
Eff ic ient A l g o r i t h m s for P a r s i n g t h e D O P M o d e l *

Joshua G o o d m a n
Harvard Univers i ty

33 Oxford St.
Cambr idge , MA 02138

goodman@das .ha rva rd . edu

Abstract

Excellent results have been reported for Data-
Oriented Parsing (DOP) of natural language texts
(Bod, 1993c). Unfortunately, existing algorithms
are both computationally intensive and difficult
to implement. Previous algorithms are expen-
sive due to two factors: the exponential number
of rules that must be generated and the use of
a Monte Carlo parsing algorithm. In this paper
we solve the first problem by a novel reduction of
the DOP model to:a small, equivalent probabilistic
context-free grammar. We solve the second prob-
lem by a novel deterministic parsing strategy that
maximizes the expected number of correct con-
stituents, rather than the probability of a correct
parse tree. Using ithe optimizations, experiments
yield a 97% crossing brackets rate and 88% zero
crossing brackets rate. This differs significantly
from the results reported by Bod, and is compara-
ble to results from a duplication of Pereira and
Schabes's (1992) experiment on the same data.
We show that Bod's results are at least partially
due to an extremely fortuitous choice of test data,
and partially due to using cleaner data than other
researchers.

I n t r o d u c t i o n

The Data-Oriented Parsing (DOP) model has a
short, interesting, and controversial history. It
was introduced by Remko Scha (1990), and was
then studied by Rens Bod. Unfortunately, Bod
(1993c, 1992) was not able to find an efficient exact

* I would like to acknowledge support from Na-
tional Science Foundation Grant IRI-9350192 and a
National Science Foundation Graduate Student Fel-
lowship. I would also like to thank Rens Bod, Stan
Chen, Andrew Kehler, David Magerman, Wheeler
Rural, Stuart Shieber, and Khalil Sima'an for help-
ful discussions, and comments on earlier drafts, and
the comments of the anonymous reviewers.

algorithm for parsing using the model; however he
did discover and implement Monte Carlo approxi-
mations. He tested these algorithms on a cleaned
up version of the ATIS corpus, and achieved some
very exciting results, reportedly getting 96% of his
test set exactly correct, a huge improvement over
previous results. For instance, Bod (1993b) com-
pares these results to Schabes (1993), in which,
for short sentences, 30% of the sentences have no
crossing brackets (a much easier measure than ex-
act match). Thus, Bod achieves an extraordinary
&fold error rate reduction.

Not surprisingly, other researchers attempted
to duplicate these results, but due to a lack of de-
tails of the parsing algorithm in his publications,
these other researchers were not able to confirm
the results (Magerman, Lalferty, personal commu-
nication). Even Bod's thesis (Bod, 1995a) does
not contain enough information to replicate his re-
sults.

Parsing using the DOP model is especially dif-
ficult. The model can be summarized as a spe-
cial kind of Stochastic Tree Substitution Grammar
(STSG): given a bracketed, labelled training cor-
pus, let every subtree of that corpus be an elemen-
tary tree, with a probability proportional to the
number of occurrences of that subtree in the train-
ing corpus. Unfortunately, the number of trees is
in general exponential in the size of the training
corpus trees, producing an unwieldy grammar.

In this paper, we introduce a reduction of the
DOP model to an exactly equivalent Probabilistic
Context Free Grammar (PCFG) that is linear in
the number of nodes in the training data. Next,
we present an algorithm for parsing, which returns
the parse that is expected to have the largest num-
ber of correct constituents. We use the reduction
and algorithm to parse held out test data, com-
paring these results to a replication of Pereira and

143

S

N P V P

P N P N V N P

D E T N

Figure 1: Training corpus tree for DOP example

Schabes (1992) on the same data. These results
are disappointing: the PCFG implementation of
the DOP model performs about the same as the
Pereira and Schabes method. We present an anal-
ysis of the runtime of our algorithm and Bod's.
Finally, we analyze Bod's data, showing that some
of the difference between our performance and his
is due to a fortuitous choice of test data.

This paper contains the first published repli-
cation of the full DOP model, i.e. using a parser
which sums over derivations. It also contains algo-
rithms implementing the model with significantly
fewer resources than previously needed. Further-
more, for the first time, the DOP model is com-
pared on the same data to a competing model.

