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S u m m a r y  

We have developed a method of improving and controlling the accuracy of automated continuous 
speech recognition through linguistic postprocessing. In this approach, an output from a speech 
recognitio n system is passed to a trainable Correction Box module which attempts to locate and 
repair any transcription errors. The Correction Box consists of a text alignment program, a correc- 
tion-rule generator, and a series of rule application and verification steps. In the training phase, the 
correction rules are learned by aligning the recognized speech samples with their original, fully 
correct versions, on sentence by sentence basis. Misaligned sections give rise to candidate con- 
text-free correlation rules, e.g., from ~ frontal ; there were made ~ the remainder, etc. Validation against a 
text corpus leads to context-sensitive correction rules, such as from view ~ frontal view. The system is 
applied to medical dictation in the area of  clinical radiology. 

1. INTRODUCTION 

In this paper we describe a method of improving the accuracy of automated speech recognition 
through text-based linguistic post-processing. The basic assumption of our approach is that a 
majority of transcription errors can be attributed to either some inherent limitations of the lan- 
guage model employed by a speech recognition system, or else to the specific speech patterns of a 
speaker or a group of speakers. Many advanced speech recognition systems use trainable lan- 
guage models that can be optimized for a particular speaker (speaker-adaptable, or speaker-inde- 
pendent) as well as for a specific sublanguge usage (e.g., radiology). This optimization is 
necessary to achieve a respectable level of recognition accuracy, however, it may not guarantee 
consistently high-accuracy performance due to the limited capabilities of the underlying language 
model, usually a 2- or 3-gram HMMs. Our method is to take a reasonably accurate transcription 
(perhaps 70-90% word accuracy) and automatically develop a correction filter that would assure 
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consistently the highest possible performance. Unlike other approaches (e.g., Sekine & Grishman, 
1996) that attempt to choose from among alternative transcriptions based on syntactic and/or lex- 
ieal well-formedness, our method is to actually identify and correct transcription errors in the SRS 
output. 

We would like to stress that while the experiments described in this paper are relatively modest 
and preliminary, the system we designed is robust and fully automatic: there is no human inter- 
vention involved. 

2. M O T I V A T I O N  

In clinical radiology, an on-duty radiologist reviews and reads dozens of images a day: x-ray film 
as well as digital imagery such as CTIs and MRIs, etc. A radiology department at a medium size 
hospital handles hundreds of images every day. In a typical situation, an on-call radiologist exam- 
ines a series of images and dictates his or her findings into a recording device, except in emer- 
gency situations where the consultation may be read directly to an attending physician. Voice 
recordings are then sent for transcription, usually by outsourcing, and return as text reports for the 
radiologist's signature. The turnaround of this process may take anywhere from a few hours to 
several days, depending upon the priority of the request, and the efficiency of the transcription 
service. For a radiologist dictating dozens of reports a day, it is practically impossible to truly ver- 
ify the transcription arriving for his signature a few days later - that is verify beyond a surface 
"makes-sense" assessment. Therefore, an automated transcription system that can generate a 
printed report within seconds after being dictated, represents a substantial improvement in quality 
of this process, while eliminating costly manual labor. 

The above argument is of course conditioned upon the quality and reliability of automated speech 
transcription process. It is estimated that a continuous speech recognition system must maintain a 
consistently very high-level accuracy. [The exact figure is subject to verification in clinical tests 
currently underway. To give an example: a 95% accurate speech recognition means on average 1 
or 2 errors per a brief 20-40 word report]. Today's automated speech recognition systems, while 
quite advanced, are not sufficiently accurate for this application. We believe, however, that a sub- 
stantial improvement of automatic transcription quality is possible by augmenting ASR capabili- 
ties with natural language processing techniques. Our initial experiments suggest that this may 
indeed be possible. It remains to be seen whether the resulting system can be used in a real radiol- 
ogy dictation environment. 

For the experiments reported in this paper, we used a commercially available continuous speech 
recognition system, equipped with extensive radiology language model based on phoneme- and 
word-level HMMs, and specifically designed for dictation. Important selection criteria included 
advertised accuracy (95%), availability, compatibility, user interface type, and cost. 

