 
data, 91.5% of the verbs are correctly classi- 
fied for inflectional category, 74.7% are correctly 
classified for lemma, and the correct joint classi- 
fication for lemma and inflectional category was 
obtained for 67.5% of the verbs. These results 
are derived only from distributional information 
without use of morphological information. 

1 I n t r o d u c t i o n  

This paper presents a new, largely unsupervised 
method which, given a list of verbs from a cor- 
pus, will simultaneously classify the verbs by 
lemma and inflectional category. Our long term 
research goal is to take a corpus in an unana- 
lyzed language and to extract a grammar for 
the language in a matter  of hours using sta- 
tistical methods with minimum input from a 
native speaker. Unsupervised methods avoid 
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labor intensive annotat ion required to produce 
the training materials for supervised methods. 
The cost of annotated data becomes particu- 
larly onerous for large projects across many lan- 
guages, such as machine translation. If our 
method ports well to other languages, it could 
be used as a way of automatically creating a 
morphological analysis tool for verbs in lan- 
guages where verb inflections have not already 
been thoroughly studied. Precursors to this 
work include (Pereira et al, 1993), (Brown et 
al. 1992), (Brill & Kapur, 1993), (Jelinek, 
1990), and (Brill et al, 1990) and, as applied 
to child language acquisition, (Finch & Chater, 
1992). 

Clustering algorithms have been previously 
shown to work fairly well for the classification 
of words into syntactic and semantic classes 
(Brown et al. 1992), but determining the opti- 
mum number of classes for a hierarchical cluster 
tree is an ongoing difficult problem, particularly 
without prior knowledge of the item classifica- 
tion. For semantic classifications, the correct as- 
signment of items to classes is usually not known 
in advance. In these cases only an unsuper- 
vised method which has no prior knowledge of 
the item classification can be applied. Our ap- 
proach is to evaluate our new, largely unsuper- 
vised method in a domain for which the correct 
classification of the items is well known, namely 
the inflectional category and lemma of a verb. 
This allows us to compare the classification pro- 
duced by the unsupervised method to the classi- 
fications produced by supervised methods. The 
supervised methods we examine are based on 
information content and number of items cor- 
rectly classified. Our unsupervised method uses 
a single parameter, the expected size of the clus- 
ter. The classifications by inflectional category 
and lemma are additionally interesting because 
they produce trees with very different shapes. 



The classification tree for inflectional category 
has a few large clusters, while the tree for verb 
lemmas has many small clusters. Our unsuper- 
vised method not only performs as well as the 
supervised methods, but is also more robust for 
different shapes of the classification tree. 

Our results are based solely on distributional 
criteria and are independent of morphology. We 
completely ignore relations between words that 
are derived from spelling. We assume that any 
difference in form indicates a different item and 
have not "cleaned up" the data by removing 
capitalization, etc. Morphology is important 
for the classification of verbs, and it may well 
solve the problem for regular verbs. However, 
morphological analysis will certainly not handle 
highly irregular, high frequency verbs. What is 
surprising is that strictly local context can make 
a significant contribution to the classification of 
both regular and irregular verbs. Distributional 
information is most easily extracted for high fre- 
quency verbs, which are the verbs that tend to 
have irregular morphology. 

This work is important because it develops a 
methodology for analyzing distributional infor- 
mation in a domain that is well known. This 
methodology can then be applied with some 
confidence to other domains for which the cor- 
rect classification of the items is not known in 
advance, for example to the problem of semantic 
classification. 

2 D a t a  

This report is on our investigation of En- 
glish text using verbs tagged for inflectional 
category, l The tags identify six inflectional 
categories: past tense (VBD), tenseless (VB), 
third-person singular present  tense (VBZ), 
other present tense (VBP), -ing (VBG) and par- 
ticiple (VBN). The use of tagged verbs enables 
us to postpone the problem of resolving ambigu- 
ous inflectional forms, such as the homonyms, 
"work" as tenseless and "work" as present tense, 
a conflation that is pervasive in English for these 
categories. We also do not address how to sep- 
arate the past participle and passive participle 
uses of VBN. 