P r e v i o u s R e s e a r c h

The DOP model itself is extremely simple and can
be described as follows: for every sentence in a
parsed training corpus, extract every subtree. In
general, the number of subtrees will be very large,
typically exponential in sentence length. Now, use
these trees to form a Stochastic Tree Substitu-
tion Grammar (STSG). There are two ways to de-
fine a STSG: either as a Stochastic Tree Adjoin-
ing Grammar (Schabes, 1992) restricted to sub-
stitution operations, or as an extended PCFG in
which entire trees may occur on the right hand
side, instead of just strings of terminals and non-
terminals.

Given the tree of Figure 1, we can use the
DOP model to convert it into the STSG of Figure
2. The numbers in parentheses represent the prob-
abilities. These trees can be combined in various
ways to parse sentences.

In theory, the DOP model has several advan-
tages over other models. Unlike a PCFG, the use
of trees allows capturing large contexts, making
the model more sensitive. Since every subtree is
included, even trivial ones corresponding to rules
in a PCFG, novel sentences with unseen contexts

144

s (3) s s = s (~)_
~ ~ ~ B (1)

A C A D E B E B I
I I I I I I I

X X X X ~r

Figure 3: Simple Example STSG

can still be parsed.

Unfortunately, the number of subtrees is huge;
therefore Bod randomly samples 5% of the sub-
trees, throwing away the rest. This significantly
speeds up parsing.

There are two existing ways to parse using the
DOP model. First, one can find the most proba-
ble derivation. That is, there can be many ways
a given sentence could be derived from the STSG.
Using the most probable derivation criterion, one
simply finds the most probable way that a sentence
could be produced. Figure 3 shows a simple ex-
ample STSG. For the string x x , what is the most
probable derivation? The parse tree

S

A C
I I

x x

has probability ~ of being generated by the trivial
derivation containing a single tree. This tree cor-
responds to the most probable derivation of x x .

One could t ry to find the most probable parse
tree. For a given sentence and a given parse tree,
there are many different derivations that could
lead to that parse tree. The probability of the
parse tree is the sum of the probabilities of the
derivations. Given our example, there are two dif-
ferent ways to generate the parse tree

S

E B
I I

x x

each with probability -~, so that the parse tree has
probability -~. This parse tree is most probable.

Bod (1993c) shows how to approximate this
most probable parse using a Monte Carlo algo-
rithm. The algorithm randomly samples possible
derivations, then finds the tree with the most sam-
pled derivations. Bod shows that the most proba-
ble parse yields bet ter performance than the most
probable derivation on the exact match criterion.

N P (½)

D E T N

V P (½)

V N P

s

N P V P

V N P
//'.... . .

D E T N

v P (½)
N P (½)

V N P
P N P N

DET N

s s

N P V P N P VP

P N P N P N P N V N P

s
s

N P VP
N P V P

V N P

s ({)

N P V P

P N P N V N P

D E T N

Figure 2: Sample STSG Produced from DOP Model

Khalil Sima'an (1996) implemented a version
of the DOP model, which parses efficiently by lim-
iting the number of trees used and by using an
efficient most probable derivation model. His ex-
periments differed from ours and Bod's in many
ways, including his use of a ditferent version of the
ATIS corpus; the use of word strings, rather than
part of speech strings; and the fact that he did not
parse sentences containing unknown words, effec-
tively throwing out the most difficult sentences.
Furthermore, Sim a'an limited the number of sub-
stitution sites for his trees, effectively using a sub-
set of the DOP model.

R e d u c t i o n o f D O P t o P C F G

Unfortunately, Bod's reduction to a STSG is ex-
tremely expensive, even when throwing away 95%
of the grammar. Fortunately, it is possible to find
an equivalent PCFG that contains exactly eight
PCFG rules for each node in the training data;
thus it is O(n). Because this reduction is so much
smaller, we do not discard any of the grammar
when using it. The PCFG is equivalent in two
senses: first it generates the same strings with the
same probabilities; second, using an isomorphism
defined below, it generates the same trees with the
same probabilities, although one must sum over
several PCFG trees for each STSG tree.

To show this reduction and equivalence, we
must first define some terminology. We assign ev-
ery node in every tree a unique number, which we
will call its address. Let A@k denote the node at
address k, where A is the non-terminal labeling
that node. We will need to create one new non-
terminal for each node in the training data. We
will call this non-terminal Ak. We will call non-
terminals of this form "interior" non-terminals,
and the original non-terminals in the parse trees

145

"exterior".

Let aj represent the number of subtrees
headed by the node A@j. Let a represent the num-
ber of subtrees headed by nodes with non-terminal
A, that is a = ~ j aj .