3. O U T L I N E  O F  T H E  A P P R O A C H  

The basic premise of our approach is to utilize linguistic and sublanguage-specifie information, 
even speaker-specific features, in order to improve the accuracy of speech transcription. For the 
experiments described in this paper, we considered the speech recognition system as a black box, 
that is, our efforts were directed at correcting the transcription errors in a post-processing mode, 

169 



rather than to improve the initial transcription. One advantage of this two-pass approach is its 
independence from any particular SRS, and indeed our Correction Box (C-Box) module can be 
used as a back-end of any speech system. Nonetheless, there are other possibilities as well, and 
we mention them briefly in the Future Directions section. 

The main goal of  the C-Box approach is to generate a collection of context-sensitive text-based 
correction rules, in the form of xt,Y = xq~¥, where X and Y are context word patterns, L is a word 
pattern in an erroneous transcription string, and R is a replacement string correcting transcription 
errors in L. In order to generate the correction rules we require both training and validation steps 
to optimize the C-Box performance with respect to a specific sublanguage as well as a speaker or 
a group of speakers. Therefore, the C-Box approach consists of the following sub-processes: (1) 
collecting training data, (2) aligning text samples, (3) generating correction rules, (4) validating 
correction rules, and (5) applying correction rules. 

4. D E T A I L E D  A L G O R I T H M  

In this section we discuss the major steps in the C-Box algorithm. Some further details are dis- 
cussed in subsequent sections. 

Step 1. The process is started by collecting a sufficient amount of training text data. The training 
data must contain parallel text samples: a manually verified true transcription, and the output of 
the ASR system on the same voice input. We estimate that about a day worth of dictation is suffi- 
cient to initiate the training process, some 300 reports or about 150 KBytes of text. In addition, a 
fair-sized text corpus of historical, fully verified transcriptions is required. In the experiments 
described in this paper we used about 1000 reports (400 KBytes) of parallel text, plus an addi- 
tional 5881 correct transcriptions corpus (total 3.25 MBytes). The training was performed on 800 
reports, and tested on 200 reports. 

Step 2. The parallel text samples are aligned, sentence by sentence on the word level  This is best 
achieved using content-word islands, then expanding onto the remaining words, while using some 
common-sense heuristics in deciding the replacement string correspondences: misaligned sec- 
tions while different in print, are nonetheless close "phonetic variants". We use character-level 
alignment for support, especially if the replacement scope is uncertain. Additionally, we allow for 
known spelling variants to align, e.g., ' T '  for "one", or "Xray" for "X - ray" or "X-ray", etc. 

Step 3. When a misalignment is detected, the system lexicon is automatically checked for miss- 
ing words, i.e., we check to see if any given transcription error arose because the speaker had used 
some word or words that are unknown to the speech recognition system. This is accomplished by 

looking up the misaligned words in a broad-coverage medical terminology lexicon 1. Since such 
words will be eventually entered into the SRS lexicon, thus eliminating transcription errors, we 
decided not to generate correction rules for them, at this time. 

Step 4. Misalignect sections give rise to preliminary context-free string replacement "rules", 
L = R, where L is a section in the ASR output, and R is the corresponding section of the true man- 

1. We used UMLS Lexicon and Metathesaurus, available from the National Library of Medicine, as well as a corn- 
mercial Radiology/Oncology spell-checker. 

I 
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s c r i p t i o n .  F o r  example, the replacement r u l e s  mere were made = the remainder a n d  this or = the suppon a r e  

obtained by aligning the following two sentences: 

sl: THERE WERE MADE OF THIS OR UNES AND TUBES ARE UNCHANGED IN POSITION. 

s2: THE REMAINDER OF THE SUPPORT UNES AND TUBES ARE UNCHANGED IN POSITION. 

Context-free "rules" are derived from perceived differences in alignment of a specific pair of sen- 
tences, but they would not necessarily apply elsewhere. 

