
Collocat ion Lattices and M a x i m u m Entropy Mode l s

Andrei Mikheev
HCRC, Language Technology Group, University of Edinburgh,

2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, UK.
e-mail: Andrei.Mikheev@ed.ac.uk

Steven Finch

Thomson Technical Labs,
1375 Piccard Drive, Suite 250, RockviUe Maryland, 20850

e-mail: sfinch~thomtech.com

July 9, 1997

Abstract

Maximum entropy framework proved to be expressive and powerful for the statistical lan-
guage modelling, but it suffers from the computational expensiveness of the model building. The
iterative scaling algorithm that is used for the parameter estimation is computationally expen-
sive while the feature selection process requires to estimate parameters of the model for many
candidate features many times. In this paper we present a novel approach for building maximum
entropy models. Our approach uses a features collocation lattice and selects the atomic features
without resorting to iterative scaling. After the atomic features have been selected we, using
the iterative scaling, compile a fully saturated model for the maximal constraint space and then
start to eliminate the most specific constraints. Since during constraint deselection at every
point we have a fully fit maximum entropy model, we rank the constraints on the basis of their
weights in the model. Therefore we don't have to use the iterative scaling during constraint
ranldng and apply it only for linear model regression. Another important improvement is that
since the simplified model deviates from the previous larger model only in a small number of
constraints, we use the parameters of the old model as the initial values of the parameters for
the iterative scaling of the new one. This proved to decrease the number of required iterations
by about tenfold. As practical results we discuss how our method has been applied to several
tasks of language modelling such as sentence boundary disambiguation, part-of-speech tagging
and automatic document abstracting.

1 Introduction

Maximum entropy modelling has been recently introduced to the NLP community and proved to be
an expressive and powerful framework. The maximum entropy model is a model which fits to a set
of pre-defined constraints and assumes m~ximum ignorance about everything which is not subject
to its constraints thus assigning such cases with the most uniform distribution. The most uniform
distribution will have the entropy on its maxim~n and the model is chosen accorrllng to:

model = argrnaxpecon~.aints H(p) where H(p) = - ~ P i * log2 Pi (1)
i

For instance, if we want to disambiguate part-of-speech of a word and we observed that in 50%
of the times a noun is preceeded by a determiner and in 30% of the thnes it is preceeded by an

216

adjective, we can state these observations as constraints to the model. Thus our model will have
to choose a probability distribution for parts-of-speech which will agree with our observations and
which will assign all the cases when a word which can be a noun is preceeded with neither a
determiner nor an adjective with equal probabilities.

One of the most popular maximum entropy distributions is known as Gibbs distribution. It
defines a model as a set of Lagrange multipliers (Z,)~0..£n) and has an exponential form:

p(wi) = ½e E×¢Exxx¢*'fx¢(w') where (2)

* T is a set of instantiated by their values atomic features of the model;

* w/ is a described by the model entity which can be represented as a configuration of the
instantiated atomic features from T. We will call wi a configuration from con.figuration space

• W. The configuration space W includes not only observed configurations (w) but rather all
possible in the domain configurations many of which might have not ever been observed;

* X1 is a constraint from the constraint space X imposed to the model. It is essentially a
combination ofinstantiated atomic features too. We can look at the constraints as at employed
by the model features 1. In the rest of the paper we will use the terms constraint feature,
feature and constraint interchangeably;

• fx~ (wi) is the indicator function which indicates whether or not the j - th constraint (Xj) is
active for the configuration wi. This function takes two values: 1 - if the constraint is active
and 0 otherwise;

• ~ (Lagrange multiplier) is the weight of the j - th constraint (Xj);

• Z is the normalization constant which ensures that the probabilities for all configurations
sum up to 1:

z = (3)
wiEW

Apart from being a distribution of maximum entropy this distribution also po6sesses a very
important property of model decomposition. For instance, if our atomic feature set T includes
word length (1, 2, 3, 4, 5..), its capitalization (Cap) and whether it ends with the full-stop (fstop),
and we want to obtain the probability of spelling the word "Mr." , we will have the equation as
follows:

p(Mr.) = ½cX1"0+~2"°+'~3"1+~*°+~5"°+'~c','1+~1,~, .I = ½e~+~c',+~.f'~

There is nothing interesting about the model above since it constrains only atomic non-overlapping
i.e. independent features. The main strength of the Gibbs distribution is that it can handle
complex overlapping features and therefore account for feature interaction. For instance, we might
notice that the capitalization, when it is seen particlll~rly with words of length 3, has a different
distribution from its general one. To model this observation we can introduce a comple¢ feature
(i.e. we set a complex constraint) which is a logical conjunction or collocation of the two atomic
features 3 and Cap. Now our model will predict the probability for the word "Mr." as:

1Note here the difference between atomic features and constraint features: constraint features consist from atomic
features but we can have a set of constraints which does not include some or even all atomic features per se but only
their combinations.

217

p(Mr.) = ½e~+~*,+~s'~,+x(a.c=,)

Important thing to note here is that we still constrain the atomic features A3 and Acap together
with their collocation feature A(3,can)- So A(a,cap) has only the excess weight which differentiates
p(3, Cap) from the product of p(3) and p(Cap) - the case ff there were no feature interaction. Such
decomposition of complex features into simpler ones provides an elegant way of representing cases
with interactions of many overlapping features of high complexity.

