
Experiences with the GTU grammar development environment

Mar t in Volk
University of Zurich

Department of Computer Science
Computational Linguistics

Winterthurerstr. 190
CH-8057 Zurich

volk©if i. unizh, ch

Dirk Richarz
University of Koblenz-Landau

Institute of Computational Linguistics
Rheinau 1

D-56075 Koblenz
richarz©informatik, uni-koblenz, de

A b s t r a c t

In this paper we describe our experi-
ences with a tool for the development
and testing of natural language gram-
mars called GTU (German: Grammatik-
Testumgebumg; grammar test environ-
ment). GTU supports four grammar for-
malisms under a window-oriented user in-
terface. Additionally, it contains a set
of German test sentences covering various
syntactic phenomena as well as three types
of German lexicons that can be attached to
a grammar via an integrated lexicon inter-
face. What follows is a description of the
experiences we gained when we used GTU
as a tutoring tool for students and as an ex-
perimental tool for CL researchers. From
these we will derive the features necessary
for a future grammar workbench.

1 In t roduct ion

GTU (German: Grammatik-Testumgebung; gram-
mar test environment) was developed as a flexible
and user-friendly tool for the development and test-
ing of grammars in various formats. Throughout
the last 7 years it has been successfully used as a
tutoring tool to supplement syntax courses in com-
putational linguistics at the Universities of Koblenz
and Zurich.

GTU has been implemented in Arity Prolog under
DOS and OS/2, and in SICStus Prolog under UNIX.
In this paper we will concentrate on the UNIX ver-
sion. GTU in this version is a stand-alone system
of about 4.5 MB compiled Prolog code (not count-
ing the lexicons) 1. GTU interacts with 3 German
lexicons:

lAccording to rearrangements of the operating sys-
tem the actual memory requirements total about 7 MB
for both SUN OS 4.x and SUN OS 5.x.

1. a small hand-coded stem-lexicon whose vocabu-
lary has been tailored towards the test sentences
(This lexicon also contains selectional restric-
tions for all its nouns and adjectives.),

2. GerTWOL (Oy, 1994), a fast morphology anal-
ysis program, and

3. PLOD, a full-form lexicon that has been derived
from the CELEX lexical database (Baayen,
Piepenbrock, and van Rijn, 1995).

GTU supports grammars under four formalisms:

1. Definite Clause Grammar (DCG, (Pereira and
Shieber, 1987)) augmented with feature struc-
tures,

2. Immediate Dominance / Linear Precedence
Grammar (ID/LP; a subset of GPSG),

3. Generalized Phrase Structure Grammar
(GPSG, (Gazdar et al., 1985)),

4. Lexical Functional Grammar (LFG, (Kaplan
and Bresnan, 1982)).

Additionally, GTU provides a first step towards
semantic processing of LFG f-structures. Thus a
grammar developer may specify the way the seman-
tic module computes logical expressions for an f-
structure using semantic rules. In another module
the selectional restrictions of the hand-coded lexi-
con can be used to compute if (a reading of) a sen-
tence is semantically anomalous. This module can
be switched on and off when parsing a sentence.

GTU's features have been published before (see
(Jung, l%icharz, and Volk, 1994) or (Volk, Jung, and
Fticharz, 1995)). In this paper we concentrate on
evaluating GTU's features, comparing them to some
other workbenches that we have access to (mostly
GATE (Gaizauskas et al., 1996) and the Xerox LFG
workbench (Kaplan and Maxwell, 1996)). From
this we derive recommendations for future grammar
workbenches.

107

2 G T U - i t s m e r i t s a n d i t s l i m i t s

G r a m m a r r u l e n o t a t i o n

One of the pr imary goals in the GTU project was to
support a g r ammar rule notation that is as close as
possible to the one used in the linguistics literature.
This has been a general guideline fi)r every formal-
ism added to the GTU system. Let us give some
examples. Typical ID-rules in GTU are:

(1) S -> NP[X],
VP[X] [X = [kas=nom].

(2) NP[kas=K] -> Det[kas=K, hUm=N],
(AdjP[kas=K, num=N]),
N[kas=K, num=N] .

