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Abstract 

Stochastic categorial grammars (SCGs) are 
introduced as a more appropriate formal- 
ism for statistical language learners to es- 
t imate than stochastic context free gram- 
mars. As a vehicle for demonstrating SCG 
estimation, we show, in terms of crossing 
rates and in coverage, that when training 
material is limited, SCG estimation using 
the Minimum Description Length Princi- 
ple is preferable to SCG estimation using 
an indifferent prior. 

1 Introduction 
Stochastic context free grammars (SCFGs), which 
are standard context free grammars extended with 
a probabilistic interpretation of the generation of 
strings, have been shown to model some sources 
with hidden branching processes more efficiently 
than stochastic regular grammars (Lari and Young, 
1990). Furthermore, SCFGs can be automatically 
estimated using the Inside-Outside algorithm, which 
is guaranteed to produce a SCFG that is (locally) 
optimal (Baker, 1990). Hence, SCFGs appear to 
be suitable formalisms for the estimation of wide- 
covering grammars, capable of being used as part of 
a system that  assigns logical forms to sentences. 

Unfortunately, from a Natural Language Process- 
ing perspective, SCFGs are not appropriate gram- 
mars to learn. Firstly, as Collins demonstrates 
(Collins, 1996), accurate parse selection, which is 
important for ambiguity resolution, requires lexical 
statistics. SCFGs, as standardly used in the Inside- 
Outside algorithm, are in Chomsky Normal Form 
(CNF), which restricts rules to being at most bi- 
nary branching. Such rules are not lexicalised, and 
hence, to lexicalise (CNF) CFGs requires adding a 
complex statistical model that simulates the projec- 
tion of head items up the parse tree. Given the 

embryonic status of grammatical statistical models 
and the difficulties of accurately estimating the pa- 
rameters of such a model, it seems more prudent 
to prefer whenever possible simpler statistical mod- 
els with fewer parameters, and treat lexicalisation 
as part of the grammatical formalism, and not as 
part of the statistical framework (for example (Sch- 
abes, 1992)). Secondly, (stochastic) CFGs are well- 
known as being linguistically inadequate formalisms 
for problems such as non-constituent coordination. 
Hence, a learner using a SCFG will not have an ap- 
propriate formalism with which to construct an ad- 
equate grammar. 

Stochastic categorial grammars (SCGs), which are 
classical categorial grammars extended with a prob- 
abilistic component, by contrast, have a grammat-  
ical component that is naturally lexicalised. Fur- 
thermore, Combinatory Categorial Grammars  have 
been shown to account elegantly for problematic ar- 
eas of syntax such as non-constituent co-ordination 
(Steedman, 1989), and so it seems likely that  SCGs, 
when suitably extended, will be able to inherit this 
linguistic adequacy. We therefore believe that  SCGs 
are more useful formalisms for statistical language 
learning than SCFGs. Future work will reinforce 
the differences between SCFGs and SCGS, but in 
this paper, we instead concentrate upon the estima- 
tion of SCGs. 

Stochastic grammars (of all varieties) are usually 
estimated using the Maximum Likelihood Principle, 
which assumes an indifferent prior probability dis- 
tribution. When there is sufficient training mate- 
rial, Maximum Likelihood Estimation (MLE) pro- 
duces good results. More usually however, with 
many thousands of parameters to estimate, there 
will be insufficient training material for MLE to pro- 
duce an optimal solution. If, instead, an informative 
prior is used in place of the indifferent prior, better 
results can be achieved. In this paper we show how 
using an informative prior probability distribution 
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leads to the est imation of a SCG tha t  is more accu- 
rate than  a SCG est imated using an indifferent prior. 
We use the Minimum Description Length Principle 
(MDL) as the basis of our informative prior. To our 
knowledge, we know of no other papers comparing 
MDL to MLE using natural ly occurring da ta  and 
learning probabilistic grammars .  For example, Stol- 
cke's MDL-based learner was trained using artificial 
da ta  (Stolcke, 1984); Chen's  similar learner mixes 
smoothing techniques with MDL, thereby obfuscat- 
ing the difference between MDL and MLE (Chen, 
1996). 

The structure of the rest of this paper is as follows. 
In section 2 we introduce SCGs. We then in section 
3 present a problem facing most  statistical learners 
known as over]itting. Section 4 gives an overview of 
the MDL principle, which we use to deal with over- 
fitting1; in section 5 we present our learner. Fol- 
lowing this, in section 6 we give some experiments 
comparing use of MDL, with a MLE-style learner. 
The paper  ends with some brief comments.  