Because of its ability to handle overlapping features the maximum entropy framework provides a
better way to incorporate multiple knowledge sources than traditionally used for this purpose linear
interpolation and Katz back-off method (Katz 1987). Rosenfeld 1996 evaluates in detail a maximum
entropy model which combines unigrams, bigrams, trigrams and long-distance trigger words for the
prediction of the next word. The linear interpolation combines such knowledge sources simply by
weighting them as Pcornbined = ~=Z AiPi for'k knowledge sources. It does not, however, model the
interaction between different knowledge sources 2 and only provides the best weights for the them
under the assumption of independence. The back-off method, in fact, does not combine different
knowledge sources but rather ran/; them. This allows for using the most informative method first
and back-off to a less informative method if there is not enough information for a more informative
one. For instance, we can try to use the trigram model first, and only when there is no suitable
trigram known to the model, we back-off to the bigram model. As the linear interpolation the
back-off method does not account for possible interactions between different knowledge sources
which can lead to overestimation of some events.

The maximum entropy framework naturally combines the good sides of the two methods and at
the same time it accounts for the interactions between features. Every knowledge source produces
a set of constraints which are used together with constraints from other knowledge sources - so
no interpolation needed. Simple and complex features together with their overlaps are naturally
incorporated into the model and all the interactions are naturally accounted for. Because of the
decompositional nature of the maximum entropy model, it can act as a back-off model too -
overlapping simpler features naturally coexist with more complex ones and the weights of the
complex features are just the excess on which they different from their constituent simpler features.

Applying the exponential distribution discussed above the maximum entropy approach devel-
oped in Della Pietra et ai. 1995 defines a framework for the selection of the best performing
constraint set and for the estimation of the weights (As) for these constraints. The model induction
procedure has two parts: feature selection and parameter estimation, both of which agree with the
principle of maximum entropy. In this paper we present a novel approach to feature selection
for the maximum entropy models. This approach requires less computational load than the one
developed in Della Pietra et al. 1995 at a price of being not yet suitable for building models with
a very large (hundreds of thousands) set of parameters. We also propose a slight modification to
the process of parameter estimation for the conditional maximum entropy models. Our method
uses assumptions similar to Berger et al. 1996 but is naturally suitable for distributed parallel
computations.

2 P a r a m e t e r E s t i m a t i o n

The parameter estimation for the exponential maximum entropy distribution is based on the Im-
proved Iterative Scaling algorithm presented in Della Pietra et ai. 1995. Its task is to determine
weights (A) for all the constraint features of a given constraint space so that the resulting dis-

2For instance, the probabilities for bigrams and trigrams are clearly not independent from each other.

218

i

f

tribution will closely model some reference distribution which is usually taken as the empirical
distribution of the configuration space. The essence of the parameter estimation is as follows:

there is a model with a set of atomic features T and a constraint feature space X- Every
constraint feature consists of one or more atomic feature from T. For instance, we can
define a model with atomic features T = (2, 3, 4, 5, Cap, fs$op) and a possible feature space
X = {2, 3, Cap, (2, Cap), (5, Cap, fstop)}.

there is a sample of entities w = {w0...wm} which are representable as configurations of
atomic features 3 from T. We define a function • : w ~ T which maps entities w into T, for
instance, ¢(Mr.) ~ (3, Cap, fstop). Here we will refer to w-s as configurations meaning that
they are mapped into atomic features.

• all the features from the constraint feature space X have corresponding indicator functions
• fxo(W)...fx= (w) to flag whether a certain constraint feature is active for a particular configu-

ration from the configuration space:

1 if X~ C ~(wi) (4)
= 0

For instance: f (z,cap)(Mr.) = 1 since .¢(Mr.) --~ {3, Cap, f stop) and (3, Cap) C (3, Cap,]stop).

• we choose a reference distribution to fit our model to, so we can associate every feature
from the model's constraint space with a corresponding reference probability: 25(Xo)...iS(Xn).
Usually the reference distribution is simply the empirical distribution of our features in the
configuration space. In this case the reference probability for a feature is computed as:

 (xk) = (5)
w i E ~

where ~(wi) is the frequency count of the i-th configuration over the total number of observed
configurations. Note here that the total sum of feature probabilities can be greater than 1:
~x~¢xi6(Xk) -> I since features can overlap with each other.

• we c o n s t r ~ our features to their reference probabilities: P(Xk) ~ P(Xk) and using equation 5
obtain:

 Cxk) = fx Cw) ,vCw) = vCxk) (6)
~iEw w~EW

where IS(wi) is estimated from the sample of configurations and p(w~) is computed using
equation 2. Note here that in the second part of the equation we sum over all possible
configurations (W) in the domain.

* To fit the model to its reference distribution we use the Improved Iterative Scaling algorithm:

1. we initialize all weights (lambdas) of the features from our constraint space with some
initial values. Usually if we don't have other evidence we start with the uniform distri-
bution so all lambdas are set to the same value e.g. O: Ax0 = 0 Axe = O.

Slndeed, the feature space and the mapped configuration space can be identical if we want to memorize in our
model all and only seen cases. This can lead, however, to the overlltting of the model and such model also will not
possess any generalization power, so its performance on unseen cases might be rather poor.

219

2. we calculate the normalization constant Z using equation 3 and the maximum entropy
probabilities (p(wo)....p(wm) for each configuration from the total configuration space
W using equation 2.