Step 5. The candidate rules derived in the previous step are validated by observing their applica- 
bility across the training collection (which consists of the parallel text training data as well as a 
much larger radiology text corpus). To do so, we collect all occurrences of string L in the ASR 
output (e.g., "there were made"), and determine how many times the rule z ~ R is supported in the 
parallel sample. This gives rise to the support set for a given rule, which we will denote sP(z, ~ R). 
The remaining occurrences of L constitute the refute set, ~(L ~ R). 

We also consider substrings of L for validation purposes, e.g.: 

sl: AT THE TRACK OF TUMOR ON CHANGE IN ... 

s2: ENDOTRACHEAL TUBES ARE UNCHANGED IN ... 

can be used to validate the rule on change = unchanged, even though the misaligned sections are much 
longer here. In fact, one way of proceeding is to work with shorter-L rules first. This in turn leads 
to breaking down some unwieldy and unlikely candidate rules, such as the one that may arise 
from aligning two or more consecutive transcription errors together, as illustrated by the above 
example. 

The initial validation is based on estimated distribution of L within SP and RF sets, and it may 
look as follows: 

L=FUSION COUNT=43 
R=EFFUSION 
R=EFFUSIONS 
R=EFFUSION OR 

MIN WEIGHT=0.84 
COUNT=41 
COUNT= 1 
COUNT= 1 

This says that the word FUSION has been mistakenly generated 43 times in the training sample of 
the SRS output, and this constitutes at least 84% of its total observed occurrences. That is, there 
were 8 other c o r r e c t  occurrences of FUSION within the corpus of all valid reports (i.e., 

43 = 0.s4), and at best all of these would translate correctly when read into the SRS. Out of the 
43+8 

43 cases, 41 are mistranscripfions of the word EFFUSION, therefore the context-flee rule 
fusion = effusion could be proposed. This rule is not perfect, since it will potentially mJscorrect other 
occurrences of FUSION, but its application can be expected to reduce an overall transcription 
error rate on similar data samples. 

Step 6. In many cases, clear cut context-free rules, like the one given above axe hard to come by. 
Clearly, rules with validity weights of 50% or less are useless, but even those below 75-80% may 
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be of little value. One possible way to produce higher quality rules is to specialize them by adding 
context. In other words, we refine rules by fitting them more closely to the existing evidence. This 
can be done by identifying contrasting features within the text surrounding L's occurrences that 
could help us to better differentiate between SP and RF sets. If  such a feature or features are 
found, they will be used to restate t,=~ R as a context-sensitive rule, XLY = XRY, where X and Y 
are context features. The context is added, initially words, then possibly some non-terminals, one 
element at a time, on either side of L. The revised rules are re-validated, and the cycle is repeated 
until no further progress is possible. 

As an example, consider the following pair of sentences: 

sl: PORTABLE FROM VIEW OF THE CHEST. 

S2: PORTABLE FRONTAL VIEW OF THE CHEST. 

The misalignment gives rise to the context-free correction rule from = f ronta l .  As we validate this 
rule against the training corpus we find some supporting evidence, but also many cases where the 
rule can't apply, like the one below: 

... ARE UNCHANGED IN POSITION FROM THE PRIOR EXAMINATION. 

However, adding a one-word context of the word VIEW, i.e., replacing the context-free rule with 
a context-sensitive from view = frontal view produces a very good correction rule. More advanced 
possibilities include adding non-terminals to the rules, as in had CD horn = at CD hours, where CD 
stands for any number (here the word tagged with CD part-of-speech). 

Step 7. The above process may lead to alignment re-adjustments, as suggested in step 5. Upon 
re-alignment, additional rules may be postulated, while other rules may be invalidated. This 
would require another cycle of rule validation. This, again, is repeated until no further progress is 
possible, that is no further changes to the rule set result. The final set of context-sensitive correc- 
tion rules is generated. 