2 G r a m m a r  f o r m a l i s m  a n d  
s t a t i s t i c a l  m o d e l s  

An SCG is a classical categorial g r ammar  (one using 
just  functional application, see, for example, Wood 
(Wood, 1993)) such tha t  each category is augmented 
with a probability, which is used to model the choices 
made when constructing a parse. Categories are con- 
ditioned on the lexical i tem they are assigned to. 

More formally, a categorial lexicon G is the tuple 
(A, C, V, L), where: 

• A is a non-empty set of atomic categories. 

• C is a non-empty set of complex categories. 

• V is a non-empty set of lexical items (words). 

• L is the function L: Vv E V ~-~ 2 c .  Tha t  is, L 
assigns sets of categories to lexical items. 

Complex categories are defined as follows: 

• Any member  of A is a complex category. 

• If a and b are complex categories, then so is a\b. 

* If  a and b are complex categories, then so is a/b. 

• Nothing else is a complex category. 

1A fuller discussion of MDL and statistical language 
learning can be found in (Rissanen and Ristad, 1994, de 
Marcken, 1996). 

A categorial g r ammar  consists of a categorial lexicon 
augmented with the rule of left functional applica- 
tion: a b\a ~ b and the rule of right functional 
application: b/a a ~-+ b. 

A probabilistic categorial g r a m m a r  is a categorial 
g r ammar  such tha t  the sum of the probabilities of 
all derivations is one. Since in our variant  of a cate- 
gorial grammar ,  where there are no variables in cat- 
egories, directional information is encoded into each 
category, and we only use functional application, 
the actual derivation of any sentence mechanically 
follows from the assignment of categories to lexical 
items, and so it follows tha t  the choices available 
when parsing with a categorial g r a m m a r  arise from 
the particular assignment of categories to any given 
lexical item. Within a stochastic process, probabili- 
ties model these choices, so in a stochastic categorial 
grammar ,  we need to ensure tha t  the probabilities 
of all categories assigned to a particular lexical i tem 
sum to one. Tha t  is, for all categories c in lexicon C 
assigned to lexical i tem w: 

E P(c [ w) = 1 (1) 
cEC 

We estimate P(c ] w) as being: 

f(c) P(c I w) E ev (l) 

for some distinct Category c, occurring with fre- 
quency f(c), that  can be assigned to lexical i tem w, 
and for all categories x, with frequency f (x) ,  tha t  
can also be assigned to w. 

For the derivation space to actually sum to one, 
all possible assignments of categories to lexical i tems 
must be legal. Clearly, only assignments of lexical 
items that  combine to form a valid parse constitute 
legal category assignments, and so there will be a 
probabil i ty loss. Tha t  is, the sum of all derivations 
will be less than, or equal to one. We can either scale 
the probabilities so that  the derivations do sum to 
one, or alternatively, we can assume tha t  (illegal) 
assignments of categories are never seen, with the 
relative probabilities between the legal category as- 
signments being unaffected, and so give a zero prob- 
ability to the illegal category assignments 2 

Because categories are normalised with respect to 
the lexical i tem they are associated with, the re- 
sulting statistical model is lexicalised. However, in 
this paper, we learn lexica of part-of-speech tag se- 
quences, and not lexica for actual words. Tha t  is, 
the set of simple categories is taken as being a part-  
of-speech tag set and the set of words is Mso a set of 

2Thanks to Eirik Hektoen for pointing this point out. 
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part-of-speech tags. This greatly reduces the num- 
ber of parameters to be acquired, than would be the 
case if the lexicon contained a set of words, but in- 
curs the obvious cost of a loss of accuracy. In future 
experiments, we plan to learn fully-lexicalised SCGs. 

Having now introduced SCGs, we now turn to the 
problem of overfitting. 