The methods reported in this paper were de- 
veloped on two different corpora. The first cor- 
pus consisted of the 300 most frequent verbs 

IThe verbs were automatically tagged by the Brill 
tagger. Tag errors, such as "[ \VBG" tended to form 
isolated clusters. 
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Table 1: Distribution of verbs by inflectional 
category in 400 most frec 

I n f l e c t i o n a l  Category 
VB 
VBN 
VBD 
VBG 
VBZ 
VBP 

Luent verbs 
Verbs 

109 
80 
76 
67 
46 l 
22 I 

from the 52 million word corpus of the New York 
Times, 1995. 2 For this corpus, both the verbs 
and the contexts consisted of tagged words. As 
a somewhat independent test, we applied our 
methods to the 400 most frequent verbs from a 
second corpus containing over 100 million words 
from the WM1 Street Journal (1990-94). For the 
second corpus, the tags for context words were 
removed. The results for the two corpora are 
very similar. For reasons of space, only the re- 
sults from the second corpus are reported here. 

The distribution of verbs is very different for 
inflectional category and lemma. The distribu- 
tion of verbs with respect to lemmas is typical 
of the distribution of tokens in a corpus. Of 
the 176 lemmas represented in the 400 most fre- 
quent verbs, 79 (45%) have only one verb. One 
lemma, BE, has 14 verbs. 3 Even in 100 million 
words, the 400 th most frequent verb occurs only 
356 times. We have not yet looked at the re- 
l~ition between corpus frequency and clustering 
behavior of an item. The distribution of verbs 
in inflectional categories has a different profile 
(See Table 1). This may be related to the fact 
that, unlike lemmas, inflectional categories form 
a small, closed class. 

3 C l u s t e r  A n a l y s i s  

For each verb we extracted frequency counts for 
left and right bigrams called the left and right 
contexts, respectively. A similarity matrix for 
left and right contexts was created by calcu- 
lating the relative entropy or Kullback Leibler 
(KL) distance 4 between the vectors of context 
frequency counts for each pair of verbs. The 
KL distance has been used previously (Mager- 
man & Marcus (1990), Pereira et al. (1993)) 

7Tagged corpora were provided by the Linguistic 
Data Consortium (http://www.ldc.upenn.edu). 

SUpper and lower case forms are counted as distinct. 
4For an introduction to relative entropy see (Cover 
Thomas, 1991) 



to measure the similarity between two di:stri- 
butions of word bigrams. For the moment; we 
added a small constant to smooth over zero fre- 
quencies. Because the distance between verbi 
and verbj is not in general equal to the distance 
between verbj and verbi, the KL distances be- 
tween each pair of verbs are added to produce a 
symmetric matrix. We tested other measures of 
distance between words. The total divergence 
to the average, based on the KL distance (Da- 
gan et al, 1994), produced comparable results, 
but the the cosine measure (Schuetze, 1993) 
produced significantly poorer results. We con- 
clude that entropy methods produce more re- 
liable estimates of the probability distributions 
for sparse data (Ratnaparkhi, 1997). 

The similarity matrices for left and right con- 
texts are analyzed by a hierarchical clustering 
algorithm for compact clusters. The use of a 
"hard" instead of a "soft" clustering algorithm 
is justified by the observation (Pinker, 1984) 
that the verbs do not belong to more than 
one inflectional category or lemma. 5 A hierar- 
chical clustering algorithm (Seber, 1984) con- 
structs from the bottom up using an agglomer- 
ative method that proceeds by a series of suc- 
cessive fusions of the N objects into clusters. 
The compactness of the resulting cluster is used 
as the primary criterion for membership. This 
method of complete linkage, also known as far- 
thest neighbor, defines the distance between two 
clusters in terms of the largest dissimilarity be- 
tween a member of cluster L1 and a member 
of cluster L2. We determined experimentally 
on the development corpus that this algorithm 
produced the best clusters for our data. 

