
IFrom Semantic Representations to SQL Queries
P e r A n k e r J e n s e n , B o d il N is t r u p M a d s e n

A n n ie S t a h é l , C a r l V ik n e r
K ø b en h a v n

A b str a c t
Our paper discusses problems which arise when trying to translate a semantic
representation into a SQL database query, and more particularly the encoding of yes/no-
questions, and the evaluation of the existential and the universal quantifier.

1 T h e p ro ject
Our project investigates the problems which arise in creating a natural
language interface to the database query language SQL. The basic layout
of our system is a stepwise progression from a natural language
expression via its semantic representation to a SQL query. The reason for
choosing SQL as the database query language is that it is widely used in
conventional database systems, like ORACLE for instance.
In our talk, we will be concerned specifically with the problems which
arise when trying to translate a semantic representation into a SQL query,
and more particularly with three problems which are of special
importance for a natural language interface, namely the encoding of
yes/no-questions, and the evaluation of the existential and the universal
quantifier.

2 S em a n tic rep resen ta tio n s an d restr ic ted q u a n tiflca tio n
The semantic representation we employ is in the form of restricted
quantification (cf. Jensen & Vikner (1992, I: 137-48)). An example with
one quantifier is shown in (1):

(1) exists(x,customer 1 a(x),complain 1 a(x))
'En kunde klager'
'A customer complains'

Formulas like this one consist of four components as indicated in (2):
(2) exists (x, customer la(x), complain la(x))

t T T t
QUANT VAR RESTRICTION ASSERTION

133

Proceedings of NODALIDA 1993, pages 133-142

A formula with the format shown in (2) we call a 'quantifier structure'.
By 'predicate structure' we refer to expressions such as those which make
up the restriction and the assertion in (2). These consist simply of a
predicate followed by a number of arguments depending on the arity of
the predicate. In this example, the meaning of the head noun of the
subject, i.e. kunde ('customer'), is represented as the predicate structure
in the restriction slot of the formula, and the intransitive VP klager
('complains') is represented as the predicate structure in the assertion
slot.
It should be mentioned that neither the restriction nor the assertion is
necessarily a predicate structure. Rather, they may contain any well-
formed formula, hence also quantifier structures. An example of this is
shown in (3), which contains a quantifier structure in the assertion slot.

(3) exists(y,productla(y),
a l l (x ,c u s to m e r la (x) ,c o m p la in 2 a (x ,y))

'Alle kunder klager over en vare'
'All customers complain of a product'

The point of using restricted rather than unrestricted quantification, as is
customary in classical predicate logic, is that when using restricted
quantification, only a subset of the individuals in the domain is quantified
over, namely those individuals which satisfy the restriction. This comes
out clearly in the evaluation algorithms we propose for the quantifiers.
We want the evaluation of the quantifiers exists and all to be taken care of
by the rough algorithms in (4) and (5), respectively, which ensure that
only the individuals satisfying the restriction are considered when
evaluating the assertion.

(4) E v a lu a tio n o f fo rm u la s o f th e form :
e x is t s (x ,r e s t r ic t io n (x) ,a s s e r t io n (x))

1. Find all the individuals that satisfy the restriction
2. IF at least one of the individuals found in step 1 satisfies

the assertion
THEN the formula evaluates to true
ELSE the formula evaluates to false.

(5) E v a lu a tio n o f fo rm u la s o f th e form :
a l l (x ,r e s t r ic t io n (x) ,a s s e r t io n (x))

1. Find all the individuals that satisfy the restriction
2. IF all the individuals found in step 1 satisfy the assertion

THEN the formula evaluates to true
ELSE the formula evaluates to false.

134

3 D a ta b a se tab les and sem an tic p red ica tes
For the purpose of this paper we have designed a small toy database,
whose tables are shown in (6). The database contains the names of four
customers and three types of products and, in the table cp, are registered
the complaints made by some of the customers.