Rule (I) says, that a constituent of type S con-
sists of constituents of type NP and VP. The feature
structures are given in square brackets. A capital
letter in a feature structure represents a variable.
Identical variables within a rule stand for shared val-
ues. Hence, the feature structures for NP and VP in
rule (1) are declared to be identical. In addition the
feature structure equation behind the vertical bar
[specifies that X must be unified with the feature
structure [kaa=nom]. Rule (2) says that an NP con-
sists of a Det, an optional AdjP and an N. It also says
that the features kas and arm are set to be identi-
cal across constituents while only the feature kas is
passed on to the NP-node.

There are further means for terminal symbols
within a g r a m m a r and a reserved word representing
an empty constituent.

In our experience the g r a m m a r rule notation helps
the students in getting acquainted with the system.
But students still need some t ime in understanding
the syntax. In particular they are sometimes misled
by the apparent similarity of GTU's ID-rules to Pro-
log DCG-rules. While in Prolog constituent symbols
are a toms and are usually written with lower case
letters, G T U requires upper case letters as is custom-
ary in the linguistic literature. In addition students
need a good understanding of feature structure uni-
fication to be able to manipulate the grammat ica l
features within the g r am m ar rules.

For writing g r a m m a r rules G T U has an inte-
grated editor that facilitates loading the g rammar
into GTU ' s database. A g r a m m a r thus becomes
immediately available for testing. Loading a gram-
mar involves the translation of a g r am m ar rule into
Prolog. This is done by various g r am m ar proces-
sors (one for each formalism). The g r am m ar pro-
cessors are SLR parsers generated from metagram-
mars. There is one me tag rammar for each gram-
mar formalism describing the format of all admissi-

ble g rammar rules and lexicon interface rules under
this formalism.

Writing large g rammars with G T U has sometimes
lead to problems in navigation through the g r ammar
files. A g rammar browser could be used to alliviate
these problems. The Xerox LFG-WB contains such
a browser. It consists of a clickable index of all rule
heads (i.e. all defined constituent symbols). Via this
index the g r ammar developer can comfortably access
the rule definitions for a given constituent.

S t a t i c g r a m m a r c h e c k s

For the different formalisms in GTU, different types
of parsers are produced. GPSG g rammars are pro-
cessed by a bo t tom-up chart parser, DCG and LFG
grammars are processed by top-down depth-first
parsers. All parsers have specific problems with
some structural properties of a g rammar , e.g. top-
down depth-first parsers may run into infinite loops
if the g r ammar contains (direct or indirect) left re-
cursive rules.

Therefore G T U provides a static check for detect-
ing left recursions. This is done by building up a
graph structure. After processing all g r a m m a r rules
and inserting all possible edges into the graph, the
g rammar contains a possible left recursion if this
graph contains at least one cycle. In a similar man-
ner we can detect cycles within transitive LP rules
or within alias definitions.

These checks have shown to be very helpful in un-
covering structural problems once a g r ammar has
grown to more than two dozen rules. The static
checks in G T U have to be explicitly called by the
g r ammar developer. It would be bet ter to perform
these checks automatical ly any t ime a g r a m m a r is
loaded into the system.

A model for the employment of g r a m m a r checks
is the workbench for affix g rammars introduced by
(Nederhof et al., 1992), which uses g r a m m a r checks
in order to report on inconsistencies (conflicts with
well-formedness conditions such as that every non-
terminal should have a definition), properties (such
as LL(1)), and information on the overall g r a m m a r
structure (such as the is-cMled-by relation).

O u t p u t in d i f f e r e n t g r a n u l a r i t i e s

One of G T U ' s main features is the graphics display
of parsing results. All constituent structures can be
displayed as parse trees. For LFG-grammars G T U
additionally outputs the f-structure. For DCG and
GPSG the parse tree is also displayed in an indented
fashion with all features used during the parsing pro-
cess. Output can be directed into one or multiple
windows. The multiple window option facilitates the

108

comparison of the tree structures on screen. Pars-
ing results can also be saved into files in order to
use them in documentations or for other evaluation
purposes.