3. for each feature from the model's constraint space we apply the constraint as in equa-
tion 6 and compute how its weight should be adjusted (AA) to satisfy the constraint:

i~(xk) ~ Z .f~ (w~) • p(w~) • e ~ * 3 C ~ ~ I~c~,) (7)
w~EW

where fxk (wd) ensures that only those configurations (wd) which include the constrained
feature Xk contribute to the mass probability, and ~ . e x fx~ (wd) is simply the number of

all the features from the model's feature space a which are active for the i-th contributing
configuration (wi). This ensures that we account only for that proportion which belongs
to Xk in the contributing configurations. In general there is no analytical solution to
such equations and the most popular numerical method is Newton's method where we
fit AA iteratively.

4. if the greatest AA computed at the previous step is smaller than a certain threshold -
the algorithm has converged and we exit. Otherwise we update the model's weights as:
Ax~ =- Axk + AAxk and go to step 2 to obtain a better fit of the model.

• As the result we have a fully specified maximum entropy model of the form: (Z, Axo Ax,~)

2 .1 Computing Conditional M o d e l s

Generalized Iterative Scaling algorithm presented above defines a way for the computing of Maxi-
mum Entropy models for joint probability distributions. With such models we can answer questions
such as what is the probability of generating an entity described as a configuration of atomic fea-
tures. For instance, a joint model can predict how likely it is to generate a capitalised word with
suffix ~ing" : p(capi~al i zed = Y E S , su f = ing). In the statistical language modelling we, however,
are often concerned with the conditional probabilities: what will be the probability of Y to take a
certain value y if we see a feature-configuration x. For instance, a conditional model can predict
how likely that a word will be a verb if the previous word was a noun and the previous but one
word was an adjective: p(wordi = V B [wordi-1 = N N , wordl-2 = A D J) . For supervised training
of conditional models the sample space consists of configurations which include features from two
non-overlapping sets: factor features (X) and behavior features (Y). Using such joint configura-
tions w -- (x, y) we have to estimate a conditional model which would predict a behaviour variable
(Y) given a configuration of factor variables (X): p(y [x).

There is an obvious simple way to compute a conditional model by computing a joint model
X, Y for every value of the behavior variable separately and then the conditional model is computed
as:

p(~ I z) = p(y' ~)
iEY

4Note that this is not just the number of atomic features which compose the i-th configuration but rather the
number of all registered in the model features (atomic and complex) which are active for it. For instance, ff our our
feature space is [3, Gap,]stop, (3, fstop), (Gap, fstop), (3, Cap, fstop)] the constraint for the feature (3) will look like:

15(3) ~ p(w--+(3)) * e ~xs'* + p(w--+(3, fstop)) * e Ax3"a + p(w--+(3, Cap)) * e z~x~'2 + p(w.-+(3, Cap, fstop)) • e A~'3"e

220

I
I
I
I
I
I
I
I
I
!

I
I
I
I
I
I
!

I
I

with a suitable choice of Z for each joint model. This approach is naturally suitable for distributed
computation but as it was pointed out in Rosenfeld 1996 it is not a good way to proceed because
every behavior is activated only by a fraction of possible factors but we will estimate their joint
model on the whole space of possible configurations (W). Apart from the computational overload
this will require training data well beyond usually available in the training samples.

Berger et al. 1996 presented a way of computing conditional maximum entropy models directly
by modifying equation 6 as follows (now instead of w we will explicitly use (x, y)):

i ~Cx~) = ~ f~(~, y) * ~(~, y) ~ ~ .~(~, y) * ~(~) * pCy I ~) = p(xk) (9)
x6X yEY xEX yEY

where ~(x, y) - is an empirical probability of a joint configuration (w) of certain instantiated factor
I variables with certain instantiated behavior variables. ~(x) is the marginal empirical probability of

the factor variables. The constraint solving equation 7 is then correspondingly adjusted as:

I ~Cxk) ~ ~ .~x~C~,y) *~(~) *pCy I ~) * e ~'Z~I~c~'~) (I0)
xEX YEY

and the normalization constant Z(x) ensures that ~ e r P (Y] x) = 1. This approach differs from
the standard approach for joint distribution (equation 7) in plugging in the empirical marginal
estimate ~(x). This restricts the constraint set only to those cases which were actually observed in
the training samples for a particular value of the behavior variable (y) and in solving a constraint
we only sum over seen conjura t ions rather than all possible ones.

In this paper we propose to adjust the first method with restrictions similar to that of the
second method. We will compute joint distributions separately thus benefitting from the possibility
of distributed computations - each joint model can be independently computed on a separate
processor or machine using multi-threading together with remote process calls (RPC). At the
same time we will restrict the configuration space from all possible configurations in the domain
(W) only to the observed and logically implied configurations (w +) as it is described in section 6.
We will require that the normalization constants Z for each joint model (X, y) ensure that all
probabilities in a joint model sum up to the empirical marginal probability of the behavior variable
~(y), thus accounting only for the true proportions of the joint models. We also adopt a further
yet simplification suggested in Ristard 1996 to restrict the constraints only to the cases when the
overall joint frequency of a feature Xk = (x, y) is greater than a certain threshold, for instance 5.