Consider a node A ~ j of the form:

A@j

B@k C@l

How many subtrees does it have? Consider first
the possibilities on the left branch. There are bk
non-trivial subtrees headed by B@k, and there is
also the trivial case where the left node is sim-
ply B. Thus there are bk ÷ 1 different possibil-
ities on the left branch. Similarly, for the right
branch there are cl + 1 possibilities. We can cre-
ate a subtree by choosing any possible left subtree
and any possible right subtree. Thus, there are
aj = (bk + 1)(c~ + 1) possible subtrees headed by
A@j. In our example tree of Figure 1, both noun
phrases have exactly one subtree: np4 -- nl>z -- 1;
the verb phrase has 2 subtrees: vp3 = 2; and the
sentence has 6: sl = 6. These numbers correspond
to the number of subtrees in Figure 2.

We will call a PCFG subderivation isomor-
phic to a STSG tree if the subderivation begins
with an external non-terminal, uses internal non-
terminals for intermediate steps, and ends with
external non-terminals. For instance, consider the
tree

N P V P

P N P N V NP

taken from Figure 2. The following PCFG sub-
derivation is isomorphic: S ~ NP@I VP@2

P N P N VP@2 =~ P N P N V NP. We say
that a PCFG derivation is isomorphic to a STSG
derivation if there is a corresponding PCFG sub-
derivation for every step in the STSG derivation.

We will give a simple small PCFG with the
following surprising property: for every subtree in
the training corpus headed by A, the grammar will
generate an isomorphic subderivation with proba-
bility 1/a. In other words, rather than using the
large, explicit STSG, we can use this small PCFG
that generates isomorphic derivations, with iden-
tical probabilities.

The construction is as follows. For a node such
as

A@j

B@k C@l

we will generate the following eight PCFG rules,
where the number in parentheses following a rule
is its probability.

A j --~ S C (1 / a j) A ~ BC (l / a)
Aj ~ BkC (bh/aj) A ~ BkC (bk/a)
Aj ~ BCi (ci/aj) A ~ BCz (cJa)
Aj ~ B~Ci (bkcl/aj) A ~ BkCl (bkcl/a)

(1)
We will show that subderivations headed

by A with external non-terminals at the roots
and leaves, internal non-terminals elsewhere have
probability 1/a. Subderivations headed by Aj
with external non-terminals only at the leaves, in-
ternal non-terminals elsewhere, have probability
1/aj. The proof is by induction on the depth of
the trees.

For trees of depth 1, there are two cases:

A A@j

B C B C

Trivially, these trees have the required probabili-
ties.

Now, assume that the theorem is true for trees
of depth n or less. We show that it holds for trees
of depth n + 1. There are eight cases, one for each
of the eight rules. We show two of them. Let

B@k
• represent a tree of at most depth n with

external leaves, headed by B@k, and with internal
intermediate non-terminals. Then, for trees such
as

146

PCFG derivation
4 productions

S

NP@3 VP@I

P N P N V N P

D E T N

STSG derivation
2 subtrees

S

N P V P

P N P N V N P

N P

D E T N

Figure 4: Example of Isomorphic Derivation

B@k C@l
: :

1 1 bhc ! ~ 1 the probability of the tree is ~ ~ ai ~ . Simi-

larly, for another case, trees headed by

A

B@k C

the probability of the tree is b~ b~a = ~'1 The other
six cases follow trivially with similar reasoning.

We call a PCFG derivation isomorphic to a
STSG derivation if for every substitution in the
STSG there is a corresponding subderivation in
the PCFG. Figure 4 contains an example of iso-
morphic derivations, using two subtrees in the
STSG and four productions in the PCFG.

We call a PCFG tree isomorphic to a STSG
tree if they are identical when internal non-
terminals are changed to external non-terminals.
Our main theorem is that this construction pro-
duces PCFG trees isomorphic to the STSG trees
with equal probability. If every subtree in the
training corpus occurred exactly once, this would
be trivial to prove. For every STSG subderiva-
tion, there would be an isomorphic PCFG sub-

derivation, with equal probability. Thus for every
STSG derivation, there would be an isomorphic
PCFG derivation, with equal probability. Thus
every STSG tree would be produced by the PCFG
with equal probability.

However, it is extremely likely that some sub-
trees, especially trivial ones like

S

N P V P

will occur repeatedly.

If the STSG formalism were modified slightly,
so that trees could occur multiple times, then our
relationship could be made one to one. Consider a
modified form of the DOP model, in which when
subtrees occurred multiple times in the training
corpus, their counts were not merged: both iden-
tical trees are added to the grammar. Each of
these trees will have a lower probability than if
their counts were merged. This would change the
probabilities of the derivations; however the prob-
abilities of parse trees would not change, since
there would be correspondingly more derivations
for each tree. Now, the desired one to one relation-
ship holds: for every derivation in the new STSG
there is an isomorphic derivation in the PCFG
with equal probability. Thus, summing over all
derivations of a tree in the STSG yields the same
probability as summing over all the isomorphic
derivations in the PCFG. Thus, every STSG tree
would be produced by the PCFG with equal prob-
ability.