5.  E X P E R I M E N T A L  R E S U L T S  

The experimental data was obtained from the University of Maryland Medical Center in Balti- 
more, which is one of the clinical sites used in this project. The validated transcriptions have been 
extracted from the hospital database by the hospital personnel, and then sanitized to remove any 
patient information such as names, addresses, etc. At the time this report is written, we collected 
nearly 7000 transcribed dictations, all in the area of chest X-ray. Chest X-ray is the most prevalent 
form of radiology, and we decided to start with this sub-area because of its the largest potential 
practical significance. 

The sanitized reports were subsequently re-dictated through the automated speech recognition 
system in order to obtain parallel samples of automated transcription. The redictation was done 
over a period of several months by a final-year radiology resident at Albany Medical Center, a 
native North American English speaker. At the time this paper is prepared, some 1000 reports 
have been redictated. Clinical tests of the system equipped with the C-Box that are starting in 
early 1997 will provide additional speakers. 
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Generally, we observed significant word error rates in automated speech recognition, in some 
cases as high as 38%, with the average of 14.3%. This is substantially higher than the advertised 
5% error rate. Before starting re-dictation, the speaker underwent a few hours training session, 
learning how to use the system, and having his voice patterns incorporated into the language 
model (the system we use is speaker adaptable). The above numbers therefore represent an opti- 
mal performance of the system for this speaker, although there are some hard-to-measure mitigat- 
ing considerations. For example, the radiology reports used in these experiments were read by an 
AMC resident, who while obviously familiar with the subject matter, also pointed out some fine 
vocabulary and style differences between AMC and UMMC Baltimore, where the reports were 
produced. This could potentially have an impact at SRS performance. It should be noted that a 
typical chest X-ray dictation report is quite short, from a few lines to a few paragraphs, and is dic- 
tated quite rapidly in anywhere from 15 seconds to a few minutes. 

Preliminary experiments with context-free rules have already shown interesting results: we 
noticed that the average word error rate decreased from 14.3% to 11.3% (a 21% reduction) on a 
test sample after running it through a C-Box equipped with only a few CF rules. This C-Box was 
trained on 800 reports (0.3 MByte) and tested on 200 reports (92 KBytes). 

Below is a sample radiology report, its automated transcription version, and the effect of a partial 
correction. Note that only context-free rules are used; a context-sensitive correction 
indication colon ~ indication : would fix the problem in the first line. 

Original ASR Transcription: (errors highlighted) 

indication colon and trachea to place. 

the endotracheal tube is in size factor position, there is and re-expansion of the 
fight upper lobe. mild changes of the 8th rds persist bilaterally. 

True Transcription: 

INDICATION: ENDOTRACHEAL TUBE PLACEMENT. 

TIlE ENDOTRACHEAL TUBE IS IN SATISFACTORY POSITION. THERE HAS 
BEEN RE-EXPANSION OF THE RIGHT UPPER LOBE. MILD CHANGES OF 
LATE RDS PERSIST BILATERALLY. 

Partially Corrected Transcription: (corrections bold, uncorrected errors italics) 

indication co~on ENDOTRACHEAL TUBE place. 

the endotracheal tube is in SATISFACTORY position, there HAS BEEN re-expan- 
sion of the right upper lobe. mild changes of the 8th rds persist bilaterally. 

Correction rules used: and trachea to ~ endotracheal tube ,  size factor ~ satisfactory, is and ~ has been .  
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6. OTHER APPROACHES 

Natural language processing techniques have been used before to assist automated speech recog- 
nition either in constructing better language models, or as post-processors. For example, part-of- 
speech information has been used to reduce the overall perplexity of the language model. More 
advanced linguistic methods include re-ranking N-best sentence hypotheses using syntactic and 
lexieal well-formedness. A good example is an ongoing effort by Gnshman and Sekine (1994, 
1996) at using syntactic parser to pinpoint the correct transcription among the N-best alternatives 
returned by an SRS. Despite the intuitive appeal of their approach, in which transcribed sentences 
are re-ranked using the likelihood or degree of syntactic correctness, they have thus far been 
unable to obtain noticeable reduction of word error rates, partly due to, as they point out, a limited 
possible range of improvement: one can only improve N-best ranking if  there is a better transerip- 
tion'among them. Other work with NLP-motivated re-ranking of N-best alternative transcription 
include Rayner et al. (1994), Ostendorf et al. (1991), Norton et al. (1992), among others, and see 
also (Hirsehman, 1994) and (Moore, 1994) for summary overview. Some alternative possibilities 
of taking advantage of linguistic information in speech recognition are described by e.g., Kupiec 
(1992), Murveit and Moore (1990), Maltese and Mancini (1992), and Schwartz et al. (1994). 