(6) Tables in the database:
c (customers) p (products)

NO NME

1 Hansen

2 Jensen

3 Madsen

4 Sørensen

cp (complaints)
NO CNO PNO

1 3 1
2 2 1
3 3 2
4 1 1

NO TYP

1 t e le v is io n set

2 video reco rder

3 v ideo camera

When we want to evaluate a semantic representation with respect to this
database, we have to relate the predicates of the semantic representation
to the tables in the database. Following Grosz et al. (1987:222), this is
done by means of a set of definitions of the predicates in terms of
database tables as shown in (7).

(7) Definitions of semantic predicates in terms of database tables:
complain la(Nme) <—

c(Cno,Nme),
cp(_,Cno,_)

complain2a(Nme,Pno) <—
c(Cno,Nme),
cp(_,Cno,Pno)

135

customer la(Nme) <—
c(_,Nme)

product la(Pno) <—
p(Pno)

television_setla(Pno) <—
p(Pno,'television set')

The predicate structures custom erla(x) and com plainla(x) in the
semantic representation in (2) can now be replaced by their respective
definitions. By doing so we obtain the expression shown in (8), which we
call the tabular representation:

(8)

ex ists (N m e, c(_,Nm e

custom erla (x) com p la in la (x)

— L - 1 ■ .--------------------- -̂--------------------- ,
[c(Cno,Nme) & c p (_ ,C n o ,_)]

4 S Q L a n d y e s /n o -q u estio n s
The SQL language 1 offers a facility for retrieving information from a
database, namely the so-called SELECT queries. SELECT queries come
in two types. A set-valued type and a number-valued type.

(9)
SELECT * FROM...

SELECT c.NME FROM...

SELECT COUNT(*) FROM...

“ s e t -v a lu e d type

number-valued type

In the set-valued type, the SELECT list, i.e. the expression between the
token SELECT and the token FROM, is a sequence of column specifica
tions. The value of this type of queries is the set of tuples of values in the
indicated columns of the rows which satisfy the condition of the query.
To represent the value of such a query one can use the set notation
proposed by Pirotte (1978:414), as shown in (10):

(10) { (x,y) I t(x,y) }

^For details of the SQL language, see for instance Date (1990), Ørum (1990) or SQL
Language Reference Manual. ORACLE (1990).

136

In this notation the SELECT list (x,y) is written in front of a tabular
formula containing the corresponding free variables. If we have a query
of the form (11):

(11) SELECT c.NO, c.NME FROM c;
we can represent its value by means of the set expression in (12):

(12) ((NO,NME) 1 c(NO,NME) }
In the kind of number-valued type which is relevant to the subject of this
paper, the SELECT list consists of the expression COUNT(*). The value
of a query of this form is the number of rows in the table which satisfy
the condition of the query.
Numbers and sets (of tuples) are the only two kinds of possible answers
to SQL queries. That is, unlike for instance Prolog, SQL does not support
yes/no-questions directly. Therefore, we have to somehow trick it into
doing so. Our stratagem consists in making use of the built-in SQL table
DUAL. DUAL is a table with one column and one row with the value X.
We begin all queries which encode a yes/no-question by the expression
SELECT COUNT(*) FROM DUAL. Such a query yields the answer 1 if
the condition is satisfied, and 0 otherwise. So, this gives us the equivalent
of a yes/no-question facility.
The content proper of the yes/no-question is encoded by means of a
SELECT subquery. This is shown in example (13), where the content
'Hansen complains' is encoded in the condition in the innermost WHERE
clause, which checks the occurrence of a customer name Hansen whose
customer number appears in a row in the complaints table. This SELECT
subquery is made part of the WHERE clause of the outermost SELECT
statement by means of the operator EXISTS. In this way we get a
condition which comes out true - and thus triggers a 7 as the final answer
- only in the case where the value of the SELECT subquery is nonempty.