It follows trivially from this that no extra trees
are produced by the PCFG. Since the total prob-
ability of the trees produced by the STSG is 1,
and the PCFG produces these trees with the same
probability, no probability is "left over" for any
other trees.

Parsing Algorithm
There are several different evaluation metrics one
could use for finding the best parse. In the sec-
tion covering previous research, we considered the
most probable derivation and the most probable
parse tree. There is one more metric we could con-
sider. If our performance evaluation were based on
the number of constituents correct, using measures
similar to the crossing brackets measure, we would
want the parse tree that was most likely to have
the largest number of correct constituents. With
this criterion and the example grammar of Figure
3, the best parse tree would be

147

S
A

A B
I I
x ~g

The probability that the S constituent is correct is
1.0, while the probability that the A constituent is
correct is ~, and the probability that the B con-
stituent is correct is }. Thus, this tree has on
average 2 constituents correct. All other trees will
have fewer constituents correct on average. We
call the best parse tree under this criterion the
Maximum Constituents Parse. Notice that this
parse tree cannot even be produced by the gram-
mar: each of its constituents is good, but it is not
necessarily good when considered as a full tree.

Bod (1993a, 1995a) shows that the most prob-
able derivation does not perform as well as the
most probable parse for the DOP model, getting
65% exact match for the most probable deriva-
tion, versus 96% correct for the most probable
parse. This is not surprising, since each parse
tree can be derived by many different deriva-
tions; the most probable parse criterion takes
all possible derivations into account. Similarly,
the Maximum Constituents Parse is also derived
from the sum of many different derivations. Fur-
thermore, although the Maximum Constituents
Parse should not do as well on the exact match
criterion, it should perform even bet ter on the
percent constituents correct criterion. We have
previously performed a detailed comparison be-
tween the most likely parse, and the Maximum
Constituents Parse for Probabilistic Context Free
Grammars (Goodman, 1996); we showed that the
two have very similax performance on a broad
range of measures, with at most a 10% difference
in error rate (i.e., a change from 10% error rate to
9% error rate.) We therefore think that it is rea-
sonable to use a Maximum Constituents Parser to
parse the DOP model.

The parsing algorithm is a variation on the
Inside-Outside algorithm, developed by Baker
(1979) and discussed in detail by Lari and Young
(1990). However, while the Inside-Outside algo-
ri thm is a grammar re-estimation algorithm, the
algorithm presented here is just a parsing algo-
rithm. It is closely related to a similar algorithm
used for Hidden Markov Models (Rabiner, 1989)
for finding the most likely state at each time. How-
ever, unlike in the HMM case where the algorithm
produces a simple state sequence, in the PCFG
case a parse tree is produced, resulting in addi-

for length := 2 to n

for s := 1 to n-length+l

t := s + length- I;

for all non-terminals X

sum[X] := g (s , t , X);
loop over addresses k

let X := non-terminal at k;

l e t sum[X] := sum[X] + g (s , t , X _ k) ;
loop over non-terminals X

l e t max_X := art max of sum IX]

loop over r such that s <= r < t

let best_split :=

max of maxc[s,r] + maxc[r+l,t];

maxc[s,t] := sum[max_X] + best_split;

Figure 5: Maximum Constituents Data-Oriented
Parsing Algorithm

tional constraints.

A formal derivation of a very similar algorithm
is given elsewhere (Goodman, 1996); only the in-
tuition is given here. The algorithm can be sum-
marized as follows. First, for each potential con-
stituent, where a constituent is a non-terminal, a
start position, and an end position, find the prob-
ability that that constituent is in the parse. After
that , put the most likely constituents together to
form a parse tree, using dynamic programming.