3 Feature Selection

The iterative scaling algorithm applied for the parameter estimation provides us with a set of
As which ensure that the model fits to the reference distribution and does not make spurious
assumptions (as required by the maximum entropy principle) about events beyond the reference
events. It, however, does not guarantee that the features employed by the model are good features
and the model is useful. Thus the most important part of the model building is the feature selection
procedure. The key idea of the feature selection is that if we notice an interaction between certain
features we should build a more complex feature which will account for this interaction. The
newly added feature should improve the model: its Kuliback-Leibler divergence from the reference
distribution should decrease:

• i~(~) (11)

221

For a conditional model Kullback-Leibler divergence is computed as:

Iz) 11 P) = • log (X2)
zEXyEY

and the conditional maximum entropy model will also have the greatest log-likelihood (L) value: []

model = argrnax L~(p) where L~(p) = ~ l~(x, y) * log p(y I x) (13) U
xEXyEY

The basic constraint feature induction algorithm presented in Della Pietra et ai. 1995 starts
with an empty feature space and iteratively tries all possible feature candidates which are either
atomic features or complex features produced as a combination of an atomic feature with the
features already selected to the model's feature space. For every feature from the candidate feature
set the algorithm prescribes to compute the maximum entropy model using the iterative scaling
algorithm described above, and select the feature which minimized the Kullback-Leibler divergence
or maximized the log-likelihood of the model in the largest way. This approach, however, is not
computationaily feasible since the iterative scaling is computationaUy expensive and to compute
models for many candidate features many times is unreal. To make feature ranking computationally
tractable in Della Pietra et al. 1995 and Berger et al. 1996 a simplified process proposed: at the
feature ranking stage when adding a new feature to the model all previously computed parameters
are kept fixed and, thus, we have to fit only one new constraint imposed by a candidate feature.
Then after the best ranked feature has been established it is added to the feature space and the
weights for all the features are recomputed. This approach allows for estimating good features
relatively fast but it does not guarantee that at every single point we add the best feature because
when we add a new feature to the model all its parameters can che uge.

In this paper we present a novel approach to feature selection for the maximum entropy models.
Our approach uses a feature collocation lattice and selects the atomic features without resorting to
the iterative scaling. After the atomic features have been selected we, using the iterative scaling,
compute a fully saturated model for the maximal constraint space and then the algorithm starts
to eliminate the most specific constraints. Since during constraint deselection at every point we
have a fully fit maximum entropy model, we rank the features on the basis of their weights in
the model. Therefore we don't have to use the iterative scaling for constraint ranking and apply
it only for linear model regression. Another important improvement is that since the simplified
model deviates from the previous larger model only in a small number of constraints, we use the
parameters of the old model as the initial values of the parameters for the iterative scaling of the
new one. This proved to decrease the number of required iterations by about tenfold. In the rest of
the paper we first introduce the feature collocation lattice as a graphical way to represent complex
models, then we introduce a feature selection process using the collocation lattice and finally, we
present some details of application of our method to the tasks of sentence boundary disarnbiguation,
part-of-speech tagging and automatic document abstracting via sentence extraction.

4 F e a t u r e C o l l o c a t i o n L a t t i c e

When we have a set of atomic features T and a training sample of configurations w, we can build
a feature collocation lattice. Such collocation lattice will represent, in fact, the factorial constraint
space (X) for the maximum entropy model and at the same time will contain all seen and logically
implied configurations (w+). Formally, the feature collocation lattice is a 3-ple: (0, C_, ~> where

222

0 is a set of nodes of the lattice which corresponds t o t h e union of the feature space of the
maximum entropy model and the configuration space: 8 = XU¢(w). In fact, the nodes in the
lattice (0) can have dual interpretation - on one hand they can act as mapped configurations
from the extended configuration space (w +) and on the other hand they can act as features
from the constraint space (X);

C is a transitive, antisymmetric relation over 0 x 0 - a partial ordering. We also will need
the indicator function similar to one in equation 4 to indicate whether the relation C holds
from node i to node k:

I ~f 0{ _C Ok
fo,(OD = 0

~tu is a set of configuration frequency counts of the nodes (8) of the lattice. This represents
how many times we saw this particular configuration in our training samples. Because of the
dual interpretation of the nodes a node can also be associated with its feature frequency count
i.e. the number of times we see this feature combination anywhere in the lattice. The feature
frequency of a node (similar to equation 5) will then be ~X(ek) = ~]sieo fek (8i) * ~ which is
the sum of all the configuration frequency counts (~tO) of the descendant nodes.

Suppose we have a lattice of nodes A, B, (AB) with obvious relations: A C (AB); B C (AB):

A / z (AB) ~ B

The configuration frequency ~a will be the number of times we saw A but not (A.B) and then
the feature frequency of A will be: ~ = ~ + ~ B i.e. the number of times we saw A in all
the nodes.

When we construct a feature collocation lattice from a set of samples, each sample represents
a feature configuration which we must add to the lattice as a node (Ok) if is not already there. To
support generMizations over domain we also want to add to the lattice those nodes which were not
seen on their own but only as common parts of other nodes in the lattice. Thus we add to the
lattice all sub-configurations of a newly added configuration which are the intersections with the
other nodes. We increment the configuration frequency (~) of a node each time we see in the
trair~ng samples this particular configuration on its own but not as a part of another configuration.
For example, if a configuration (ABCD) comes from a training sample and it is still not in the

tO lattice, we create a node (ABCD) and set its configuration frequency ~(ABCD) to 1. If by that time
there is a node (ABDE) in the lattice, we then also create the node (ABD), relate it to the nodes
(ABCD) and (ABDE) and set its configuration frequency to 0. If (ABCD) had already been in
the lattice we would simply incremented its configuration frequency: ~(ABCD) = ~BCD) + 1.