(13)
a. Hansen klager

'Hansen complains'
b. Semantic representation:

complain 1 a(Hansen')
c. Tabular representation:

c(Cno,'Hansen') & cp(_,Cno,_)

137

d. SQL query:
SELECT COUNT(*) FROM DUAL
WHERE EXISTS

(SELECT * FROM c, cp
WHERE c.NME = Hansen'
AND c.NO = cp.CNO);

5 E x is te n t ia l q u a n tif ic a t io n
Turning next to existential quantification, Pirotte (1978: 419) has it that
one can transform a formula containing the existential quantifier into an
equivalent set expression, and thus remove the existential quantifier. 1 For
instance (14.a) can be transformed into (14.b):

(14) a. exists(x,p(x),q(x))
b. { X I p(x) & q(x) } ^ 0

We use a transformation like the one in (14) as the basis for translating
existentially quantified formulas into SQL queries. Thus the existentially
quantified semantic representation in example (15.b and c) is transformed
into the SELECT subquery in example (15.d) which encodes a set
expression corresponding to the lefthand side of (14.b).

(15)a. En kunde klager
'A customer complains'

b. Semantic representation:
exists(x,customer 1 a(x),complain 1 a(x))

c. Tabular representation:
exists(Nme,c(_,Nme),

[c(Cno,Nme) & cp(_,Cno,_)])
d. SQL query:

SELECT COUNT(*) FROM DUAL
WHERE EXISTS

(SELECT c.NME FROM c, cp
WHERE c.NME LIKE '%'
AND c.NO = cp.CNO);

Ipor other discussions of the elimination of the existential quantifier in database queries,
see e.g. Minker (1978: 110), Dilger & Zifonun (1978: 395-400), Pereira (1983: 21),
Steiner (1988: 186-87).

138

The LIKE-condition of the inner WHERE clause is redundant and is
deleted by optimization.
Note that the EXISTS of the outer WHERE clause corresponds, not to the
existential quantifier, but to the symbols 'V 0" of (14.b). So, in our
treatment the existential quantifier disappears altogether. However, it
would be possible to encode the quantifier exists by the SQL-operator
EXISTS. In example (15) this would give a SQL query identical to the
one shown. But in more complicated cases, i.e. examples containing
multiple occurrences of quantifiers, this would result in a considerable
number of subqueries (cf. Madsen & Stahel (forthcoming)).

6 U n iv ersa l q u a n tif ic a tio n
For the encoding of universal quantification we use the SQL operator
MINUS, as shown in example (16). MINUS takes as its arguments two
SELECT queries of the set-valued type and maps them onto the set-
theoretic difference between the value of the first and the value of the
second. The idea is that if we want to find out if all customers complain
of some product, as in example (16), we find the difference between the
set of customers and the set of complainers. If the resulting set is empty,
then all customers complain, and so the initial query should receive a
positive answer. That is, in the case of universal quantification, the
subquery is a MINUS construction, and the value of this subquery must
be the empty set for the outermost SELECT query to yield the value I.
That is why the condition of the outermost WHERE clause is constructed
by means of the expression NOT EXISTS.
The MINUS operator must be given comparable sets as arguments. In our
example (16) these are sets of customer names determined by the
SELECT list c.NME figuring in both SELECT expressions. This column
designation is the encoding of the variable bound by the universal
quantifier in the semantic representation.

(16)
a.

b.

Alle kunder klager over en vare
'All customers complain of a product'
= 'Each customer complains of some product'
Semantic representation:

all(x,customerla(x),
exists(y,productla(y),complain2 a(x,y)))

139

c. Tabular representation:
aIl(Nme,c(_,Nme),

exists(Pno,p(Pno,_).[c(Cno,Nme) & cp(_,Cno,Pno)]))
d. SQL query:

SELECT COUNT(*) FROM DUAL
WHERE NOT EXISTS

(SELECT c.NME FROM c
MINUS
SELECT c.NME FROM p, c, cp
WHERE p.NO = cp.PNO
AND c.NO = cp.CNO);

The MINUS solution to universal quantification is analoguous to the
analysis advocated by the theory of generalized quantifiers, which states
the truth conditions of an expression of the form in (17):

(17) all N VP
as shown in (18):

(18) [all N VP] = [N] c [VP]
(cf. Barwise & Cooper (1981: 169), Thomsen (forthcoming)). The subset
statement in (18) is equivalent to a statement in terms of set-theoretic
difference of the form given in (19):