The automat ic graphic display of parsing results
is an important feature for using GTU as a tutoring
tool. For students this is the most striking advantage
over coding the g rammar directly in a programming
language. The GTU display works with structures
of arbitrary size. But a structure that does not fit
on the screen requires extensive scrolling. A zoom
option could remedy this problem.

Zooming into output structures is nicely inte-
grated into the Xerox LFG-WB. Every node in the
parse tree output can be enlarged by a mouse click
to its complete feature structure. Every label on a
chart edge output can be displayed with its internal
tree structure and with its feature structure.

A u t o m a t i c c o m p a r i s o n o f o u t p u t s t r u c t u r e s

When developing a g rammar it often happens that
the parser finds multiple parses for a given sentence.
Sometimes these parses differ only by a single feature
which may be hard to detect by a human. Automatic
comparison of the parses is needed. This can also be
used to compare the parses of a given sentence before
and after a g r am m ar modification.

It is difficult to assess the effects of a g rammar
modification. Often it is necessary to rerun long
series of tests. In these tests one wants to save
the parse structure(s) for a given test sentence if
a certain level of coverage and correctness has been
reached. Should a modification of the g rammar be-
come necessary, the newly computed parse structure
can be automatical ly compared to the saved struc-
ture. We have included such a tool in GTU.

The comparison tool works through three subse-
quent levels. First, it checks whether the branching
structures of two parse trees are identical, then it
compares the node names (the constituent symbols),
and finally it detects differences in the feature struc-
tures. The procedure stops when it finds a difference
and reports this to the user.

Implementing such a comparison tool is not too
difficult, but integrating it into the testing module
of a g rammar workbench is a major task, if this mod-
ule supports different types of tests (single sentence
tests and series of tests; manual input and selections
from the test suite). At the same t ime one needs
to ensure that the module 's functionality is trans-
parent and its handling is easy. For example, what
should happen if a sentence had two readings before
a g r amma r modification and has three readings now?
We decided to compare the first two new structures

with the saved structures and to inform the user that
there now is an additional reading. In our compari-
son tool series of comparisons for multiple sentences
can be run in the background. Their results are dis-
played in a table which informs about the numbers
of readings for every sentence.

This comparison tool is considered very helpful,
once the user understands how to use it. It should
be complemented with the option to compare the
output structures of two readings of the same input
sentence.

T r a c i n g t h e p a r s i n g p r o c e s s

Within GTU the parsing of natural language input
can be traced on various levels. It can be traced

• during the lexicon lookup process displaying the
morpho-syntactical information for every word,

• during the evaluation of the lexicon interface
rules displaying the generated lexical rules for a
given word,

• during the application of the g r ammar or se-
mantic rules.

For GPSG grammars GTU presents every edge
produced by the bo t tom-up chart parser. For DCG
and LFG grammars G T U shows ENTRY, EXIT,
FAIL and REDO ports for a predicate, as in a Pro-
log development environment. But GTU does not
provide options for selectively skipping the trace for
a particular category or for setting special interrupt
points that allow more goal-oriented tracing. Fur-
thermore, the parser cannot be interrupted by an
abort option in trace mode. These problems lead to
a reluctance in using the trace options since most of
the time too much information is presented on the
screen. Only elaborate trace options are helpful in
writing sizable grammars .

L e x i c o n i n t e r f a c e

The flexible lexicon interface is another of GTU's
core elements. With special lexicon interface rules
that are part of every g r ammar formalism the gram-
mar developer can specify which lexicon information
the g rammar needs and how this information should
be structured and named.

For each word a lexicon provides information
about the possible part of speech and morpho-
syntactical information. Lexicon interface rules de-
termine how this information is passed to the gram-
mar.

A lexicon interface rule contains a test criterion
and a specification and has the following format:

109

if_in_lex (t e s t c r i t e r ion) then_in_gram
(speci f icat ion) .

