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A b str a c t
Our paper discusses problems which arise when trying to translate a semantic 
representation into a SQL database query, and more particularly the encoding of yes/no- 
questions, and the evaluation of the existential and the universal quantifier.

1 T h e p ro ject
Our project investigates the problems which arise in creating a natural 
language interface to the database query language SQL. The basic layout 
of our system is a stepwise progression from a natural language 
expression via its semantic representation to a SQL query. The reason for 
choosing SQL as the database query language is that it is widely used in 
conventional database systems, like ORACLE for instance.
In our talk, we will be concerned specifically with the problems which 
arise when trying to translate a semantic representation into a SQL query, 
and more particularly with three problems which are of special 
importance for a natural language interface, namely the encoding of 
yes/no-questions, and the evaluation of the existential and the universal 
quantifier.

2 S em a n tic  rep resen ta tio n s an d  restr ic ted  q u a n tiflca tio n
The semantic representation we employ is in the form of restricted 
quantification (cf. Jensen & Vikner (1992, I: 137-48)). An example with 
one quantifier is shown in (1):

(1) exists(x,customer 1 a(x),complain 1 a(x))
'En kunde klager'
'A customer complains'

Formulas like this one consist of four components as indicated in (2):
(2 ) exists (x, customer la(x), complain la(x))

t T T t
QUANT VAR RESTRICTION ASSERTION
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A formula with the format shown in (2) we call a 'quantifier structure'. 
By 'predicate structure' we refer to expressions such as those which make 
up the restriction and the assertion in (2). These consist simply of a 
predicate followed by a number of arguments depending on the arity of 
the predicate. In this example, the meaning of the head noun of the 
subject, i.e. kunde ('customer'), is represented as the predicate structure 
in the restriction slot of the formula, and the intransitive VP klager 
('complains') is represented as the predicate structure in the assertion 
slot.
It should be mentioned that neither the restriction nor the assertion is 
necessarily a predicate structure. Rather, they may contain any well- 
formed formula, hence also quantifier structures. An example of this is 
shown in (3), which contains a quantifier structure in the assertion slot.

(3) exists(y,productla(y),
a l l (x ,c u s to m e r  la ( x ) ,c o m p la in 2 a ( x ,y ) )

'Alle kunder klager over en vare'
'All customers complain of a product'

The point of using restricted rather than unrestricted quantification, as is 
customary in classical predicate logic, is that when using restricted 
quantification, only a subset of the individuals in the domain is quantified 
over, namely those individuals which satisfy the restriction. This comes 
out clearly in the evaluation algorithms we propose for the quantifiers.
We want the evaluation of the quantifiers exists and all to be taken care of 
by the rough algorithms in (4) and (5), respectively, which ensure that 
only the individuals satisfying the restriction are considered when 
evaluating the assertion.

(4) E v a lu a tio n  o f  fo rm u la s  o f  th e form :  
e x is t s ( x ,r e s t r ic t io n ( x ) ,a s s e r t io n ( x ) )

1. Find all the individuals that satisfy the restriction
2. IF at least one of the individuals found in step 1 satisfies 

the assertion
THEN the formula evaluates to true
ELSE the formula evaluates to false.

(5) E v a lu a tio n  o f  fo rm u la s  o f  th e form :  
a l l ( x ,r e s t r ic t io n ( x ) ,a s s e r t io n ( x ) )

1. Find all the individuals that satisfy the restriction
2. IF all the individuals found in step 1 satisfy the assertion

THEN the formula evaluates to true 
ELSE the formula evaluates to false.
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3 D a ta b a se  tab les and sem an tic  p red ica tes
For the purpose of this paper we have designed a small toy database, 
whose tables are shown in (6 ). The database contains the names of four 
customers and three types of products and, in the table cp, are registered 
the complaints made by some of the customers.

(6 ) Tables in the database: 
c (customers) p (products)

NO NME

1 Hansen

2 Jensen

3 Madsen

4 Sørensen

cp (complaints)
NO CNO PNO

1 3 1
2 2 1
3 3 2
4 1 1

NO TYP

1 t e le v is io n  set

2 video  reco rder

3 v ideo  camera

When we want to evaluate a semantic representation with respect to this 
database, we have to relate the predicates of the semantic representation 
to the tables in the database. Following Grosz et al. (1987:222), this is 
done by means of a set of definitions of the predicates in terms of 
database tables as shown in (7).

