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We define Recursive Matrix Systems (RMS), 
a highly parameterizable formalism that allows 
for a clear separation of various kinds of recur
sion. One instance of RMS, namely context-free 
RMS with two rows and a specific reading inter
pretation turns out to be weakly equivalent to 
TAG. This allows for the transfer ofresults from 
TAGs to this dass of RMS. Furthermore, the 
equivalence proof is constructive and exhibits a 
very close relationship between the structures of 
the two formalism, namely trees and matrices. 
This allows to transfer interesting restrictions 
which can easily be defined in RMS to TAG. In 
particular, the obvious restriction of context
free RMS to regular RMS results in a restricted 
form of TAG which appears sufficient for natu
ral language processing, albeit being less com
plex than regular TAG. 

Recursive Matrix Systems 

A Recursive Matrix is a finite matrix whose el
ements are either terminal symbols or again re
cursive matrices (see Figure 1). Recursive ma
trices are created by grammars (in particular by 
regular and context-free grammars) that have 
vectors as their terminal symbols. Strings are 
derived from a recursive matrix by a reading in
terpretation which reads the terminal symbols 
of a matrix line-by-line either from left-to-right 
or right-to-left and recursively descends for ele
ments that are recursive matrices. In the follow
ing, we consider only Recursive Matrices with a 
constant number of rows in all (sub-} matrices. 
This number n is an important parameter. We 
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denote the set of all recursive matrices as RM. 

a b c E 

a b 

d E a c 

In this example the element in the second row, 
fourth column is the recursive (sub-) matrix 

: : ~ . The other elements are terminals. 
d • f 

Figure 1: A recursive matrix. 

A regular (context-free) Recursive Matrix 
System (reg-RMS, cf-RMS) is a tuple ( G,I} 
where G is a grammar that generates recursive 
matrices · and I is an interpretation to read a 
string from each recursive matrix. L{G) is the 
set of all recursive matrices derived by the gram
mar G. L(G,I) is the set of all strings derived 
from the recursive matrices in L(G) by the in
terpretation l. 

A regular (context-free) grammar G that 
generates recursive matrices is a grammar with 
terminal symbols Vec1, nonterminals N, a start 
symbol S from N and a set P of regular 
( context-free) rules. All vectors v E Vec have 
constant size n; the elements of v are either 
symbo!s from a set T {these are ca!led the termi
nal symbols of the RMS) or non-terminals from 
N. T, V, N, P are finite but non-empty sets, N 
n T = 0. 

The derivation relation :::::} is defined over Ex
tended Recursive Matrices, i.e., concatenations 

1not to be confused with T, the terminal symbols of 
the RMS. 
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Figure 2: A derivation with RMS grammar G1• 

of vectors and non-terminals, where the ele
ments of a vector are either terminal-symbols of 
the RMS, non-terminals of G or Extended Re
cursive Matrices. Each derivation step rewrites 
exactly one non-terminal according to a rule in 
P. The language L( G) is defined as L( G) := 
{rJS ~ r,r E RM}. 

The following example grammar is used to show 
the derivation process: 

G1 = ( T={a,b,c,d,e,f},N={S,A}iS,P={S -t 

[~]s, S-+ Gl· A-+ mA, A-+ m}) 

All vectors have the size 3 and all rules are 
regular. G 1 is a reg-RMS. When applying the 
first or third rule, a vector is added to the 
matrix. When applying the second rule, a 
descend into the next recursive "matrix-level" 
takes place. Only the last rule is a terminating 
one. A possihle derivation with the grammar G1 

is shown in figure 2. Note that the horizontal 
dimension of the recursive matrices is unbound. 

The reading interpretation of a recursive ma
trix is derived from a vcctor of directions for 
each row of the matrix, i.e., an n-dimensional 

vector I = ( ::1 J of elements ij E { -t, +--}. lt is 
'k 

recursively defined as shown in figure 3. 

For example, with I = [ ~ ] , we get 

a 

a 

d 
read( 

b 

b 

e 

d • f 
d • ( 

c e 

c 1mn 
a c 

)= 

abc o read( d • ' ) o cba o dac = 
abc o def o fed o def o cba o dac = 
abcdef f eddefcbadac. 

The Equivalence of CF-RMS;:! and 
TAG 

Although a TAG can be directly transformed 
into a weakly equivalent RMS, it is easier to 
demonstrate if we assume a normal form for 
TAG where no adjunction is possible into root 
and foot nodes, the root node has only one 
daughter, and there are no more than two in
ner nodes dominating the foot node. Figure 4 
shows how such an auxiliary tree ß can be di
rectly mapped into a rule P of a context- free 
RMS ;:! . The details for mapping the subtrees 
s, t, u,.v to submatrices of the right-handside of 
P are omitted here. 