Figures 1 and 2 show portions of the clus- 
ter trees for left and right contexts. The scales 
at the top of the Figures indicate the height at 
which the cluster is attached to the tree in the 
arbitrary units of the distance metric. The left 
context tree in Figure 1 shows large, nearly pure 
clusters for the VBD and VBZ inflectional cat- 
egories. The right context tree in Figure 2 has 
smaller clusters for regular and irregular verb 
lemmas. Note that some, but not all, of the 
forms of BE form a single cluster. 

To turn the cluster tree into a classification, 
we need to determine the height at which to ter- 
minate the clustering process. A cut point is a 

5The only exception in our da t a  is " 's" which belongs 
to the lemmas BE and HAVE. 
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Figure 1: Verb clusters for left contexts 

line drawn across the tree at height T that de- 
fines the cluster membership. A high cut point 
will produce larger clusters that may include 
more than one category. A low cut point will 
produce more single category clusters, but more 
items will remain unclustered. Selecting the op- 
timum height at which to make the cut is known 
as the cutting problem. 

A supervised method for cutting the cluster 
tree is one that takes into account the known 
classification of the items. We look at super- 
vised methods for cutting the tree in order to 
evaluate the success of our proposed unsuper- 
vised method. 

4 S u p e r v i s e d  m e t h o d s  

For supervised methods the distribution of cat- 
egories C in clusters L at a given height T of 
the tree is represented by the notation in Table 
2. For a given cluster tree, the total number of 
categories C, the distribution of items in cate- 
gories nc, and the total number of items N are 
constant across heights. Only the values for L, 
rnt, and fd will vary for each height T. 

There are several methods for choosing a 
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Figure 2: Verb clusters for right contexts 
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C is the number of categories 
L is the number of clusters 
mz is the number of instances in cluster l 
.fd is the instances of category c in cluster l 
N is the total number of instances for cut T 
nc is the number of instances in category c 

Table 2: Notation 

cut point in a hierarchical cluster analysis. 6 
We investigated three supervised methods, two 
based on information content, and a third based 
on counting the number of correctly classified 
items. 

4.1 Gain  Ra t io  

Information gain (Russell & Norvig, 1995) and 
gain ratio (Quinlan, 1990) were developed as 
metrics for automatic learning of decision trees. 
Their application to the cutting problem for 
cluster analysis is straightforward. Informa- 

6For a review of these methods,  see (Seber, 1984). 
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tion gain is a measure of mutual information, 
the reduction in uncertainty of a random vari- 
able given another random variable (Cover & 
Thomas, 1991). Let C be a random variable de- 
scribing categories and L another random vari- 
able describing clusters with probability mass 
functions p(c) and q(1), respectively. The en- 
tropy for categories H(C) is defined by 

H(C) = - ~p(c)log2p(c) 

where p(c) = nc/N in the notation of Table 
2. The average entropy of the categories within 
clusters, which is the conditional entropy of cat- 
egories given clusters, is defined by 

H(CIL) = - ~ q(1) ~ p(cll)log2p(cll ) 
l c 

where q(l) = m d N  and p(c]l) = ffct/mt in our 
notation. 

Information gain and mutual information 
I(C; L) are defined by 

gain = I(C; L) = H(C) - H(CIL) 

Information gain increases as the mixture of cat- 
egories in a cluster decreases. The purer the 
cluster, the greater the gain. If we measure in- 
fiJrmation gain for each height T, T = 1, ..., 40 
of the cluster tree, the optimum cut is at the 
height with the maximum information gain. 

Information gain, however, cannot be used di- 
rectly for our application, because, as is well 
known, the gain function favors many small 
clusters, such as found at the bottom of a hier- 
archical cluster tree. Quinlan (1990) proposed 
the gain ratio to correct for this. Let H(L) be 
the entropy for clusters defined, as above, by 

H(L) = - ~ q(l)log2q(l) 

Then the gain ratio is defined by 

gain ratio = 
I(C; L) 
H(L) 

The gain ratio corrects the mutual information 
between categories and clusters by the entropy 
of the clusters. .. 



