
An improved Earley parser with LTAG

Yannick de Kercadio

LIMSI-CNRS, BP 133, F-91403 Orsay cedex, FRANCE
TALANA, UFR de Linguistique, Universite Paris 7

kercadio@talana.linguist.jussieu.fr or kercadio@lirnsi.fr

1 Introduction

This paper presents an adaptation of the Ear
ley algorithm (EARLEY, 1968) for parsing with
lexicalized tree-adjoining grammars (LTAGs).

This algorithm constructs the derivation tree
following a top-down strategy and verifies the
valid prefix property. Many earlier algorithm
do not have both of this properties (ScHABES,
1994). The Earley-like algorithm described in
(SCHABES and Josm, 1988) verifies the valid
prefix property, but the algorithm presented
here is thought to be easier to improve using
some properties of LTAGs.

2 Representation of a LTAG with a
set of rules

A LTAG is a context-free grammar (CFG) on
trees, the elementary operations of which ate
the adjunction and the substitution. The Earley
algorithm can be used for parsing with any CFG
insofar as the elementary operation is the con
catenation. Hence, the Earley algorithm cannot
sir:nply be used for LTAGs, but the meaning of
an edge in the derivation tree needs to be spec
ified in t erms of words strings and concatena
tions.

Substitution and terminal nodes can be han
dled using ordinary context-free rules. Such a
rule represents a node in the derivation tree and

l'd like to thank A. Abeille, M.-H. Candito, F. lssac
and P. Paroubek for their valuable help and advices

84

captures the linear word order of the derin•.J
string.

An adjunction can be seen as two correlat('d
substitutions: the derived string of t he part of
the adjoined tree on the left. of t he foot nodr> j,..

inserted in some location while the ot lwr pa r1
of the string is inserted in some ot her loea t io11
farther in the string. The string located bei \n•i>11
the two substitution points is the derivecl stri1t!!_
of the subtree under the adjoi11ed node. Tl11·
correlation between these two su bst i tu tio11" j,..

that either none or both of them shoulcl ocT11 r.
thus a synchronization must be transmitted 11 p
to the second location in order to preserYe t lt j,..
constraint.

The locations of these pairs of places follm\·,..
a stack order: there is an equal ntunber oJ'
"first places" and "second places'' between t\\·n

matching places. Therefore, a unique s~·mb11I
(# hereafter) can be used to represent an~· ··,..rr.
ond place", while a ß.1Y notation can be llS<'d 111

represent a "first place" for an adjunction of"
tree with root X.

The figure 1 shows a few rules representi11!!,
some elementary trees. A star denotes a foul

node in an auxiliary tree. T he <l ra \\' ll link:< i111 ·
plements the correlation information bet\\'PPt1
the two substitution points representiiig an ad·
junction. Because of the stack strnrturP or l lii.
information, the links need not to be PXplki1 I~
st.ored . Also note tha.t t.hese trees ;irP fh11 ! 1111

VP). See (ABEILLE, 1991). This is no t rna 11d :1·
tory and the trees usually used for Cnglisli 1·;111
be encoded the same way.

As each node in the derivation trPP rPprPsP11l
an elementary tree, and alj en~r~· ek•111P11 I ;1 r_\

Rule for the transitive verb to love (anOVnl), without adjunctions:
aS -+ aN love aN

Rule for the transitive verb to love (anOVnl), with possible a.djunctions on Sand on F:

aS -+ ßS aN ßV love # oiN #
Rule for the determiner the (ßDetN), with a possible adjunction on the root N:

ßN -+ ßN the * #

Figure 1: Examples of rules

tree can be represented by a rule which cap
ture the. linear ward order of the derived string,
this is a way to capture the linear ward order
in the derivation tree. The usual derivation tree
(as defined in (VIJAY-SHANKER, 1987)) can be
obtained by linking the subtree of every Ufirst
place" to the left of the subtree of the match
ing "second place" and by storing the resulting
structure under the "second place".

3 Earley-like parsing driven by the
derivation tree

In this section, we show how the stacked rela
tionships between the "first places" and "second
places" can be represented in a structure which
is suitable for the Earley algorithm.