3 O v e r f i t t i n g  

Bayesian inference forms the basis of many popu- 
lar language learning systems, examples of which 
include the Baum-Welch algorithm for estimating 
hidden Markov models (Baum, 1972) and the Inside- 
Outside algorithm for estimating CFGs (Baker, 
1990). As is well known, Bayes' theorem takes the 
following form: 

P(H I D) = P(H)P(D I H) 
P(D) (3) 

Here, the term P(H) is the prior probability, P(D I 
H) is the likelihood probability, and P(H I D) is the 
posterior probability. The prior probability of H can 
be interpreted as quantifying one's belief in H. If 
the prior is accurate, hypotheses that  are closer to 
the target hypothesis will have a higher prior proba- 
bility assigned to them than hypotheses that  are fur- 
ther away from the target hypothesis. The likelihood 
probability describes how well the training material 
can be encoded in the hypothesis. For example, one 
would hope that  the training corpus would receive a 
high likelihood probability, but a set of ungrammat- 
ical sentences would receive a low likelihood proba- 
bility. Finally, the posterior probability can be con- 
sidered to be the combination of these two probabil- 
ity distributions: we prefer hypotheses that  accord 
with our prior belief in them (have a high prior prob- 
ability) and model the training material well (have 
a high likelihood probability). When learning in a 
Bayesian framework, we try to find some hypothesis 
that  maximises the posterior probability. For exam- 
ple, we might t ry to find some maximally probable 
grammar H given some corpus D. 

The usual setting is for the learner to assume 
an uninformative (indifferent) prior, yielding MLE. 
Usually, with sufficient data, MLE give good results. 
However, with insufficient data, which is the stan- 
dard case when there are many thousands of param- 
eters to estimate, MLE, unless checked, will lead to 
the estimation of a large theory whose probability 
mass is concentrated upon the training set, with 
a consequential poor prediction of future, unseen 
events. This problem is known as over-fitting. Over- 
fitting affects all Bayesian learners that  assume an 

uninformative prior and are given insufficient train- 
ing data. An over-fitted theory poorly predicts fu- 
ture events not seen in the training set. Clearly, 
good prediction of unseen events is the central task 
of language learners, and so steps need to be taken 
to avoid over-fitting. 

Over-fitting is generally tackled in two ways: 

Restrict the learner such that  it cannot express 
the maximally likely hypothesis, given some hy- 
pothesis language. 

Smooth the resulting parameters in the hope 
that  they back-off from the training data  and 
apportion more of the probability mass to ac- 
count for unseen material. 

Examples of the first approach can be seen most 
clearly with the usage of CNF grammars by the 
Inside-Outside algorithm (Pereira and Schabes, 
1992, Lari and Young, 1990). A grammar in CNF 
does not contain rules of an arbitrary arity, and so 
when learning CNF grammars, the Inside-Outside 
algorithm cannot find the maximal likelihood es- 
t imation of some training set. The problem with 
this language restriction is that  there is no a pri- 
ori reason why one should settle with any particular 
limit on rule arity; some grammars mainly contain 
binary rules, but others (for example those implic- 
itly within tree-banks) sometimes contain rules with 
many right-hand side categories. Any language re- 
striction, in lieu of some theory of rule arity, must 
remain ad hoc. Note that  SCGs, whilst assigning bi- 
nary branching trees to sentences, contain categories 
that  may naturally be of an arbitrary length, with- 
out violating linguistic intuitions about what consti- 
tutes a plausible analysis of some sentence. 

Examples of the second approach can be found 
in language modelling (for example (Church and 
Gale, 1991, Katz, 1987)). Smoothing a probabil- 
ity distribution tends to make it 'closer' (reduces the 
Kullback-Liebler distance) to some other probability 
distribution (for example, the uniform distribution). 
Unfortunately, there is no guarantee that  this other 
distribution is closer to the target probability distri- 
bution than was the original, un-smoothed distribu- 
tion, and so smoothing cannot be relied upon always 
to improve upon the un-smoothed theory. Smooth- 
ing is also a post-hoc operation, unmotivated by de- 
tails of what is actually being learnt, or with prop- 
erties (problems) of the estimation process. Instead 
of selecting some language restriction or resorting to 
smoothing, a better solution to the over-fitting prob- 
lem would be to use an informative prior. One such 
prior is in terms of theory minimisation, the pursuit 
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of which leads to the Minimum Description Length 
Principle (MDL) (Rissanen, 1989). 

In this paper we demonstrate that  using MDL 
gives better results than when using an uninforma- 
tive prior. Elsewhere, we demonstrated that  (Good- 
Turing) smoothing does improve upon the accuracy 
of a SCG estimated using MLE, but still, the best 
results were obtained when using MDL (Osborne, 
1997). 

4 T h e  M D L  Principle 
Learning can be viewed as compression of the train- 
ing data  in terms of a compact hypothesis. It can be 
shown that ,  under very general assumptions, the hy- 
pothesis with the minimal, or nearly minimal com- 
plexity, which is consistent with the training data, 
will with high probability predict future observations 
well (Blumer et al., 1987). One way of finding a good 
hypothesis is to use a prior that  favours hypothe- 
ses that  are consistent with the training data, but 
have minimal complexity. Tha t  is, the prior should 
be construed in terms of how well the hypothesis 
can be compressed (since significant compression is 
equivalent to a low stochastic complexity). 