Thus in the feature lattice we have nodes with non-zero configuration frequencies, which we
call reference nodes and nodes with zero configuration frequencies which we call latent or hidden
nodes. Reference nodes actually represent the observed configuration space (w). Hidden nodes
are never observed on their own but only as parts of the reference nodes and represent possible
generalizations about domain: low-complexity constraints (X) and logically possible configurations
(w+).

Sometimes, there develops a class of hidden nodes which does not provide good generalizations
- those hidden nodes that directly support less than two higher level nodes. By support here we
mean the _C relation and the direct support is that there is no intermediate nodes between two

223

I
I
I

" |

I
I

Figure I: This figure shows a feature lattice where thick orcles repre~mt reference nodes and filled
circles represent obsolete hidden nodes. 3 indicates that a word has length 3, C indicates tha t a
word is capitalised, Mr. indicates that a word has spelling "Mr3 and Dr. indicates that a word
has spelling ~Dr2.

nodes linked with the _C relation. Such redundant nodes might develop because we explicitly pu t
all the atomic features into the lattice but some of them never act on their own. Figure 1 shows
an excerpt from a feature lattice with the atomic features including: word length (1, 2, 3,4, 5..),
capitalization (C), spellings (Mr., Dr...) and others. The nodes (Dr., 3, C), and (Mr., 3, C) are
the reference nodes - they were observed in full 5 and have non-zero configuration frequency counts
((ur. ,s,c) > 0 (Mr.,S,C) > 0). All other nodes on figure 1 are hidden nodes that were observed
only as parts of the higher level nodes 6. Hidden nodes (Dr., 3), (Mr., 3), (Mr., G) and (.Dr., 6')
directly support only one node each and thus do not provide any gener~J~.ations. Therefore these
nodes are obsolete and can be safely removed from the lattice. The nodes (Dr.) and (Mr.) then
become obsolete as well, since they will not support directly any node, so we can safely remove
them from the lattice too. Nodes (3) and (C) apart from supporting the node (3,C) support some
other nodes not represented on figure 1, and thus should be retained in the lattice.

This method of building the feature collocation lattice ensures that along with true observations
it contains hidden nodes which can provide generalizations about domain, and at the same time
there is no over-generation of the hidden nodes: no logically impossible feature combinations and
no hidden nodes without generalization power are included. Such collocation lattice was success-
fully applied for representing queries for document retrieval (Finch 1997) where it behaved as a
combination of the boolean and the vector space models.

5 A t o n ~ i c F e a t u r e S e l e c t i o n

I
I
I
I
I
I
I
I

After from a set of samples we have constructed a feature collocation lattice (0, C,~ w) which we
will call the empirical lattice, we try to estimate which atomic features contribute and which do
not to the frequency distribution on the reference nodes. Thus we will retain in the lattice only
the predictive atomic features. The optimized feature space can be seen as a feature lattice defined

SIndeed, any time we see a configuration for the words ~'Mr3 and ~'Dr." it always includes their length 3 and
their capitalization feature C together with their spellings.

eFor instance, it is impossible to see the configuration (Dr., C) without seeing the configuration (.Dr., 3, G).

I
I
I
I

224 I

I
I
I
I
I

a) b) c)
'~Z = '~ + ,~B + '~c + ~ B c ~ = ~ + '~c '~7 = ~ ~ ' = ~c
~Y. = ~$ + '~c '~Y = ~$ ~Ec = ~~c ~
' ~ = ' ~ + ~ e c ' ~ = ~'B ~,~c = ~~c
~ c = ' ~ c

Figure 2: This figure shows the redistribution of configuration frequencies in the optimized feature
lattice when adding new atomic nodes. Case a) stands for adding the atomic feature A to the
empty lattice, case b) stands for adding the atomic feature B to the lattice with the atomic feature
A and case c) stands for adding the atomic feature C to the lattice with the atomic features A
and B and their collocations. The unfilled nodes stand for the nodes in the empirical lattice which
don't have reference in the optimized lattice. The nodes in bold stand for the nodes decided by the
optimized lattice (i.e. they can be assigned with some probabilities).

over the empirical feature lattice: 8' C_ 0 and initially it is empty: 8' =,~. We build the optimized
lattice by incrementally adding an atomic feature from the empirical lattice together with the nodes
which are the minimal collocations of this atomic feature with the nodes already included into the
optimized lattice. So if in the optimized feature lattice there is just one feature A, then when we
add the atomic feature B we also have to add the collocation (A.B) if it exists in the empirical
lattice. The configuration frequency of a node in the optimized lattice (~,w) then can be computed
as:

Thus a node in the optirnLzed lattice takes all cor~fi~ation frequencies (~w) of itself and the above
related nodes i£ these nodes do not belong to the optimized lattice themselves and there is no higher
node in the optimized lattice related to them.

Figure 2 shows how the configuration frequencies in the optimized lattice are redistributed
when adding a new atomic feature. First the lattice is empty. When we add the atomic feature
A to the optimized lattice (figure 2.a), because no other features are present in the optimized
lattice, it takes all the configuration frequencies of the nodes where we see the feature A: ~ =
~ + ~ B + ~ c ÷ ~Bo- Case b) of figure 2 represents the situation when we add the atomic
feature B to the optimized lattice which already includes the atomic feature A. Apart from the
node B we also add to the optimized lattice the collocation of the nodes A and B. Now we have
to redistribute the configuration frequencies in the optimized lattice. The configuration frequency
of the node A now will become the number of times of seeing the node A but not the node .AB:
~ = ~ + ~ o . The configuration frequency of the node B will be the number of times of seeing
the node B but not the node A.B: ~ = ~ + ~'~. The configuration ~equency of the node AB will

225

be: ~ 'B = '~e + ~ABC" When we add the atomic feature C to the optimized lattice (figure 2.c) we
produce a fully saturated lattice identical to the empirical lattice, since the node C will collocate
with the node A producing AC and will collocate with the node B producing BC. These nodes in
their turn will collocate with each other and with the node AB producing the node ABC.