The probability that a potential constituent
occurs in the correct parse tree, P (X *
ws...wtlS ~ wl...wn), will be called g(s , t ,X) .
In words, it is the probability that , given the
sentence wl.. .w,, a symbol X generates ws...wt.
We can compute this probability using elements
of the Inside-Outside algorithm. First, compute
the inside probabilities, e(s, t, X) = P (X =~
w,...wt). Second, compute the outside probabil-
ities, / (s , t , X) = P(S ~ wl...w~-lXwt+l...wn).
Third, compute the matrix g(s, t, X):

g(s , t ,X)

P(S ::~ wI. . .w,-1Xwt+I. . .w,)P(X ~ w,...wt)

P(S ~ wl...wn)
= f(s, t, X) x e(s, t, X)/e(1, n, S)

Once the matrix g(s, t, X) is computed, a dy-
namic programming algorithm can be used to de-
termine the best parse, in the sense of maximizing
the number of constituents expected correct. Fig-
ure 5 shows pseudocode for a simplified form of

148

this algorithm.

For a grammar with g nonterminals and train-
ing data of size T, the run time of the algorithm
is O(Tn 2 + gn 3 + n a) since there are two layers
of outer loops, each with run time at most n, and
inner loops, over addresses (training data), non-
terminals and n. However, this is dominated by
the computation of the Inside and Outside prob-
abilities, which takes time O(rna), for a grammar
with r rules. Since there are eight rules for every
node in the training data, this is O(Tn3).

By modifying the algorithm slightly to record
the actual split used at each node, we can recover
the best parse. The entry maxc[1, n] contains
the expected number of correct constituents, given
the model.

E x p e r i m e n t a l R e s u l t s a n d

D i s c u s s i o n

We are grateful to Bod for supplying the data
that he used for his experiments (Bod, 1995b,
Bod, 1995a, Bod, 1993c). The original ATIS data
from the Penn Tree Bank, version 0.5, is very
noisy; it is difficult to even automatically read this
data, due to inconsistencies between files. Re-
searchers are thus left with the difficult decision
as to how to clean the data. For this paper, we
conducted two sets of experiments: one using a
minimally cleaned set of data, 1 making our results
comparable to previous results; the other using
the ATIS data prepared by Bod, which contained
much more significant revisions.

Ten data sets were constructed by randomly
splitting minimally edited ATIS (Hemphill et al.,
1990) sentences into a 700 sentence training set,
and 88 sentence test set, then discarding sentences
of length > 30. For each of the ten sets, both the
DOP algorithm outlined here and the grammar
induction experiment of Pereira and Schabes were
run. Crossing brackets, zero crossing brackets, and
the paired differences are presented in Table 1.
All sentences output by the parser were made bi-
nary branching (see the section covering analysis
of Bod's data), since otherwise the crossing brack-
ets measures are meaningless (Magerman, 1994).

1A diff file between the original ATIS data and
the cleaned up version, in a form usable by the
"eft' program, is available by anonymous FTP from
ftp://ftp.das.harvard.edu/pub/goodman/atis-ed/
tLtb.par-ed and ti_tb.pos-ed. Note that the number
of changes made was small. The diff files sum to 457
bytes, versus 269,339 bytes for the original files, or less
than 0.2%.

Criteria
Cross Brack DOP
Cross Brack P&S
Cross Brack DOP-P&S
Zero Cross Brack DOP
Zero Cross Brack P&S

Min
86.53%
86.99%
-3.79%
60.23%
54.02%

Max
96.O6%
94.41%

2.87%
75.86%
78.16%

Range
9.53%
7.42%
6.66%

15.63%
24.14%

Mean
90.15%
90.18%
-0.03%
66.11%
63.94%

2.17%

StdDev
2.65%
2.59%
2.34%
5.56%
7.34%

Zero Cross Brack DOP-P&S -5.68% 11.36% 17.05% 5.57%

Table 1: DOP versus Pereira and Schabes on Minimally Edited ATIS

Criteria Min Max Range Mean StdDev
Cross Brack DOP 95.63% 98.62% 2.99% 97.16% 0.93%
Cross Brack P&S 94.08% 97.87% 3.79% 96.11% 1.14%
Cross Brack DOP-P&S
Zero Cross Brack DOP

-0.16%
78.67%

3.03%
90.67%

3.19%
12.00%

Zero Cross Brack P&S 70.67% 88.00% 17.33%
Zero Cross Brack DOP-P&S -1.33% 20.00% 21.33%
Exact Match DOP 58.67% 68.00% 9.33%

1.05%
86.13%
79.20%
6.93%

63.33%

1.04%
3.99%
5.97%
5.65%
3.22%

Table 2: DOP versus Pereira and Schabes on Bod's Data

A few sentences were not parsable; these were as-
signed right branching period high structure, a
good heuristic (Brill, 1993).