The post-correction approach has been considered by Ringger and Allen (1996), for a different 
domain (trains scheduling dialog), and using a probabilistie modeling technique rather than cor- 
rection rules. They report some interesting preliminary results, however these are not directly 
comparable to ours for two reasons. First, the baseline SRS system used in these experiments is 
much weaker (only about 58% accurate). Second, the reported improvement cover corrections of 
vocabulary deficiencies, not only true transcription mistakes due to weaknesses of the language 
model. 

It should also be noted here that while the above efforts usually attack the more general problem 
of speech understanding accuracy, in an ad-hoc speech production situation (though limited to 
certain domains such as broadcast news), our solution has been specifically tailored to clinical 
dictation, and wouldn't necessarily apply elsewhere. Some of the application characteristics that 
we take advantage of is relatively limited vocabulary (hence smaller training samples), a limited 
number of speakers (hence speaker independence less critical), and relatively low perplexity of 
radiology sublanguage (about 20 vs. about 250 for general English as measured for trigram mod- 
els (Roukos, 1995)). The C-Box approach does not preclude N-Best techniques - in fact we con- 
sider this as a natural extension of the present method - one of the obvious limitations of the 
present approach is the need for parallel training texts, which may be replaced by multiple alter- 
natives. 

Overall, the C-Box approach is partly related to error-driven learning techniques as used for part- 
of-speech tagging (Bfill, 1992, 1995), and spelling correction (e.g., Golding & Schabes, 1996). 

Text alignment methods have been discussed primarily in context of machine translation, (e.g., 
Brown et. al, 1991; Church, 1993; Chen, 1993) and we draw on these here. Rule validation is 
based in part on the N-gram weighting method described in (Strzalkowsld & Brandow, 1996). 
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I 7. CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS 

While we are generally pleased with the initial progress of this work, it is still quite early to draw 
any definite conclusions whether the C-Box method will prove sufficiently robust and effective in 
practical applications. For one thing, we have thus far avoided the question of speaker depen- 
dence. As described, the C-Box method is clearly speaker dependent, that is, the correction rules 
need to be learned for each new speaker. It remains to be seen if the present solution is acceptable, 
and if a degree of speaker independence can be introduced through rule generalization. Further 
research and evaluations are required with context-sensitive correction rules and various sizes of 
the training data. At this time it is also an open question how much improvement can be achieved 
using this method, i.e., if  there is an upper bound, and if so what that is. On the face of it, this 
seems to depend only on how good rules we can get. In practice, we face limits of rule learnability 
due to sparse data, as well as rule interference (i.e., one rule may undo another, etc.). We plan to 
study these issues in the near future. 

There are also other possibilities. Some SRS produce ranked lists of alternative transcriptions (N- 
Best), which ean be used to further improve the chances of making only the right corrections. 
Using N-Best sentence hypotheses may also alleviate the need for parallel correct transcriptions 
in the training sample, as multiple hypotheses can be aligned in order to postulate correction rules. 
Using multiple SRS in parallel may also increase the likelihood of locating and correcting spuri- 
ous transcription errors. Finally, we may consider an open-box solution where the information 
encoded in C-Box rules is fed back into the SRS language model to improve its baseline perfor- 
mance. 

At this time, we made no attempt to address any of the problems related to spontaneous speech, 
such as disfluencies and self-repairs (e.g., Oviatt, 1994; Heeman & Allen, 1994). In dictation, 
where the speaker normally has an option of backing up and re-recording, such things are less of 
an issue than the word-for-word accuracy of the final transcription, since there are serious liability 
considerations to be reckoned with. 
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