(7) Definitions of semantic predicates in terms of database tables:
complain la(Nme) <— 

c(Cno,Nme), 
cp(_,Cno,_)

complain2a(Nme,Pno) <— 
c(Cno,Nme), 
cp(_,Cno,Pno)

135



customer la(Nme) <— 
c(_,Nme)

product la(Pno) <— 
p(Pno)

television_setla(Pno) <—
p(Pno,'television set')

The predicate structures custom erla(x) and com plainla(x) in the 
semantic representation in (2 ) can now be replaced by their respective 
definitions. By doing so we obtain the expression shown in (8 ), which we 
call the tabular representation:

( 8)

ex ists (N m e, c(_,Nm e

custom erla (x ) com p la in la (x )

— L - 1  ■ .--------------------- -̂--------------------- ,
[c(Cno,Nme) & c p (_ ,C n o ,_ ) ]

4  S Q L  a n d  y e s /n o -q u estio n s
The SQL language 1 offers a facility for retrieving information from a 
database, namely the so-called SELECT queries. SELECT queries come 
in two types. A set-valued type and a number-valued type.

(9)
SELECT * FROM...

SELECT c.NME FROM... 

SELECT COUNT(* )  FROM...

“ s e t -v a lu e d  type

number-valued type

In the set-valued type, the SELECT list, i.e. the expression between the 
token SELECT and the token FROM, is a sequence of column specifica
tions. The value of this type of queries is the set of tuples of values in the 
indicated columns of the rows which satisfy the condition of the query. 
To represent the value of such a query one can use the set notation 
proposed by Pirotte (1978:414), as shown in (10):

(10) { (x,y) I t(x,y) }

^For details of the SQL language, see for instance Date (1990), Ørum (1990) or SQL 
Language Reference Manual. ORACLE (1990).
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In this notation the SELECT list (x,y) is written in front of a tabular 
formula containing the corresponding free variables. If we have a query 
of the form (11):

(11) SELECT c.NO, c.NME FROM c;
we can represent its value by means of the set expression in (12):

(12) ( (NO,NME) 1 c(NO,NME) }
In the kind of number-valued type which is relevant to the subject of this 
paper, the SELECT list consists of the expression COUNT(*). The value 
of a query of this form is the number of rows in the table which satisfy 
the condition of the query.
Numbers and sets (of tuples) are the only two kinds of possible answers 
to SQL queries. That is, unlike for instance Prolog, SQL does not support 
yes/no-questions directly. Therefore, we have to somehow trick it into 
doing so. Our stratagem consists in making use of the built-in SQL table 
DUAL. DUAL is a table with one column and one row with the value X. 
We begin all queries which encode a yes/no-question by the expression 
SELECT COUNT(*) FROM DUAL. Such a query yields the answer 1 if 
the condition is satisfied, and 0 otherwise. So, this gives us the equivalent 
of a yes/no-question facility.
The content proper of the yes/no-question is encoded by means of a 
SELECT subquery. This is shown in example (13), where the content 
'Hansen complains' is encoded in the condition in the innermost WHERE 
clause, which checks the occurrence of a customer name Hansen whose 
customer number appears in a row in the complaints table. This SELECT 
subquery is made part of the WHERE clause of the outermost SELECT 
statement by means of the operator EXISTS. In this way we get a 
condition which comes out true -  and thus triggers a 7 as the final answer 
-  only in the case where the value of the SELECT subquery is nonempty.

(13)
a. Hansen klager 

'Hansen complains'
b. Semantic representation: 

complain 1 a(Hansen')
c. Tabular representation: 

c(Cno,'Hansen') & cp(_,Cno,_)
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d. SQL query:
SELECT COUNT(*) FROM DUAL 
WHERE EXISTS 

(SELECT * FROM c, cp 
WHERE c.NME = Hansen'
AND c.NO = cp.CNO);

5 E x is te n t ia l  q u a n tif ic a t io n
Turning next to existential quantification, Pirotte (1978: 419) has it that 
one can transform a formula containing the existential quantifier into an 
equivalent set expression, and thus remove the existential quantifier. 1 For 
instance (14.a) can be transformed into (14.b):

(14) a. exists(x,p(x),q(x))
b. { X I p(x) & q(x) } ^  0

We use a transformation like the one in (14) as the basis for translating 
existentially quantified formulas into SQL queries. Thus the existentially 
quantified semantic representation in example (15.b and c) is transformed 
into the SELECT subquery in example (15.d) which encodes a set 
expression corresponding to the lefthand side of (14.b).

(15)a. En kunde klager
'A customer complains'

b. Semantic representation:
exists(x,customer 1 a(x),complain 1 a(x))

c. Tabular representation:
exists(Nme,c(_,Nme),

[c(Cno,Nme) & cp(_,Cno,_)])
d. SQL query:

SELECT COUNT(*) FROM DUAL 
WHERE EXISTS

(SELECT c.NME FROM c, cp 
WHERE c.NME LIKE '%'
AND c.NO = cp.CNO);

Ipor other discussions of the elimination of the existential quantifier in database queries, 
see e.g. Minker (1978: 110), Dilger & Zifonun (1978: 395-400), Pereira (1983: 21), 
Steiner (1988: 186-87).
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The LIKE-condition of the inner WHERE clause is redundant and is 
deleted by optimization.
Note that the EXISTS of the outer WHERE clause corresponds, not to the 
existential quantifier, but to the symbols 'V 0"  of (14.b). So, in our 
treatment the existential quantifier disappears altogether. However, it 
would be possible to encode the quantifier exists by the SQL-operator 
EXISTS. In example (15) this would give a SQL query identical to the 
one shown. But in more complicated cases, i.e. examples containing 
multiple occurrences of quantifiers, this would result in a considerable 
number of subqueries (cf. Madsen & Stahel (forthcoming)).