During the building of the optimized lattice all the atomic features from the empirical lattice
compete, and we include the one which results in a new optimized lattice with the smallest diver-
gence D(p [[p') (see equation 11 and equation 12) and therefore with the greatest log-likelihood
Lp(p') according to the optimization task stated in equation 13, where:

• in the selection of features for a conditional model the only extra calculation is to convert
joint probabilities of nodes e = (x, y) to the conditional ones. This is easily done by using
the equations as follows:

io(ylz) = p(e~ = (z ,y)) /Cylz) = / (o~ = (x,~,)) (z5)
Eok~o .fok (z) • p(e~) Eo~o Jo~ Cz) • fCOk)

Note here that only reference nodes from the empirical lattice contribute to D(p [I P') and
Lp(p') estimations since hidden nodes always have their empirical probabilities (~) set to 0.

• p(Si) is the probability for the i-th node in the empirical lattice:

N oj~o

• p'(ei) is the probability assigned to the i-th node using only the nodes included into the
optimized lattice.

{ 9~. ~I 8i e e'

p'(e~) = ~ ~s e~ ¢ e' ~ [3e~ : e~ e e'

(n)

The optimized lattice assigns the probability to a node in the empirical lattice equal to that
of its most specific sub-node T from the optimized lattice. For reference nodes which do not
have sub-nodes in the optimized lattice at all (undecided nodes) according to the maximum
entropy principle we assign the uniform probability of making an arbitrary prediction.

For instance, for the example on figure 2.b the optimized lattice includes only three nodes but
there is just one undecided node (C) which is not shown in bold. So the probabilities for the nodes

will be:

~(A) = -7- ~(B)= ~- p(AB)= ~ p(iC)= q- ~(~c)= ~- p (~ c) = '@ ~(c)=

N is the total count on the empirical lattice and is calculated as shown in equation 16:

~Since when we add an atomic feature to the optimized lattice we also add all its relevant collocations, for every
node in the empirical lattice which does not belong to the optimized lattice there is always no more than one most
specific sub-node in the optlmi~ed lattice. This can be the node itself.

226

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The presented above method provides us with an efficient way of selecting only important
atomic features from the in/tiM set of candidate atomic features without resorting to iterative
scaling. When this way we add atomic features to the optimized lattice, some of the features raight
turn out not to contribute or contribute only- on a very small scale to the probability distribution
on the lattice. Such redundant atomic features can be classified into three categories: a) features
which are simply not informative; b) features which are always seen with some other feature (co-
founded features) and c) features which are mutually exclusive with some other feature. In the first
case such features are usually present randomly in the reference nodes of the empirical lattice and
therefore they do not have any discriminative power. In the second case all the relevant reference
nodes will be already correctly decided by the time we will try to add another co-founded feature.
Imagine that in the example on figure 2 most of the times when we saw the feature B we saw
the feature C as well. So the redistribution of the configuration frequencies as on (figure 2.c) will
not bring much advantage and we can safely leave the feature U out of the optimized lattice and
therefore use the atomic feature set as on figure 2.b. In the third case the configuration frequency
remaiuing on the parent node will account for the case of having two mutually exclusive higher level
nodes. Imagine that B and C in the example above are two mutually exclusive features and we
never see them on their own. So our lattice will consist from the nodes A, B, C, AB and AC. Seeing
the node AC is equal of not seeing the node AB when seeing A, and this is already presupposed
by the configuration frequency ~' when the node AB but not the node AC is in the lattice. The
same stands for the features B and C - the frequency of seeing the feature C is the frequency of not
seeing the feature B because they are mutually exclusive and thus all the configurations without
feature B will account for the presence of the feature C if we don't put it into the lattice.

6 M o d e l C o m p u t i n g a n d G e n e r a l i z a t i o n

After we have chosen a subset of the atomic features for our model, we restrict our feature lattice
to the optimized lattice. Now we can compute the maximum entropy model taking the reference
probabilities (which are configuration probabilities) as in equation 17. Instead of using total possible
configuration space (W) as required for iterative scaling by equation 7 we restrict the configuration
space to that actually observed during the lattice building. Here we have two choices. First as
the configuration space we can use only the reference nodes (w) from the lattice which makes it
similar to the method of Berger et al. 1996 described in section 2.1. We can also use all the nodes
from the lattice (reference and hidden) as the extended configuration space (w+). This can be seen
as the union of the observed and logically implied configuration spaces which still usually will be
much smaller than the total possible configuration space (W). In this case the computational load
will increase proportionally to the number of hidden nodes but the model itself will be fit more
accurately. Thus depending on the s/ze of the lattice we can use either the first or the second way.