The test criterion is a list of feature-value pairs
to be checked against a word's lexical information.
Additionally, constraints are allowed that check if
some feature has a value for the given word. For
example, the test

(pos=verb, !tense, "reflexive)

will only succeed for irrefiexive finite verbs 2.
While it is necessary that the test contains only

features available in the lexicon, the specification
part may add new information to the information
found in the lexicon. For example, the specification

case = #kasus, number =#numerus, person = 3

assigns the value of the feature kasus found in the
lexicon (which is indicated by #) to a feature named
case (and the like for number). Additionally, a new
feature pe r son is added with the value 3. In this way
every noun may get a specification for the p e r s o n

feature.
The specification part defines how lexicon infor-

mation shall be mapped to a syntactic category in
case the test criterion is met. While the format of
the test criterion is the same for all formalisms, the
format of the specification has been adjusted to the
format of every grammar formalism. In this way the
definition of lexical entries can be adapted to a gram-
mar formalism while reusing the lexical resources.

Writing lexicon interface rules requires a good un-
derstanding of the underlying lexicon. And some-
times it is difficult to see if a problem with lexical
features stems from the lexicon or is introduced by
the interface rules. But overall this lexicon inter-
face has been successful. With its simple format of
rules with conditions and constraints it can serve as
a model for interfacing other modules to a grammar
workbench.

Te s t s u i t e a d m i n i s t r a t i o n

GTU contains a test suite with about 300 sentences
annotated with their syntactic properties. We have
experimented with two representations of the test
suite (Volk, 1995). One representation had every
sentence assigned to a phenomenon class and every
class in a separate file. Each sentence class can be
loaded into GTU and can be separately tested. In a
second representation the sentences were organized
as leaves of a hierarchical tree of syntactic phenom-
ena. Tha t is, a phenomenon like 'verb group syn-

2, !feature' means that the feature must have s o m e
value, while ',-,feature' prohibits any value on the
feature.

tax' was subdivided into 'simple verb groups', 'com-
plex verb groups', and 'verb groups with separated
prefixes'. The sentences were attached to the phe-
nomena they represented. In this representation the
grammar developer can select a phenomenon result-
ing in the display of the set of subsumed sentences.
If multiple phenomena are selected the intersection
of the sets is displayed.

It turned out that the latter representation was
hardly used by our students. It seems that gram-
mar writing itself is such a complex process that a
user does not want to bother with the complexities
of navigating through a phenomena tree. The other,
simple representation of sentence classes in files is
often used and much appreciated. It is more trans-
parent, easier to select from, and easier to modify
(i.e. it is easier to add new test sentences).

Few other grammar workbenches include an elab-
orate test module and only PAGE (Oepen, 1997)
comprises a test suite which is integrated similarly
to GTU. PAGE's test suite, however, is more com-
prehensive than GTU's since it is based on the
TSNLP (Test Suites for Natural Language Process-
ing) database. TSNLP provides more than 4000 test
items for English, French and German each. We are
not aware of any reports of this test suite's usability
and acceptability in PAGE.

O u t p u t o f r e c o g n i z e d f r a g m e n t s in case o f
u n g r a m m a t i c a l i t y

In case a parser cannot process the complete natural
language input, it is mandatory that the grammar
developer gets feedback about the processed frag-
ments. GTU presents the largest recognized frag-
ments. Tha t is, starting from the beginning of the
sentence it takes the longest fragment, from the end
of this fragment it again takes the longest fragment
and so on. If there is more than one fragment of
the same length, only the last one parsed is shown.
The fragments are retrieved from the chart (GPSG)
or from a well-formed substring table (DCG, LFG).
Obviously, such a display is sometimes misleading
since the selection is not based on linguistic criteria.

As an alternative we have experimented with dis-
playing the shortest paths through the chart (i.e.
the paths from the beginning to the end of the in-
put with the least number of edges). In many cases
such a path is a candidate close to a parsing solution.
In general, it fares better than the longest fragments
but again it suffers from a lack of linguistic insight.

Yet another way is to pick certain combinations
of constituents according to predefined patterns. It
is conceivable that the grammar developer specifies
an expected structure for a given sentence and that

110

the system reports on the parts it has found. Or the
display system may use the g rammar rules for se-
lecting the most promising chart entries. Displaying
the complete chart, as done in the Xerox LFG-WB,
will help only for small grammars . For any sizable
g rammar this kind of display will overwhelm the user
with hundreds of edges.

Selecting and displaying chart fragments is an
interesting field where more research is urgently
needed, especially with respect to treating the re-
sults of parsing incomplete or ill-formed input.