We also ran experiments using Bod's data,
75 sentence test sets, and no limit on sentence
length. However, while Bod provided us with his
data, he did not provide us with the split into
test and training that he used; as before we used
ten random splits. The results are disappointing,
as shown in Table 2. They are noticeably worse
than those of Bod, and again very comparable
to those of Pereira and Schabes. Whereas Bod
reported 96% exact match, we got only 86% us-
ing the less restriCtive zero crossing brackets cri-
terion. It is not clear what exactly accounts for
these differences. 2 It is also noteworthy that the
results are much better on Bod's data than on the
minimally edited data: crossing brackets rates of
96% and 97% on Bod's data versus 90% on min-
imally edited data. Thus it appears that part of
Bod's extraordinary performance can be explained
by the fact that his data is much cleaner than the
data used by other researchers.

DOP does do slightly better on most mea-
sures. We performed a statistical analysis using a
t-test on the paired differences between DOP and
Pereira and Schabes performance on each run. On

~Ideally, we would exactly reproduce these exper-
iments using Bod's algorithm. Unfortunately, it was
not possible to get a full specification of the algorithm.

149

the minimally edited ATIS data, the differences
were statistically insignificant, while on Bod's data
the differences were statistically significant beyond
the 98'th percentile. Our technique for finding sta-
tistical significance is more strenuous than most:
we assume that since all test sentences were parsed
with the same training data, all results of a sin-
gle run are correlated. Thus we compare paired
differences of entire runs, rather than of sentences
or constituents. This makes it harder to achieve
statistical significance.

Notice also the minimum and maximum
columns of the "DOP-P&S" lines, constructed by
finding for each of the paired runs the difference
between the DOP and the Pereira and Schabes
algorithms. Notice that the minimum is usually
negative, and the maximum is usually positive,
meaning that on some tests DOP did worse than
Pereira and Schabes and on some it did better. It
is important to run multiple tests, especially with
small test sets like these, in order to avoid mis-
leading results.

T i m i n g A n a l y s i s

In this section, we examine the empirical runtime
of our algorithm, and analyze Bod's. We also note
that Bod's algorithm will probably be particularly
inefficient on longer sentences.

It takes about 6 seconds per sentence to run
our algorithm on an HP 9000/715, versus 3.5 hours

to run Bod's algorithm on a Sparc 2 (Bod, 1995b).
Factoring in that the HP is roughly four times
faster than the Sparc, the new algorithm is about
500 times faster. Of course, some of this difference
may be due to differences in implementation, so
this estimate is fairly rough.

Furthermore, we believe Bod's analysis of his
parsing algorithm is flawed. Letting G represent
grammar size, and e represent maximum estima-
tion error, Bod correctly analyzes his runtime as
O(Gn3e-2). However, Bod then neglects analy-
sis of this e -~ term, assuming that it is constant.
Thus he concludes that his algorithm runs in poly-
nomial time. However, for his algorithm to have
some reasonable chance of finding the most proba-
ble parse, the number of times he must sample his
data is at least inversely proportional to the con-
ditional probability of that parse. For instance,
if the maximum probability parse had probability
1/50, then he would need to sample at least 50
times to be reasonably sure of finding that parse.

Now, we note that the conditional probabil-
ity of the most probable parse tree will in general
decline exponentially with sentence length. We as-
sume that the number of ambiguities in a sentence
will increase linearly with sentence length; if a five
word sentence has on average one ambiguity, then
a ten word sentence will have two, etc. A linear
increase in ambiguity will lead to an exponential
decrease in probability of the most probable parse.

Since the probability of the most probable
parse decreases exponentially in sentence length,
the number of random samples needed to find
this most probable parse increases exponentially
in sentence length. Thus, when using the Monte
Carlo algorithm, one is left with the uncomfortable
choice of exponentially decreasing the probability
of finding the most probable parse, or exponen-
tially increasing the runtime.

We admit that this is a somewhat informal
argument. Still, the Monte Carlo algorithm has
never been tested on sentences longer than those
in the ATIS corpus; there is good reason to believe
the algorithm will not work as well on longer sen-
tences. Note that our algorithm has true runtime
O(Tn3), as shown previously.

A n a l y s i s o f B o d ' s D a t a

In the DOP model, a sentence cannot be given an
exactly correct parse unless all productions in the
correct parse occur in the training set. Thus, we
can get an upper bound on performance by ex-

150

amining the test corpus and finding which parse
trees could not be generated using only produc-
tions in the training corpus. Unfortunately, while
Bod provided us with his data, he did not specify
which sentences were test and which were training.
We can however find an upper bound on average
case performance, as well as an upper bound on
the probability that any particular level of perfor-
mance could be achieved.