Following Earley, a partial parsing can be rep
resented by an item, which consists in a rule, a.·
position in the rule (all the symbols loca.ted on·
its left have been recognized), and two lists of
pairs of references to items. The first list keeps
track of the requesters of the rule, that is to
sa.y the items which are waiting for the rule to
be recognized in order to be shifted. The sec
ond element of each pair is used as a relay stor
age during the recognition of the second part of
an auxiliary tree. The second list implements
the previously mentioned stack of "first places".
The first elernent of each pair it contains is the
data part of the stack item. lt is a reference to
an item wa.iting on a foot symbol. The second
element in each pair is used to implement the
stack. lt is a reference to an item waiting for an
adjunction.

A number of primitive operations will be ap-

85

plied on this data structure. They are summed
up in the table 2. When a primitive is applied
on a given set, the second column indicates ho\\'
many actions are to be taken. The rule and
mark columns indicate which item is t.o be in
troduced. If no item with this rule and thi~

position mark is present in the set. it is intro
duced with the indicated lists for the requester~
list and the stack list. Otherwise, the in<licated
lists are merged with the ones of the existing
item in the set. This merging step ensures that
the spa.tial complexity ha.s a. polynomial upper
bound.

The algorithm consists in working on each set
in turn, following the word order. The initial
set is initialized using init. Then an evolution
stage applies a predict or reduce primitive on
every newly introduced item, the type of whkh
is chosen from the symbol in the rule \\·hich b
right after the ma.rk. For instance. if it is an
aX (a substitution is expected), then predict
a(item, X) is used. If there is no such symbol.
them a. reduce primitive is used, depending on
the type (a or ß) of the left part of the rule.

· . This process is then run on each set in turn.
replacing inits with a shift 011 every item ex
pecting (i.e. with the mark right on the left of)

the word associated with the current set.
.The sentence is accepted if there is an item in

the last set with a ru!e deriving the axiom {S).
with the mark at the end of the rnle. with nn
empty requesters list. lt should be noted thnt
this algorithm does not give an anal~·sis of t hfl
sentence. An additional structure is requirf'd
in each item to keep the analysis information.

primitive applied for each rule mark req stack
init() rule r with root o:S r 0 {} {}
shift(item) once item.rule item.mark + 1 item.req item.st;ick
predict o:(item, X) rule r with root o:X r 0 {(item. -)} {}
predict ß(item, X) . rule r with root ßX r 0 {(item. -)} {}
and once item.rule item.mark + 1 item.req {(-. item)}
predict •(item) {x, y) in item.req x.rule x.mark + 1 x.req { (item. x)}
reduce #(item) (x, y) in item.stack, x .rule x.mark + 1 { (item. ~·) } x.stack

where x is not -
h y) in item.stack item.rule item.mark + 1 item.req r.stack

reduce o:(item) (x, y) in item.req x.rule x.mark + 1 x.req x.st.ack
reduce ß(item) (x, y) in item.req x.rule x.mark + 1 x.req ~·.sta rk

Figure 2: Primitives of the algorithm

However, every edge in the derivation tree is de
tected through the fact that a reduce primitive
is run. This additional structure should cope
with the ambiguities and permit a. polynomial
representa.tion of ambiguities from other level of.
analysis (features unification, semantic analysis
and so on). This is a. quite general matter: the
number of solutions to the problem of parsing
being (potentially) exponential, a. simple list of
analyses would require a.n exponential time to
be output. The usual assumption that the num
ber of analyses is "small" is not acceptable in
the context of pa.rsing oral utterances' (because
of potential a.uto-repairing constructs}. 'there
fore, the repreSenta.tion of the outputs .should
grow polynomia.lly (and not exponentially) with
the number of ambiguities.

4 Benefits in using this strategy

The toirdown strategy of this algorithm has a
trivial, but very useful property: this algorithm
do not require the uttera.nce to be cut into sen
tences in order to parse it. Instead, one can
perform an init primitive in every set where
a rule with the a.xiom as its left part a.nd an
empty requesters list is found. lt has the effect
of concurrently trying to parse a new sentence
from this point. This property is very impor
tant when parsing oral utterances: there is no
practical other way to find out where sentences
begin and end.

Moreover, the combina.tion of both the top-

86

down strategy and the valid prefix property
enables valuable performance improvements .
Many of the LTAGs properties (SRIN!VAS. 1997)
can be used to avoid the introduction of unrel
eva.nt elementary trees, thus allowing t.he use of
a. richer gramma.r.