We can compress the hypothesis by replacing it 
with code words, such that  when measured in bits of 
information, the total  length of the encoding is less 
than, or equal to, the length of the hypothesis, also 
when measured in bits. To achieve this aim, objects 
in the hypothesis tha t  occur frequently should be 
assigned shorter length code words than objects that  
occur infrequently. Let l(H) be the total length of 
the code words for some set of objects H,  as assigned 
by some optimal coding scheme. It turns out that: 

2 -~(H) (4) 

can be used as a prior probability for H. The smaller 
l(H), the greater the compression, and so the higher 
the prior probability. 

There is an equivalence between description 
lengths, as measured in bits, and probabilities: the 
Shannon Complexity of some object x, with proba- 
bility P(x), is - log(P(x))  (all logarithms are to the 
base 2). This gives the minimal number of bits re- 
quired to encode some object. Hence, we can give a 
description length to both the prior and likelihood 
probabilities. Using these description lengths, we 
have the MDL Principle: we should select some hy- 
pothesis H that:  

• Minimises the length of the hypothesis (when 
measured in bits) and 

• Minimises the length of the data  encoded in the 
hypothesis (measured in bits). 
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The first part says prefer hypotheses that  are com- 
pact; the second part says prefer hypotheses that  fit 
the data  well. Both aspects of a theory are taken into 
consideration to arrive at a proper balance between 
overly favouring a compact hypothesis (which will 
model the training data  badly) and overly favour- 
ing the likelihood probability (which leads to over- 
fitting). 

To use the MDL principle when learning gram- 
mar, we need to compute the prior and likelihood 
probabilities. One way to compute the prior is as 
follows. 

We give each category r in lexicon H an encoding 
probability P( r ) .  If r was used f(r) times in the 
parse trees of the training set, 

f(r) (5) 
P ( r )  - f ( x )  

That  is, categories used frequently in the training 
set have a high probability, and categories used in- 
frequently have a low probability. 

The intuition behind this particular coding 
scheme is to imagine that  we are transmitt ing, in 
the shortest possible way, a set of parse trees across 
some channel. We conceptually use a two-part, 
dictionary-based coding scheme: one part for word- 
category pairs with their associated code words, and 
another part for an encoding of the trees in terms of 
the code words. Since the total  length of the en- 
coding of the trees will be much larger than the to- 
tal length of the word-category pairs and associated 
code words, we can assume the dictionary length is 
just a constant, smaller than the total  length of the 
encoded parse trees, and just consider, without an 
undue loss in accuracy, the cost of transmitt ing the 
trees. Hence, when we evaluate various lexica, we de- 
termine how much it costs to transmit  the training 
material in terms of the particular dictionary-based 
encoding of the lexicon in question. Equation 5 is 
used to give the length, in bits, of the code word we 
would assign to each category in a parse tree. 

Our encoding scheme treats each category as be- 
ing independent and clearly, we could have used 
more of the context within the parse trees to con- 
struct a more efficient encoding scheme (see, for ex- 
ample (Ristad and Thomas,  1995)). For the pur- 
poses of this paper, our simple encoding scheme is 
sufficient. 

The length of a lexicon is the sum of the lengths 
of all the categories used in the grammar: 

l(H) = ~ - l o g ( P ( x ) )  (6) 
xEH 
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The prior is therefore: 

P(g) = 2 -t(H) (7) 

The likelihood probability, P(D [ H),  is defined 
as simply the product of the probabilities of the cat- 
egories used to parse the corpus. 

We approximate the probability of the data, 
P(D), using a linear interpolated tr igram model 
(Jelinek, 1990). Our tr igram model is used to as- 
sign probabilities to substrings: substrings denoting 
phrases will be assigned higher probabilities than 
substrings that  do not form natural phrases. It 
should be pointed out that  most work in statistical 
language learning ignores P(D). However, the im- 
plementation reported in this paper is greedy, and 
tries to build parse trees for sentences incrementally. 
Hence, we need to determine if the substring dom- 
inated by a local tree forms a phrase (has a high 
P(D)), and is not some non-phrasal word grouping 
(has a low P(D)). Clearly, using trigrams as an ap- 
proximation of P(D) may undermine the estimation 
process. In our more recent, non-greedy work, we 
can, and do, ignore P(D) ,  and so do not resort to 
using the tr igram model. 