H(L) H(C) 

Figure 3: Relationship between entropy and 
mutual information adapted from (Cover & 
Thomas, 1991). 

4.2 Rev i sed  Gain  Ra t io  

We found that the gain ratio still sometimes 
maximizes at the lowest height in the tree, thus 
failing to indicate an optimum cut point. We ex- 
perimented with the revised version of the gain 
ratio, shown below, that sometimes overcomes 
this difficulty. 

revised ratio = I(C; L) 
H(L) - H(C) 

The number and composition of the clusters, 
and hence H(L), changes for each cut of the 
cluster tree, but the entropy of the categories, 
H(C), is constant. This function maximizes 
when these two entropies are most equal. Fig- 
ure 3 shows the relationship between entropy 
and mutual information and the quantities de- 
fined for the gain ratio and revised ratio. 

4.3 P e r c e n t  Cor rec t  

Another method for determining the cut point is 
to count the number of items correctly classified 
for each cut of the tree. The number of correct 
items for a given cluster is equal to the num- 
ber of items in the category with the maximum 
value for that cluster. For singleton clusters, an 
item is counted as correctly categorized if the 
the category is also a singleton. The percent 
correct is the total number of correct items di- 
vided by the total number of items. This value 
is useful for comparing results between cluster 
trees as well as for finding the cut point. 

5 U n s u p e r v i s e d  M e t h o d  

An unsupervised method that worked well was 
• to select a cut point that maximizes the number 
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of clusters formed within a specified size range. 
Let s be an estimate of the size of the cluster 
and r < 1 the range. The algorithm counts the 
number of clusters at height T that fall within 
the interval: 

• (1 - • (1 + r)]  

The optimum cut point is at the height that has 
the most clusters in this interval. 

The value of r = .8 was constant for both 
right and left cluster trees. For right contexts, 
where we expected many small clusters, s = 8, 
giving a size range of 2 to 14 items in a cluster. 
For left contexts, where we expected a few large 
clusters, s = 100, giving a size range of 20 to 
180. The expected cluster size is the only as- 
sumption we make to adjust the cut point given 
the disparity in the expected number of cate- 
gories for left and right contexts. A fully unsu- 
pervised method would not make an assumption 
about expected size. 

6 R e s u l t s  

While our goal was to use a supervised method 
to evaluate the performance of the unsupervised 
method, the supervised functions we tested dif- 
fered widely in their ability to predict the op- 
timum cut point for the left and right context 
trees. The performance of the gain ratio, re- 
vised ratio, and percent correct are compared to 
the unsupervised method on left and right con- 
text cluster trees in Figures 4 and 5. The x axis 
gives the height at which the cut is evaluated by 
the function, and the y axis is the scaled value 
of the function for that height. The optimum 
cut point indicated by each function is at the 
height for which the function has the maximum 
value. These heights are given in Table 3. For 
the right context tree, for which the optimum 
cut produces many small clusters, there is gen- 
eral agreement between the unsupervised and 
supervised methods. For the left context tree, 
for which the optimum cut produces a few large 
clusters, there is a lack of agreement among the 
supervised methods with the gain ratio failing 
to indicate a meaningful cut. The maximum 
for the unsupervised method falls between the 
maxima for the revised ratio and percent cor- 
rect. Based on these results, we used the un- 
supervised maximum to select the cut point for 
the left and right context cluster trees. 

There are four steps in the analysis of the 
data. First, the cutpoint for the left context 



Table 3: Heights for maximum values 
Supervised Left Right  
Methods  ]Con tex t s  Contexts  
Gain ratio l 1 12 
Revised ratio 33-34 11 
Percent correct 15 ] 10 
Unsupervised  18-22 ' 12 

tree is determined. Second, the right similarity 
matr ix is enhanced with da ta  from left context 
clusters. Third, the cut point for the enhanced 
right context tree is determined. Finally, the 
verbs are cross-classified by left and right con- 
text cluster membership. 