The data structures construct a derivation
tree. Therefore, a. rough sema.ntic analysis can
be performed to check whether some newly dis
covered potential edge in the deriva.tion tm•
makes sense or not. If not, it can be invalidated ·
as soon as it is discovered.

When fea.tures are used, they can be checked
following only the derivation tree (t.he derived
tree is not needed) . This is due to the fa('t

tha.t the nodes in the derivation tree a re morf'
than simple atoms: they are the rules that havl'
been used for parsing. Like with semantk an11l
ysis, the features unification can be clone 011

partial a.na.lysis, after every red uction. How
ever, it is not clear whether this would result in

· .a.n improvement or not: the cost of the 11nific11-
tion might overcome the benefits of invalidatin~
some partial analysis a.s soon as possible.

Due to the lexicaliza.tion, terminals (wor<I~)

are put in the trees during lexicon access. \ \'hen
a rule is invocated in a set S. it always contai11"
at least one terminal (lexicalization). All thl'
symbols on the left of the first terminal h11ve tu

be recognized before the set where this ternti
nal is to be found . This is a wa~· to filter t h~

candida.te rules for recognizing these s»ml>ob.

Former parsers atieady used the span of trees
to eliminate trees that are too !arge to parse
the sentence (XTAG, for instance), but this al
gorithm permits considering the span properties
locally, at every prediction stage.

Last but not least, the data structures used
for this algorithm can be enriched in successive
analysis stages. That is to say, when no analy
sis is found, it is possible to enrich the sets with
new rules. This property is useful to construct a
fault tolerant parser, accepting unknown words,
using weighted syntadic rules (the weights indi
cating whether a given rule is linguistically per
fect or somewhat deviant), and accounting for
auto-repairing sequences in an oral utterance.

5 Prospects

Using these properties enables the design of
an efficient oral-specific robust parser using a
grammar of the written language (ABEILLE,

1991). We plan to incorporate a syntactic
LTAG-based component in a working real-time
speech understanding system (GAUVAIN et al.,
1997,) to improve its recognition performances.

References
ABEILL~, A. 1991. Une grammaire lexiCCJlisee

d'Arbres Adjoints pour le frani;ais. Ph.D. thesisJ
Universite Paris 7.

ABEILLE, A., K. BISHOP, s. COTE, and Y. ScH
ABES. 1990. A lexicalized tree adjoining gram
mar for english. Technical report, Department of
Computer and Information Science, University of
Pennsylvania, Philadelphia.

EARLEY, J. C. 1968. An efficient context-free pars· .
ing algorithm. Ph.D. thesis, Carnegie-Mellon Uni
versity, Pittsburgh.

GAUYAJN, J.-L., S. BENNACEF, L. DEVILLERS,
L. LAMEL, and S. ROSSET. 1997. Spaken lan
guage component of the mask kiosk. In K. Vargh
ese and S. Pfleger, editors, Human Comfort and
Security of InfoNT1ation Systems. Springer-Verlag,
pages 93-103.

ScHABES, Y. 1994. Left-to-right parsing of lexi
calized tree-adjoining grammars. Compulalional
Linguistics, 10(4):506-524.

SCHABES, Y. and A. K. JosHJ. 1988. An earley-type
parsing algorithm of tree adjoining languages. In

87

26th Meeting of the Associalion fr)I' C'omp11ffl
lional Linguistics, Buffalo.

SR!NJVAS, B. 1997. Complexity of /o·ical dfsc1·i1'
tions and its releuance to partial pnrsing. Ph.D.
thesis, Department of Computer and Inf"""lat.ion
Science, University of Pennsylvania. Phila<lelphi11.

VIJAY-SHANKER, K. 1987. A study of l1'ff <trf

joining grammars. Ph.D. thesis. Departmenr of
Computer and Information Science. L:ni\•ersity of
Pennsylvania, Philadelphia.

VIJAY-SHANKER, K. and A. K. Josm. Hl85. Som"
computational properties of tree adjoining gram
mars. In 23rd Meeting of tlle Associatio11 for
Computational Linguistics, pages 82-93. Chicago.