The nodes from the lattice also serve as potential constraint features to our model. However,
even ~f the lattice is large, only a fraction of the nodes will be relevant as possible constraints for a
particular joint distributions 0 = (X, y) since most of the nodes will have zero or very small feature
count.,; ~x s Thus we will consider as possible constraints for the model only those nodes whose 0=(=,y) "

feature frequency counts are greater than a certain threshold, e.g.: ~ z,~ > 5. This means that =()
we constrain only features with reliable estimates and at the same time we drastically decrease the
computational load.

Initially we constrain all the nodes which satisfy the above requirement. Then for each behavior
variable we run the Improved Iterative Scaling algorithm as described in section 1 and produce a

s~'~(o~) = ~o,~o, fo~ (el) * ~

227

joint model with parameters (Z, A0...An). Then we use these joint models for the computing of a
conditional model as described in section 2.1. This model will closely fit the reference distribution

of the optimized feature lattice but usually it will be too specific and might poorly predict the
unseen cases. In theory we want to constrain only some general hidden nodes so they would
accurately predict the reference nodes and we hope that they will be good as well for the unseen
configurations.

In order to generalize and simplify our maximum entropy model we unconstrain the most
specific features, compute a new simplified maximum entropy model and if it still predicts well,
we repeat the process. So our aim is to remove from the constraints as many top level nodes as
possible without loosing the model ftness to the reference distribution ~) of the optimized feature
lattice. The necessary condition for a node to be taking as a candidate for being removed from
the constraint set is that this node shouldn't have any constrained nodes above it. There is also
a natural ranking for the candidate nodes: the closer to 1 the weight (A) of a constrained node is,
the 'less it is important for the model. We can set a certain threshold on the weights, so all the
candidate nodes whose As differ from 1 less than this threshold will be unconstrained in one go.
Therefore we don't have to use the iterative scaling for feature ranking and apply it only for linear
model regression, possibly un-constraining several feature configurations (nodes) at once. This
method, in fact, resembles the Backward Sequential Search (BSS) proposed in Pedersen&Bruce
1997 for decomposable models. Unlike there, however, we don't believe that models with complex
overlapping feature interactions can be estimated directly from their feature distribution and use
the iterative scaling algorithm instead. Another important improvement in our method is that
since the generalized smaller model deviates from the previous larger model only in a small number
of constraints, we use the parameters of that larger model 9 as the initial values for the iterative
scaling algorithm. This proved to decrease the number of required iterations to fit the simplified
model by about tenfold, which makes a tremendous saving in time.

There can be many possible criteria when to stop the generalization algorithm. The simplest
one is just to set a predefmed threshold on the deviation D(~ II P) of the generalized model from the
reference distribution. Pedersen&Bruce 1997 suggest to use Alc~i~e's Information Criteria (AIC)
to judge the acceptability of a new model. AIC rewards good model fit and penalizes models with
high complexity measured in the number of features. We adopted the stop condition suggested in
Berger et al. 1996 - the maximization of the likelihood on a cross-validation set of samples which
is unseen at the parameter esti~_tion.

7 A p p l i c a t i o n s o f t h e M e t h o d

We applied the above described method of building maximum entropy models to several tasks:
sentence boundary disambiguation, part-of-speech tagging and document abstracting via sentence
extraction. In this section we deliberately will not go into details of training and evaluation - this
will be the subject for a separate paper - but rather we will concentrate on the feasibility of the
proposed method for real world applications.

Sentence boundary disambiguation has recently gained certain attention of the language engi-
neering community. It is required for most text processing tasks such as, tagging, parsing, parallel
corpora alignment etc., and, as it turned out to be, it is a non-trivial task itself. A period can act as
the end of sentence or be a part of an abbreviation, but when an abbreviation is the last word in a
sentence, the period denotes the end of sentence as well. The simplest "period-space-capital_letter"
approach works well for simple texts but is rather unreliable for texts with many proper names

9instead of the uniform distribution as prescribed in the step 1 of the Improved Iterative Scaling algorithm.

228

and abbreviations at the end of sentence as, for instance, the Wall Street Journal (WSJ) corpus (
Marcus et ai.1993).

To tackle this problem we built two maximum entropy models. The first model used a lexicon
of words associated with one or more categories from the set: abbreviation, proper noun, content
word, closed-class word. This model employed atomic features such as the lexicon information for
the words before and after the period, their capitalization and spellings. For training we collected
from the WSJ corpus 51,000 samples of the form (Y, F..F) and (N, F..F), where Y stands for the
end of sentence, N stands for otherwise and Fs stand for the features of the model. We built a
model out of 238 most frequent atomic features which gave us the collocation lattice of 8,245 nodes
in 43 minutes of processor time on SUN Ultra-1 workstation. When we appl/ed the atomic feature
selection algorithm (section 5), we in 53 minutes bo/led the lattice down to 3,769 nodes. Then
constraining all the nodes we compiled a maximum entropy model in about three hours and then
using the constraint removal process in two hours boiled the constraint space down to 619. For
the evaluation we usecl the same 27,294 sentences as in PaimerSzHearst 1994 and Palmer&Hearst
1997 I° which were also used by Reynar&Ratnaparkhi 1997 in the evaluation of their system. These
sentences, of course, were not seen at the training phase of our model. Our model achieved 99,2%
accuracy which is the highest quoted score on this test set known to the authors.