L e x i c o n e x t e n s i o n m o d u l e

When writing g rammars for real natural language
sentences, every developer will soon encounter words
that are not in the lexicon, whatever size it has.
Since G T U was meant as a tutoring tool it contains
only static lexicons. In fact, its first lexicon was tai-
lored towards the vocabulary of the test suite. GTU
does not provide an extension module for any of the
attached lexical resources. The g rammar developer
has to use the information as is. Adding new features
can only be done by inserting them in lexicon inter-
face rules or g r am m ar rules. Words can be added as
terminal symbols in the grammar .

This is not a satisfactory solution. It is not only
that one wants to add new words to the lexicon
but also that lexicon entries need to be corrected
and that new readings of a word need to be en-
tered. In that respect using GerTWOL is a draw-
back, since it is a closed system which cannot be
modified. (Though its developers are planning on
extending it with a module to allow adding words. 3)
The other lexicons within G T U could in principle
be modified, and they urgently need a user inter-
face to support this. This is especially important for
the PLOD-lexicon derived from the CELEX lexical
database, which contains many errors and omissions.

Models for lexicon extension modules can be
found in the latest generation of commercial machine
translation systems such as IBM's Personal Trans-
lator or Langenscheidts T1. Lexicon extension in
these systems is made easy by menus asking only
for part of speech and little inflectional information.
The entry word is then classified and all inflectional
forms are made available.

Of course in a multi-user system these modifica-
tions need to be organized with access restrictions.
Every developer should be able to have his own sub-
lexicon where lexicon definitions of any basic lexi-
con can be superseded. But only a designated user

3Personal communication with Ari Majorin of Ling-
soft, Helsinki, in December 1996.

should be allowed to modify the basic lexicon ac-
cording to suggestions sent to him by the g rammar
developers.

C o m b i n a t i o n o f l ex ica l r e s o u r c e s

GTU currently does not support the combination
of lexical resources. Every lexical i tem is taken
from the one lexicon selected by the user. Miss-
ing features cannot be complemented by combining
lexicons. This is a critical aspect because none of
the lexicons contains every information necessary.
While GerTWOL analyzes a surprising variety of
words and returns morphological information with
high precision, it does not provide any syntactical in-
formation. In particular it does not provide a verb's
subcategorization. This information can be found in
the P L O D / C E L E X lexicon to some degree. For ex-
ample, the g rammar developer can find out whether
a verb requires a prepositional object, but he cannot
find out which preposition the phrase has to start
with .4

C l e a r m o d u l a r i z a t i o n

The development of a large g r ammar - like a large
software system - makes it necessary to split the
work into modules. G T U supports such modular-
isation into files that can be loaded and tested inde-
pendently. But GTU only recommends to divide a
g rammar into modules, it does not enforce modular-
isation. For a consistent development of large gram-
mars, especially if distributed over a group of people,
we believe that a g rammar workbench should sup-
port more engineering aspects we know from soft-
ware development environments such as a module
concept with clear information hiding, visualisation
o f call graphs on various levels, or summarisat ion of
selected rule properties.

G e n e r a l r e m a r k s on G T U

G T U focuses on g r ammar writing. It does not in-
clude any means to influence parsing efficiency. But
parsing efficiency is another important aspect of
learning to deal with g rammars and to write NLP
systems. It would therefore be desirable to have a
system with parameterizable parsers. On the other
hand this might result in an unmanageable degree
of complexity for the user and - like with the alter-
native test suite - we will end up with a nice feature
that nobody wants to use.

The GTU system has been implemented with
great care. Over t ime more than a dozen program-

4The next version of CELEX will contain such prepo-
sitional requirements. (Personal communication with
CELEX manager Richard Piepenbrock in April 1997)

I l l

mers have contributed modules to the overall sys-
tem. The robust integration of these modules was
possible since the core programmers did not change.
They had documented their code in an exemplary
way. Still, the problem of interfacing new modules
has worsened. A more modular approach seems de-
sirable for building large workbenches.

3 D i f f e r e n t g r a m m a r d e w e l o p m e n t

e n v i r o n m e n t s

In order to position GTU within the context of gram-
mar development environments, let us classify them
according to their purpose.