Note the close resemblance of the notation 
of a TAG as an RMS to the notation of a 
TAG as a Linear Context-Free Rewriting Sys
tem (LCFRS, Weir 1988). Even though in gen
eral, RMS can be captured as LCFRS, the par
ticular structure of RMS which separates dif
ferent dimensions of recursion has lead us to a 
number of observations which are not obvious 
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read(recursive matrix, I) := read(row1, ii) o ... o read(rowk, ik) 
read(row[l..mj, -+) := read(row[l]J) o read(row[2 .. m], -+) 
read(row[l..m], +-) := read(row[m], I) o read(row[l..m-1],-+) 
read(terminal symbol, I) := terminal symbol 

[ 
rowi ] Figure 3: Definition of the reading interpretation read for recursive matrix = : 

when looking at TAGs or even at LCFRS. 

Figure 4: Tranforming a TAG into a weakly 
equivalent RMS. 

Like contect-free grammars, context-free 
RMS can be transformed into a normal form 
resembling Ohomsky normal form. In such a 
transformed cf-RMS;: , all rules are of the form 
shown in figure 5. 

Figure 5: Anormal form for cf-RMS;: . 

Figure 6 sketches how a TAG grammar is con
structed from such a cf-RMS that derives the 
same language. 

Given this relation, the question arises 
whether a TAG can be transformed into a reg
ular RMS, i.e., whether the non-terminal B in 
Figure 4 can be dropped. The answer is no, and 
it can be seen, e.g., by the fact that the normal 
form transformation cannot be tightend up to 
only one inner node dominating the foot node. 
This implies that regular RMS are a proper sub
set of context-free RMS2 • 

2 Actually, we found this relation when failing to show 

rot.u.i, 

On the other hand, this emphasizes a pa
rameter of TAGs that was not obvious before: 
Even though the weil known example gram
mars for deriving L4 = {anbncndn} and Lcopy = 
{wwjw E { a, b}*} already exhibit non context
free properties and even cross-serial dependen
cies, they are restricted in the sense that their 
trees have only one node dominating the foot 
node that is available for adjunction. While it 
is not easy to give an example for the effects that 
can be achieved with two or more such nodes, 
when looking at RMS, this parameter becomes 
obvious (i.e. as the difference between regular 
or context-free RMS). 

Looking at natural languages, it appears that 
in fact the restriction to TAG with only one 
adjunction node on the spine (an important re
striction of regular RMS) are sufficient since re
cursive, unbounded dependencies are restricted 
to one type (e.g., either embedded or cross
serial), but don't occur intertwined with a sec
ond type of recursive, unbounded dependencies. 

It remains unclear though, whether the sec
ond restriction of regular RMS, which in TAG 
terms means that no path from the root to a 
leaf can have more than one available adjunc
tion node is too strong. 

Current Work 

We are currently exploring the consequences of 
the restrictions tbat reg-RMS have compared to 
CF-RMS. Exploiting the equivalence of TAGs 
and RMS allows us to adopt results for TAGs 
for RMS. A point of special interest is pars
ing and its time complexity. Taking any of the 
various known parsing algorithms for TAGs im
mediately gives us an O(n6 ) parsing algorithm 

the equivalence of regular RMS and TAG, forcing us to 
extend RMS to context- free RMS. 
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Figure 6: Elementary trees constructed for each rule of a cf-RMS ";::! in normal form. 

for CF-RMS;: . Moreover, given the tight cou
pling between the grammar rules of an RMS and 
the elementary trees of the equivalent TAG, we 
can find stronger restrictions on the steps of the 
TAG parser if the original RMS grammar is reg
ular and not context-free. In particular, using 
the algorithm by (Nederhof 1997), we conjec
ture that reg-RMS can be parsed in at most 
O(n5 ) time. 

A f urther avenue of research is the fact that 
the context-freeness of RMS is not necessary 
to construct grammars that exhibit cross-serial 
dependencies, one of the core arguments for 
TAGs. While 2- dimensional reg-RMS with a 
reading interpretation of ::: ( :: ) are sufficent 
to exhibit cross-serial dependencies (center
embedded dependencies resp.), they can't ex
hibit both. However, 3-dimensional reg-RMS 
are sufficient and therefore a candidate for a 
further restriction on TAGs for natural lan
guage processing which might result in a fur
ther reduction of the time complexity ofparsing. 
While such a restriction might not be obvious 
when looking at TAG trees> the representation 
as an RMS a.llows for a vcry succint formulation. 
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