Bod randomly split his corpus into test and
training. According to his thesis (Bod, 1995a,
page 64), only one of his 75 test sentences had
a correct parse which could not be generated from
the training data. This turns out to be very sur-
prising. An analysis of Bod's data shows that at
least some of the difference in performance be-
tween his results and ours must be due to an
extraordinarily fortuitous choice of test data. It
would be very interesting to see how our algorithm
performed on Bod's split into test and training,
but he has not provided us with this split. Bod did
examine versions of DOP that smoothed, allowing
productions which did not occur in the training
set; however his reference to coverage is with re-
spect to a version which does no smoothing.

In order to perform our analysis, we must de-
termine certain details of Bod's parser which af-
fect the probability of having most sentences cor-
rectly parsable. When using a chart parser, as
Bod did, three problematic cases must be han-
dled: e productions, unary productions, and n-ary
(n > 2) productions. The first two kinds of pro-
ductions can be handled with a probabilistic chart
parser, but large and difficult matrix manipula-
tions are required (Stolcke, 1993); these manipu-
lations would be especially difficult given the size
of Bod's grammar. Examining Bod's data, we find
he removed e productions. We also assume that
Bod made the same choice we did and eliminated
unary productions, given the difficulty of correctly
parsing them. Bod himself does not know which
technique he used for n-ary productions, since the
chart parser he used was written by a third party
(Bod, personal communication).

The n-ary productions can be parsed in a
straightforward manner, by converting them to bi-
nary branching form; however, there are at least
three different ways to convert them, as illus-
t rated in Table 3. In method "Correct", the n-
ary branching productions are converted in such a
way that no overgeneration is introduced. A set of
special non-terminals is added, one for each partial
right hand side. In method "Continued", a single

Original Correct Continued Simple

A

B C D E

A

B *_CDE

C *_DE

D E

A

B A_*

C A_*

D E

A

B A

C A
A

D E

Table 3: Transformations from N-ary to Binary Branching Structures

Correct Continued Simple
no unary 0.78 0.0000002 0.88 0.0009484 0.90 0.0041096
unary 0.80 0.0000011 0.90 0.0037355 0.92 0.0150226

Table 4: Probabilities of Sentences with Unique Productions/Test Data with Ungeneratable Sentences

new non-terminal is introduced for each original
non-terminal. Because these non-terminals occur
in multiple contexts, some overgeneration is in-
troduced. However, this overgeneration is con-
strained, so that elements that tend to occur only
at the beginning, middle, or end of the right hand
side of a production cannot occur somewhere else.
If the "Simple" method is used, then no new non-
terminals are introduced; using this method, it is
not possible to recover the n-ary branching struc-
ture from the resulting parse tree, and significant
overgeneration occurs.

Table 4 shows the undergeneration probabili-
ties for each of these possible techniques for han-
dling unary productions and n-ary productions. 3
The first number in each column is the probabil-
ity that a sentence in the training data will have
a production that occurs nowhere else. The sec-
ond number is the probability that a test set of 75
sentences drawn from this database will have one
ungeneratable sentence: 75p~4(1 - p).4

The table is arranged from least generous to
most generous: in the upper left hand corner is
a technique Bod might reasonably have used; in
that case, the probability of getting the test set
he described is l ess than one in a million. In the

aA perl script for analyzing Bod's data is available
by anonymous FTP from
ftp://ftp.das.harvard,edu/pub/goodman/analyze.perl

4Actually, this is a slight overestimate for a few
reasons, including the fact that the 75 sentences are
drawn without replacement. Also, consider a sentence
with a production that occurs only in one other sen-
tence in the corpus; there is some probability that both
sentences will end up fin the test data, causing both to
be ungeneratable.

151

lower right corner we give Bod the absolute max-
imum benefit of the doubt: we assume he used
a parser capable of parsing unary branching pro-
ductions, that he used a very overgenerating gram-
mar, and that he used a loose definition of "Exact
Match." Even in this case, there is only about a
1.5% chance of getting the test set Bod describes.

Conclusion

We have given efficient techniques for parsing the
DOP model. These results are significant since the
DOP model has perhaps the best reported parsing
accuracy; previously the full DOP model had not
been replicated due to the difficulty and computa-
tional complexity of the existing algorithms. We
have also shown that previous results were par-
tially due to an unlikely choice of test data, and
partially due to the heavy cleaning of the data,
which reduced the difficulty of the task.

Of course, this research raises as many ques-
tions as it answers. Were previous results due only
to the choice of test data, or are the differences in
implementation partly responsible? In that case,
there is significant future work required to under-
stand which differences account for Bod's excep-
tional performance. This will be complicated by
the fact that sufficient details of Bod's implemen-
tation are not available.