T u t o r i n g e n v i r o n m e n t s are designed for learning
to write grammars. They must be robust and
easy to use (including an intuitive format for
grammar rules and an intuitive user interface).
The grammar developer should be able to fo-
cus on grammar writing. Lexicon and test suite
should be hidden. Tutoring environments there-
fore should contain a sizable lexicon and a test
suite with a clear organisation. They should
provide for easy access to and intuitive display
of intermediate and final parsing results. They
need not bother with efficiency considerations
of processing a natural language input. GTU is
an example of such a system.

E x p e r i m e n t a t i o n e n v i r o n m e n t s are
designed for professional experimentation and
demonstration. They must also be robust but
they may require advanced engineering and lin-
guistic skills. They should provide for check-
ing the parsing results. They must support
the grammars and parsers to be used outside
the development system. We think that Alvey-
GDE (Carroll, Briscoe, and Grover, 1991) and
Pleuk (Calder and Humphreys, 1993) are good
examples of such environments. They allow the
tuning of the parser (Alvey) and even redefin-
ing the grammar formalism (Pleuk). The Xerox
LFG-WB is partly a tutoring environment (es-
peciMly with its grammar index and zoom-in
displays) and partly an experimentation envi-
ronment since it lacks a test suite and a lexicon.

Note that the systems also differ in the num-
ber of grammar formalisms they support. The
Alvey-GDE (for GPSG) and the Xerox LFG-
WB work only for one designated formalism.
GTU has built-in processors for three for-
malisms, and Pleuk supports whatever formal-
ism one defines.

N L P e n v i r o n m e n t s are designed as platforms for
the development of multi-module NLP systems.
Rather than being a closed system they provide
a shell for combining multiple linguistic mod-
ules such as tokenizers, taggers, morphology an-
alyzers, parsers (with grammars) and so on. A
grammar workbench is a tool to develop such
a module. All the modules can be tailored and
tuned to the specific needs of the overall sys-
tem. We consider ALEP (Simpkins, 1994) and
GATE (Gaizauskas et al., 1996) to be examples
of such environments. Although it seems logi-
cal and desirable that NLP environments should
provide for the delivery of stand-alone systems
this aspect has been neglected so far. In par-
ticular we suspect that the interface format, as
required e.g. between GATE modules, will have
negative effects on the processing efficiency of
the complete system. 5

GTU was designed as a tutorial system for gram-
mar development. Over time it has grown into a
system that supports most functions of experimenta-
tion environments. Its main limitations are its closed
architecture and the inability to use the grammars
outside the system. Many of its modules can be em-
ployed by an NLP environment. GTU's most suc-
cessful modules are its flexible lexicon interface, the
tight integration of the test suite and the module for
comparison of output structures.

An NLP environment should be an open platform
rather than a closed workbench, as is the core con-
cept of ALEP and GATE. This is needed to allow
special treatment for special linguistic problems. For
instance, the treatment of separable prefix verbs in
German is so specific that it could be tackled by
a preprocessor before parsing starts. Only after the
separated prefix and the main verb have been recom-
pounded the verb's subcategorization can be deter-
mined.

Another specific problem of German is the reso-
lution of elliptical coordinated compounds (e.g. In-
und Ausland standing for Inland und Ausland). If
such ellipses are filled in before parsing starts such
a coordination does not need special grammar rules.
Other peculiarities such as date, time, currency, dis-
tance expressions will also need special modules. In
this way only the processing of the core syntactic
phenomena is left to the parser.

An NLP environment should allow parametrisa-
tion of parsers or multiple parsers of different pro-

5GATE requires modules to communicate via a so
called CREOLE interface, which is a layer wrapped
around an existing module.

112

cessing strategies (e.g. a combination of symbolic
and statistic parsing) and processing depths (e.g.
shallow parsing if no complete parse can be found).

4 C o n c l u s i o n s

Tools like GTU are well suited for learning to de-
velop grammars, for experimenting with grammar
formalisms, and for demonstrating the work of com-
putational linguistics. The use of GTU as an ed-
ucational tool in computational linguistics courses
has been very successful. In a recent project GTU's
flexibility is being challenged in a joint project with
the Institute of Germanic Language at the Univer-
sity of Koblenz. In this project we examine the use
of GTU for the benefit of courses in German as a
foreign language.