6 U n iv ersa l q u a n tif ic a tio n
For the encoding of universal quantification we use the SQL operator 
MINUS, as shown in example (16). MINUS takes as its arguments two 
SELECT queries of the set-valued type and maps them onto the set- 
theoretic difference between the value of the first and the value of the 
second. The idea is that if we want to find out if all customers complain 
of some product, as in example (16), we find the difference between the 
set of customers and the set of complainers. If the resulting set is empty, 
then all customers complain, and so the initial query should receive a 
positive answer. That is, in the case of universal quantification, the 
subquery is a MINUS construction, and the value of this subquery must 
be the empty set for the outermost SELECT query to yield the value I. 
That is why the condition of the outermost WHERE clause is constructed 
by means of the expression NOT EXISTS.
The MINUS operator must be given comparable sets as arguments. In our 
example (16) these are sets of customer names determined by the 
SELECT list c.NME figuring in both SELECT expressions. This column 
designation is the encoding of the variable bound by the universal 
quantifier in the semantic representation.

(16)
a.

b.

Alle kunder klager over en vare 
'All customers complain of a product'
= 'Each customer complains of some product'
Semantic representation: 

all(x,customerla(x),
exists(y,productla(y),complain2 a(x,y)))
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c. Tabular representation:
aIl(Nme,c(_,Nme),

exists(Pno,p(Pno,_).[c(Cno,Nme) & cp(_,Cno,Pno)]))
d. SQL query:

SELECT COUNT(*) FROM DUAL 
WHERE NOT EXISTS

(SELECT c.NME FROM c 
MINUS
SELECT c.NME FROM p, c, cp 
WHERE p.NO = cp.PNO 
AND c.NO = cp.CNO);

The MINUS solution to universal quantification is analoguous to the 
analysis advocated by the theory of generalized quantifiers, which states 
the truth conditions of an expression of the form in (17):

(17) all N VP 
as shown in (18):

(18) [ all N VP ] = [ N ] c  [ VP ]
(cf. Barwise & Cooper (1981: 169), Thomsen (forthcoming)). The subset 
statement in (18) is equivalent to a statement in terms of set-theoretic 
difference of the form given in (19):

(19) [ N ] -  [ VP = 0
And this again is exactly what we have encoded by means of the MINUS 
construction.
Until this point the encoding of existential quantification has been 
relatively easy, and we have avoided the burden of keeping track of 
variables bound by the existential quantifier. However, if we have a 
semantic representation with a universal quantifier in the scope of an 
existential quantifier, as in example (2 0 ), such recklessness is no longer 
admissible. In example (20), the existential quantifier binds the variable 
designating the product, i.e. y or Pno. This variable appears again inside 
the scope of the universal quantifier. The point is that, for the formula to 
be true, it must be possible to find one particular value for this variable 
such that all customers complain of the product which has this number. 
Therefore we have to fix values for the variable outside the scope of the 
universal quantifier. This is done by giving the existential SELECT 
subquery in example (20) the SELECT list p.NO  and repeating this
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column specification in the universal SELECT subquery in the last AND 
clause, where it is required to be identical to cp.PNO.

(20)
a. Alle kunder klager over en vare

'All customers complain of a product'
= 'There is a product which all customers complain of

b. Semantic representation:
exists(y,product 1 a(y),

all(x,customerla(x),complain2 a(x,y)))
c. Tabular representation:

exists(Pno,p(Pno,_),
all(Nme,c(_,Nme),

[c(Cno,Nme) & cp(_,Cno,Pno)]))
d. SQL query:

SELECT COUNT(* )  FROM DUAL 
WHERE EX ISTS

(SELECTS p.M O  FROM p  
WHERE NOT EX ISTS

(SELECTS c.NM E FROM c - i
MINUS - e x i s t e n t i a l

SELECT c.NM E FROM c ,  .  u n i v e r s a l  s u b q u e r y  
WHERE c .N O  = cp .C N O  s u b q u e r y
AND p .N O  = c p .P N O ) ) ;

Thus, only in cases like this one, where the existential quantifier has a 
universal quantifier in its scope, do we have to keep track of an 
existentially bound variable.

7 C o n c lu s io n
To summarize, the table DUAL is used to encode yes/no-questions, the 
existential quantifier may be eliminated and the universal quantifier is 
encoded by means of the MINUS operator.
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