5 Implementation 
Having shown how MDL can be applied to the es- 
t imation of SCG, we now turn to a description of 
an implemented system. We learn categorial gram- 
mars in a greedy, bottom-up, incremental manner. 
In summary:  

• For each part-of-speech tag sequence in some 
corpus, we create a labelled binary tree span- 
ning that  sequence. 

• We then read-off from the tree those categories 
that  would have generated that  tree in the first 
place, placing them in the lexicon for subse- 
quent usage. 

In more detail, to create a labelled binary tree, we 
firstly assign unary trees to each tag in the tag se- 
quence. As far as the current implementation is con- 
cerned, the only element in a unary local tree is the 
tag. For example, assuming the following tagged 
sentence: 
We_prp love_vbp categorial_jj grammars_nns 

we would generate the forest of local trees: 
(p rp)  (vbp) ( j  j )  (nns) 
We ignore words and only work with the part-of- 
speech tags. 

Next, we consider all pairwise ways of joining ad- 
jacent local trees together. For example, given the 

previous forest of local trees, we would consider join- 
ing the following local trees together: 

(prp)  (vbp) 
(vbp) ( j  j )  

and 
( j  j )  (nns) 
Each putative local tree is evaluated using Bayes' 
theorem: the prior is taken as being the probability 
assigned to an encoding of just  the categories con- 
tained within the local tree (with respect to all the 
categories in the lexicon)3; the likelihood is taken as 
being the geometric mean of the probabilities of the 
categories contained within the local tree 4; the prob- 
ability of the data  is taken as being the probabili ty 
assigned by the ngram model to the tag sequence 
dominated by that  local tree. The mother  of a local 
tree is defined using a small table of what constitutes 
a mother given possible heads. Mothers are always 
either the left or right daughter, representing either 
left or right functional application. 

After evaluating each putative local tree, the tree 
with the highest posterior probability is chosen. 
This tree replaces the two local trees from which 
it was created. 

Continuing our example, if we assume the putative 
local tree: 
(nns ( j j )  (nns)) 
has a higher posterior probability than the putative 
local tree: 
(vbp (vbp) ( j j ) )  

we would replace the local trees: 

( j j )  (nns) 
with the local tree: 
(nns ( j j )  (nns)) 
The whole process of tree evaluation, selection and 
replacement is then repeated until a single tree re- 
mains. 

To read categories off a labelled local tree, the 
following recursive process is applied: 

• The category of the root of a tree is the category 
dominating that  tree. 

• Given a local tree of the form (A (A S)),  the 
category assigned to the daughter node labelled 
A is a/B, where a is the category assigned to 
the root of the tree. The category assigned to 
node B is B. 

3This differs from taking the length of all the cate- 
gories in the lexicon. We do this for efficiency purposes. 

4We take the geometric mean, and not the product, 
as this normalises the likelihood probability of arbitrary 
numbers of categories. 
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• Given a local tree of the form (A (B A)), the 
category assigned to the daughter node labelled 
A is o~\B, where ~ is the category assigned to 
the root of the tree. The category assigned to 
B i s B .  

Note other methods of reading categories off a tree 
might exist. We make no claim that  this is neces- 
sarily the best method. 

So, if we assume the following tree: 

(vbp (prp) (vbp (vbp) (nns (jj) (nns)))) 
we would extract  the following categories: 

Tag Category 
nns nns~jj 

JJ JJ 
vbp vbp \p rp /nns  
prp prp 

Our categories are With each category, we also keep 
a frequency count of the number of times that  cat- 
egory was added to the lexicon. This frequency in- 
formation is used to estimate the probabilities of the 
lexicon. 

Finally, when learning, we ignore sentences 
shorter than three words (these are likely to be un- 
grammatical fragments), or, for computational rea- 
sons, sentences longer than 50 words. 

6 E x p e r i m e n t s  

Here, we report on a number of experiments show- 
ing that  when there is a danger of overfitting taking 
place, MDL produces a quantitatively better SCG 
than does MLE. 

To evaluate the various lexica produced, we used 
the following metrics: 

• To measure a grammar 's  coverage, we note the 
number of tag sequences, drawn from a corpus 
of naturally occurring language, some grammar 
generates. The higher the number, the better 
the grammar. 