For the development of large grammars in combi-
nation with large linguistic resources and for pro-
cessing them efficiently, GTU is less suited. We
are now convinced that we need an open platform
that provides a framework for combining modules
for such a task. For this it is necessary to develop in-
terface standards for different types of modules (tag-
gets, grammars, lexicons, test suites etc.).

Finally, we should keep in mind that a com-
putational environment for grammar development
offers help in engineering NLP modules for well-
understood phenomena. The real hard problems in
NLP (most importantly the resolution of ambigu-
ity) need to be solved by bringing to bear the right
information at the right time. But this is of yet a
complex area with many questions that have not re-
ceived a theoretical answer let alone an engineering
solution.

5 A c k n o w l e d g e m e n t s

We would like to thank Diego Mollh Aliod and
Gerold Schneider for providing background informa-
tion on some grammar workbenches.

R e f e r e n c e s

Baayen, R. H., R. Piepenbrock, and H. van Rijn.
1995. The CELEX lexical database (CD-ROM).
Linguistic Data Consortium, University of Penn-
sylvania.

Calder, J. and K. Humphreys. 1993 . Pleuk
overview. Technical report, University of Edin-
burgh. Centre for Cognitive Science.

Carroll, John, Ted Briscoe, and Claire Grover. 1991.
A development environment for large natural lan-
guage grammars. Technical report, University of
Cambridge Computer Laboratory.

Gaizauskas, R., H. Cunningham, Y. Wilks,
P. Rodgers, and K. Humphreys. 1996. GATE:
an environment to support research and develop-
ment in natural language engineering. In Proc. of
the 8th IEEE Conf. on tools with AI (ICTAI-96}.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum,
and Ivan Sag. 1985. Generalized phrase struc.
ture grammar. Harvard University Press, Cam-
bridge,MA.

Jung, Michael, Dirk Richarz, and Martin Volk.
1994. GTU - Eine Grammatik-Testumgebung.
In Proceedings of KONVENS-94, pages 427-430,
Wien.

Kaplan, R.M. and J.T. Maxwell III, 1996. LFG
Grammar Writer's Workbench (Version 3.1). Xe-
rox Corporation.

Kaplan, Ronald and Joan Bresnan. 1982. Lexical-
functional grammar. A formal system for gram-
matical representation. In Joan Bresnan, editor,
The Mental Representation of Grammatical Rela-
tions. MIT Press, Cambridge,MA.

Nederhof, M.J., C.H.A. Koster, C. Dekkers, and
A. van Zwol. 1992. The grammar workbench: A
first step towards lingware engineering. In W. ter
Stal, A. Nijholt, and R. op den Akker, editors,
Proceedings of Second Twente Workshop on Lan-
guage Technology, pages 103-115, Twente, NL.

Oepen, Stephan. 1997 . PAGE. Platform for
Advanced Grammar Engineering. WWW page
(http://cl-www.dfki.uni-sb.de/cl/systems/page),
April.

Oy, Lingsoft. 1994. Gertwol. Questionnaire for Mor-
pholympics 1994. LD V-Forum, 11 (1): 17-29.

Pereira, Fernando C.N. and Stuart M. Shieber.
1987. Prolog and Natural-Language Analysis, vol-
ume 10 of CSLI Lecture Notes. University of
Chicago Press, Stanford.

Simpkins, N.K. 1994. An open architecture for lan-
guage engineering. The Advanced Language Engi-
neering Platform (ALEP). In Proceedings of Lan-
guage Engineering Convention, Paris. European
Network in Language and Speech, Centre for Cog-
nitive Science, Edinburgh, pages 129-136.

Volk, M., M. Jung, and D. Richarz. 1995. GTU -
A workbench for the development of natural lan-
guage grammars. In Proc. of the Conference on
Practical Applications of Prolog, pages 637-660,
Paris.

Volk, Martin. 1995. Einsatz einer Testsatzsamm-
lung im Grammar Engineering, volume 30 of
Sprache und Information. Niemeyer Verlag,
Tiibingen.

113