This research also shows the importance of
testing on more than one small test set, as well
as the importance of not making cross-corpus com-
parisons; if a new corpus is required, then previous
algorithms should be duplicated for comparison.

R e f e r e n c e s

[Baker, 1979] J.K. Baker. 1979. Trainable gram-
mars for speech recognition. In Proceedings of
the Spring Conference of the Acoustical Society
of America, pages 547-550, Boston, MA, June.

[Bod, 1992] Rens Bod. 1992. Mathematical prop-
erties of the data oriented parsing model. Paper
presented at the Third Meeting on Mathematics
of Language (MOL3), Austin Texas.

[Bod, 1993a] Rens Bod. 1993a. Data-oriented
parsing as a general framework for stochas-
tic language processing. In K. Sikkel and
A. Nijholt, editors, Parsing Natural Language.
Twente, The Netherlands.

[Bod, 1993b] Rens Bod. 1993b. Monte
Carlo parsing. In Proceedings Third Inter-
national Workshop on Parsing Technologies,
Tilburg/Durbury.

[Bod, 1993c] Rens Bod. 1993c. Using an anno-
tated corpus as a stochastic grammar. In Pro-
ceedings of the Sixth Conference of the European
Chapter of the ACL, pages 37-44.

[Bod, 1995a] Rens Bod. 1995a. Enriching Lin-
guistics with Statistics: Performance Models of
Natural Language. University of Amsterdam
ILLC Dissertation Series 1995-14. Academische
Pers, Amsterdam.

[Bod, 1995b] Rens Bod. 1995b. The problem
of computing the most probable tree in data-
oriented parsing and stochastic tree grammars.
In Proceedings of the Seventh Conference of the
European Chapter of the ACL.

[Brill, 1993] Eric Brill. 1993. A Corpus-Based Ap-
proach to Language Learning. Ph.D. thesis, Uni-
versity of Pennsylvania.

[Goodman, 1996] Joshua Goodman. 1996. Pars-
ing algorithms and metrics. In Proceedings of
the 34th Annual Meeting of the ACL. To ap-
pear.

[Hemphill et al., 1990] Charles T. Hemphill,
John J. Godfrey, and George R. Doddington.
1990. The ATIS spoken language systems pilot
corpus. In DARPA Speech and Natural Lan-
guage Workshop, Hidden Valley, Pennsylvania,
June. Morgan Kaufmann.

[Lari and Young, 1990] K. Lari and S.J. Young.
1990. The estimation of stochastic context-free

152

grammars using the inside-outside algorithm.
Computer Speech and Language, 4:35-56.

[Magerman, 1994] David Magerman. 1994. Nat-
ural Language Parsing as Statistical Pattern
Recognition. Ph.D. thesis, Stanford University
University, February.

[Pereira and Schabes, 1992] Fernando Pereira
and Yves Schabes. 1992. Inside-Outside rees-
timation from partially bracketed corpora. In
Proceedings of the 30th Annual Meeting of the
ACL, pages 128-135, Newark, Delaware.

[Rabiner, 1989] L.R. Rabiner. 1989. A tutorial
on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the
IEEE, 77(2), February.

[Scha, 1990] R. Scha. 1990. Language theory and
language technology; competence and perfor-
mance. In Q.A.M. de Kort and G.L.J. Leerdam,
editors, Computertoepassingen in de Neerlan-
distiek. Landelijke Vereniging van Neerlandici
(LVVN-jaarboek), Almere. In Dutch.

[Schabes et al., 1993] Yves Schabes, Michal Roth,
and Randy Osborne. 1993. Parsing the Wall
Street Journal with the Inside-Outside algo-
rithm. In Proceedings of the Sixth Conference of
the European Chapter of the ACL, pages 341-
347.

[Schabes, 1992] Y. Schabes. 1992. Stochastic lexi-
calized tree-adjoining grammars. In Proceedings
of the l$th International Conference on Compu-
tational Linguistics.

[Sima'an, 1996] Khalil Sima'an. 1996. Efficient
disambiguation by means of stochastic tree sub-
stitution grammars. In R. Mitkov and N. Ni-
colov, editors, Recent Advances in NLP 1995,
volume 136 of Current Issues in Linguistic The-
ory. John Benjamins, Amsterdam.

[Stolcke, 1993] Andreas Stolcke. 1993. An ef-
ficient probabilistic context-free parsing algo-
rithm that computes prefix probabilities. Tech-
nical Report TR-93-065, International Com-
puter Science Institute, Berkeley, CA.