• To measure a grammar 's  overgeneration, we 
note the number of ungrammatical strings, 
drawn from a source that  generates all strings 
up to some length randomly, a grammar gen- 
erates. The lower the number, the better the 
grammar.  Tha t  is, random sequences of tags, 
of a sufficient length, will have a low probabil- 
ity of being grammatically well-formed. 

• To measure the accuracy of the parses pro- 
. duced, we use the Grammar  Evaluation Inter- 

est Group scheme (GEIG) (Harrison et al., 19). 
This compares unlabelled, manually produced 

parses with automatically produced parses in 
terms of recall (the ratio of matched brack- 
ets over all brackets in the manually produced 
parses), precision (the ratio of matched brackets 
in the manually produced parse over all brack- 
ets found by the parser) and crossing rates (the 
number of times a bracketed sequence produced 
by the parser overlaps with one in the man- 
ually produced parse, but  neither is properly 
contained in the other). The higher the preci- 
sion and recall, and the lower the crossing rates, 
the better the grammar.  

Throughout  our experiments, we used the Brill 
part-of-speech tagger to create testing and train- 
ing material (Brill, 1993). Our tr igram model was 
created using seven million words of tagged mate- 
rial drawn from the British National Corpus (BNC); 
training material consisted of 43,000 tagged sen- 
tences also taken from the BNC. For test material, 
we took 429 sentences taken from the Spoken En- 
glish Corpus (SEC). To compute crossing rates, re- 
call and precision figures, we used a program called 
Parseval to compare most probable parses with man- 
ually produced parses (232 trees in total taken from 
the SEC) (Harrison et al., 19). To measure overgen- 
eration, we randomly generated 250 strings. From a 
manual inspection, these do appear to be ungram- 
matical. Here is an example randomly generated tag 
sequence: 

1 NP MD WP$ LS POS POS VBD NN WDT SYM 

We started with no initial lexica. 
Training constructed the lexica outlined in figure 

1. Note the difference in the size of the lexica. All 

Lexicon How learnt ~ Size (categories) 
A MDL 24829 
B MLE 31091 

Figure 1: Sizes of various lexica 

things being equal, we prefer the lexicon to be as 
small as possible. The larger the lexicon, the slower 
the parsing. As predicted by theory, the lexicon 
learnt using MLE is larger than the one learnt using 
MDL. 

Testing for coverage, we produced the results 
shown in figure 2. Again as predicted, lexicon A is 

Lexicon Percentage generated 
A 95 
B 93 

Figure 2: Undergeneration 
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closer to convergence (better coverage) than lexicon 
B. 

Lexicon Percentage generated 
A 0 
B 0 

Figure 3: Overgeneration 

Turning now to figure 3, we see that, with respect 
to the test set, neither lexicon overgenerates. 

Lexicon Crossing rate Precision Recall 
A 2.84 51.13 36.04 
B 3.39 46.46 32.05 

Figure 4: Crossing rates 

Figure 4 shows the crossing rate results. Again, 
MDL has lead to the estimation of a better lexicon 
than has MLE. Note that the actual figures are not 
as great as they might be. This follows from the fact 
that although categorial grammars assigned binary- 
branching trees to sentences, the test parses used to 
compute crossing rates were not restricted to being 
binary branching. Also, our learner used virtually 
no supervision (for example parsed corpora), and 
did not start with a given lexicon: learning using 
parsed corpora is substantiMly easier than learning 
from just a tagged text, whilst starting with a given, 
manually constructed lexicon is equivalent to learn- 
ing with a good initial estimation of the target lexi- 
con, which greatly increases the chance of successful 
learning. However, the figures are sufficient for the 
purposes of our demonstration. 

7 Discuss ion 

In this paper, we introduced SCGs, and argued that 
they are more appropriate formalisms with which 
to estimate grammars than are SCFGs. We then 
showed how the Minimum Description Length Prin- 
ciple provides a way of reducing the problem of over- 
fitting when estimating SCGs. 

In more recent work, we are using a version 
of the Expectation-Maximisation algorithm to es- 
timate SCGs. We use bracketed training material, 
and an MDL-style prior to aid in the estimation pro- 
cess. A later publication will report on this research. 

The current state-of-the-art parsers trained on 
treebank data using fully lexicalised probabilistic 
models achieve crossing rates of around 1.0 per 
sentence. We achieve 2.84 using more heteroge- 
neous and unannotated training material and learn- 
ing SCGs from scratch. In future work we will at- 
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tempt to rival the state-of-the-art through full lexi- 
calisation and utilising bracketed training material. 
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