We also built a maximum entropy model to deal with unknown abbreviations, i.e. the model
classifies whether or not an unknown to the lexicon word is an abbreviation. This model relies
on the surface lexical features of words such as, word capitalization (C), class of the character
(consonant (c), vowel (v), punctuation (p) or digit (d)) in the four last positions of the word and
the length (1, 2,3,4,5, 6+) of the word. From the test samples we collected the frequencies of all
our features and included into the initial atomic feature set only those features which appeared
more than 1000 times in the positive training samples. There were 49 of such features but they had
a very high level of co-occurrence and produced the empirical feature collocation lattice of 7,626
nodes. This took about 67 minutes of the processor time. Then we run the atomic feature selection
algorithm and our atomic feature set in 46 minutes was boiled down to 42 atomic features and
the feature collocation lattice to 3,028 nodes. Then the constraint removing algorithm boiled the
constraint space down to 1,031 in two hours. The accuracy of the classification of the produced
model reached 96,4% on unseen words.

Using our method we built a maximum entropy model for part-of-speech tagging. We considered
as features bigram and trigram combinations together with unigrams of possible parts-of-speech for
words in question. We also included into the constraint set the actual spellings of the most frequent
words. We collected training samples from the Brown Corpus distributed with the Penn Treebank
(Marcus et al.1993). This gave us 1,763 atomic features, but the lattice itself was not-surprisingly
fiat and had 38,564 nodes. It was boiled down to 16,078 in 40 hours of the processor t/me. We
didn't specifically evaluate the model but it is about 1.2% more accurate than a bigram Hidden
Markov Model which we used before.

We also built a maximum entropy model for the task of extraction of the most informative
sentences for automatic document abstracting. Here we used about 120 atomic features such as
sentence position, sentence length, q-phrases, etc. The initial lattice was of 28,114 nodes. After
the atomic feature selection it was reduced down to 3~792 nodes. This was boiled down to 311
nodes by the constraint removal algorithm. It actually shows that there was only a very small
interdependency among the features and not-surprisingly our model hnproved only about 1.1%
over a simple Bayesian classifier achieving just under 70% precision.

2°We want to thank David Palmer for making his test data available to us.

229

8 C o n c l u s i o n

In this paper we presented a novel approach for building maximum entropy models. Our approach
uses a feature collocation lattice and selects the atomic features without resorting to iterative
scaling..A_fter the atomic features have been selected we, using the iterative scaling, compute a
fully saturated model for the maximal constraint space and then start to eliminate the most specific
constraints. Since during constraint deselection at every point we have a fully fit maximum entropy
model, we rank the constraints on the basis of their weights in the model. Therefore we don' t have
to use the iterative scaling for constraint ranking and apply it only for linear model regression.
Another important improvement is that since the smaller model deviates from the previous larger
model only in a small number of constraints, we use the parameters of the old model as the initial
values of the parameters for the iterative scaling of the new one. This proved to decrease the
number of required iterations by about tenfold. We applied the described method to several
langnage modelling tasks and proved its feasibility for selecting and building the models with the
complexity of tens of thousands constraints. A potential drawback of our approach is tha t we
require to build a maximum entropy model for the whole observed feature-space which might not
be feasible for applications with hundreds of thousands of features. So one of the directions in our
future work is to find efficient ways for a decomposition of the feature lattice into non-overlapping
sub-lattices which then can be handled by our method. Another avenue for further improvement is
to introduce the "or" operation on the nodes of the lattice. This can provide a further generalization
over the employed by the model features.

References

Berger et al. 1996 A. Berger, S. Della Pietra, V. Della Pietra, 1996. A Maximum Entropy Approach to
Natural Language Processing In ComputationaZ Linguistics voi.22(1)

Della Pietra et al. 1995 S. Della Pietra, V.. Della Pietra, and J. Latferty 1995. Inducing Features of Random
Fields Technical report CMU-CS-95-144

Finch 1997 S. Finch 1997. Query Domains: Towards an Algebra for Collocation. TTSG Technical Report
TTLNLP/97/003, Rockvine, MD.

Katz 1987 S. Katz 1987. Estimation of probabilities from sparse data for the language model component of
a speech recognizer. In IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-35

Marcus et a1.1993 M. Marcus, M.A. Marcinkiewicz, and B. Santorini 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. In Computational Linguistics, vol 19/2 pp.313-329

Palmer&Hearst 1994 D. D. Palmer and M. A. Hearst 1994. Adaptive Sentence Boundary Disambiguation.
In Proceedings of the Fourth A CL Con]erence on Applied Natural Language Process~m3 (ANLP'9~), ACL.

PaLmer&Hearst 1997 D. D. Palmer and M. A. Hearst 1997. Adaptive Multilingual Sentence Boundary
Disambiguation. In Computational Lingu£s~cs, ACL.

Pedersen&Bruce 1997 T. Pedersen and R. Bruce 1997. A New Supervised Learning Algorithm for Word
Sense Disarabiguation. In Proceedings of the Fourteenth National Conference on Artificial In~lligence,
Providence, RI.

Reynar&Ratnaparkhi 1997 J. C. Reynar and A. Ratnaparkhi 1997. A Maximum Entropy Approach to
Identifying Sentence Boundaries. In Proceedings of the FiSh A CL Conference on Applied Natural Language
Processing (ANLP'97), Washington D.C., ACL.

Ristard 1996 E. S. Ristaxd 1996. Maximum Entropy Modelling Toolldt. Documentat.ionfor Werswn 1.3 Beta,
Dra~, available at cmp-lg/96120005

Rosenfeld 1996 R. Rosenfeld 1996. A Maximum Entropy Approach to Adaptive Statistical Language Learn-
ing. In Computer Speech and Language, vol.10(3) Academic Press Limited

230