Step 1: We select the cut point for the left 
context tree at height T = 18, the unsupervised 
maximum. This cut creates clusters that  axe 
90.7% correct as compared to 91.5% at height 
T = 15. At T = 18 there are 20 clusters for 
6 inflectional categories, of which 6 are in the 
size range 20-180 specified by the unsupervised 
method. 

Step 2: Reasoning that  two verbs in the same 
cluster for inflectional category should be in dif- 
ferent clusters for lemmas, 7 we created a new 
similarity matrix for the right context by in- 
creasing the distance between each pair of verbs 
that  occurred in the same left context cluster. 
The distance was increased by substituting a 
constant equal to the value of the maximum 
distance between verbs. The number of verbs 
correctly classified increased from 63.5% for the 
original right context tree to 74.7% for the en- 
hanced right context tree. 

Step3: We select the cut point for the en- 
hanced right context tree at height T = 12, 
the unsupervised maximum. This cut creates 
clusters that  are 72.2% correct as compared to 
74.7% at height T = 10. There  are 155 clusters 
at height T = 12, which is 21 less than the total 
number of lemmas in the da ta  set. 29% of the 
clusters are singletons which is lower than the 
proportion of singleton lemmas (45%). 60% of 
the singleton clusters contain singleton lemmas 
and are counted as correct. 

Step ~: Each left context cluster was given 
a unique left ID and labeled for the dominant 
inflectional category. Each right context clus- 
ter was given a right ID and labeled for the 
dominant lemma. By identifying the left and 

7This is true except for a few verbs that have free 
variation between certain regular and irregular forms. 
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Table 4: 
Cluster  ID 

Righ t  68 
Left 12 VBZ 
Left 19 VBG 
Left 11 VBN 
Left 8 VBD 
Left 7 VB 

R igh t  69 
Left 19 VBG 
Left 6 VBZ 

~Left 7 V B  
R i g h t  70 

Left 13 VBG 
Left 10 VBZ 
Left 1 VBP 
Left 5 VBN 
Left 7 VB 
Left 8 VBD 
Right 71 
Left 19 VBG 
Left 10 VBZ 
Left 1 VBP 
Left 7 VB 
Left 8 VBD 

Verb paradigms 
Label Verb 

CALL 

ADD 

COME 

MAKE 

calls/VBZ 
calling/VBG 
called/VBN 
called/VBD 
caI1/VB 

adding/VBG 
added/VBD 
add/VB 

coming/VBG 
comes/VBZ 
come/VBP 
come/VBN 
come/VB 
came/VBD 

making/VBG 
makes/VBZ 
make/VBP 
make/VB 
made/VBD 

right cluster membership for each verb, we were 
able to predict the correct inflectional category 
and lemma for 67.5% of the 400 verbs. Table 
4 shows a set of consecutive right clusters in 
which the lemma and inflectional category are 
co.rrectly predicted for all but  one verb. 

6.1 C o n c l u s i o n  

We have clearly demonstrated that a surprising 
amount of information about the verb paradigm 
is strictly local to the verb. We believe that 
distributional information combined with mor- 
phological information will produce extremely 
accurate classifications for both regular and ir- 
regular verbs. The fact that information con- 
sisting of nothing more than bigrams can cap- 
ture syntactic information about English has 
already been noted by (Brown et al. 1992). 
Our contribution has been to develop a largely 
unsupervised method for cutting a cluster tree 
that produces reliable classifications. We also 
developed an unsupervised method to enhance 
the classification of one cluster tree by using 
the classification of another cluster tree. The 
verb paradigm is extracted by cross classifying 
a verb by lemma and inflectional category. This 
method depends on the successful classification 
of verbs by lemma and inflectional category sep- 
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arately. 
We are encouraged by these results to con- 

tinue working towards fully unsupervised meth- 
ods for extracting verb paradigms using distri- 
butional information. We hope to extend this 
exploration to other languages. We would also 
like to explore how the dual mechanisms of en- 
coding verb lemmas and inflectional categories 
both by distributional criteria and by morphol- 
ogy can be exploited both by the child language 
learner and by automatic grammar extraction 
processes. 
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