(19) [N] - [VP = 0
And this again is exactly what we have encoded by means of the MINUS
construction.
Until this point the encoding of existential quantification has been
relatively easy, and we have avoided the burden of keeping track of
variables bound by the existential quantifier. However, if we have a
semantic representation with a universal quantifier in the scope of an
existential quantifier, as in example (2 0), such recklessness is no longer
admissible. In example (20), the existential quantifier binds the variable
designating the product, i.e. y or Pno. This variable appears again inside
the scope of the universal quantifier. The point is that, for the formula to
be true, it must be possible to find one particular value for this variable
such that all customers complain of the product which has this number.
Therefore we have to fix values for the variable outside the scope of the
universal quantifier. This is done by giving the existential SELECT
subquery in example (20) the SELECT list p.NO and repeating this

140

column specification in the universal SELECT subquery in the last AND
clause, where it is required to be identical to cp.PNO.

(20)
a. Alle kunder klager over en vare

'All customers complain of a product'
= 'There is a product which all customers complain of

b. Semantic representation:
exists(y,product 1 a(y),

all(x,customerla(x),complain2 a(x,y)))
c. Tabular representation:

exists(Pno,p(Pno,_),
all(Nme,c(_,Nme),

[c(Cno,Nme) & cp(_,Cno,Pno)]))
d. SQL query:

SELECT COUNT(*) FROM DUAL
WHERE EX ISTS

(SELECTS p.M O FROM p
WHERE NOT EX ISTS

(SELECTS c.NM E FROM c - i
MINUS - e x i s t e n t i a l

SELECT c.NM E FROM c , . u n i v e r s a l s u b q u e r y
WHERE c .N O = cp .C N O s u b q u e r y
AND p .N O = c p .P N O)) ;

Thus, only in cases like this one, where the existential quantifier has a
universal quantifier in its scope, do we have to keep track of an
existentially bound variable.

7 C o n c lu s io n
To summarize, the table DUAL is used to encode yes/no-questions, the
existential quantifier may be eliminated and the universal quantifier is
encoded by means of the MINUS operator.

141

R e fe r e n c e s
Barwise, Jon and Robin Cooper. 1981. Generalized Quantifiers and Natural Language.

L inguistics and Philosophy, 4,159-219.
Date, C.J. 1990. An Introduction to Database Systems. Volume I, Fifth Edition,

Addison-Wesley, Reading, Massachusetts.
Dilger, Werner and Gisela Zifonun.1978. The Predicate Calculus-Language KS as a

Query Language. In Gallaire and Minker, pp. 377-408.
Gallaire, Hervé and Jack Minker (eds). 1978. Logic and Databases, Plenum Press, New

York.
Grosz, Barbara J., Douglas E. Appelt, Paul A. Martin and Fernando C.N. Pereira.

1987. TEAM: An Experiment in the Design o f Transportable Natural-Language
Interfaces. ARTIHCIAL INTELLIGENCE 32, 173-243.

Jensen, Per Anker and Carl Vikner. 1992. Natursprogsbehandling og unifikations-
grammatik, I-II. Department of Computational Linguistics, Copenhagen Business
School.

Madsen, Bodil Nistrup and Annie Stahél (forthcoming). Database structure and SQL-
queriesfor a natural language interface project. LAMBDA 19, 1993.

Minker, Jack. 1978. An Experimental Relational Data Base System Based on Logic. In
Gallaire and Minker, pp. 107-21.

Pereira, Fernando. 1983. Logic fo r Natural Language Analysis. Technical Note 275,
SRI International, Menlo Park, California.

Pirotte, Alain. 1978. High Level Data Base Query Languages. In Gallaire and Minker,
pp. 409-36.

SQL Language Reference Manual. ORACLE. 1990. Oracle Corporation.
Steiner, Juraj. 1988. Relational theory o f queries. DATA AND KNOWLEDGE ENGINEERING

3, pp. 181-96.
Thomsen, Hanne Erdman (forthcoming). The Semantic Values ofNPs. Lambda 19.
Ørum, Henning. 1990. Oracle-håndbogen. Borgen, Copenhagen.

142

