
-  58 -

- DAG-TRA*NSFORMA.TIONS FOR SEMANTIC .ANALYSIS

Aarno Lehtola and Timo Honkela 
KIELIKONE-project, SITRA Foundation 

P.O.Box 329, SF-00121 Helsinki 
Finland

tel. inti + 358 0 641 877

AWARE is a knowledge representation language for specifying NLU inference rules. 
AWARE-system takes as its input the parse trees of NL utterances and further 
refines them by using DAG-transformations (Directed Acyclic Graph) and recursive 
descent translation techniques. AWARE has been used for semantic analysis in our 
Finnish language database interface. The input dependency tree is transformed 
first into a predication DAG and then reduced into a conceptual database query.

Keywords; semantics, graph grammars, inference tools

1 INTRODUCTION

In 1982 SITRA Foundation launched a major project (KIELIKONE) for the study of 

general computational models for the interpretation of written Finnish. The 

target application is a Finnish understanding portable database interface.

Currently our hierarchical model of language interpretation consists of six 

processes; word analysis, lexicalization and disambiguation, sentence parsing, 

logico-semantic analysis, inference and query adaptation (JAppinen & al. 1988). 

All intermediate structures until the so called predication DAG represent more and 

more refined analysis results (Figure 1). The predication DAG is semantically the 

richest representation in the model. The following semantic processes simplify 

and modify the representations towards database queries.

In our model there is a clean separation between linguistic knowledge and 

processing mechanisms. The extensive use of specialized knowledge description 

languages characterizes the different components (Lehtola & al. 1987a). There is 

also a hierarchy of representations. When we work in the morphological stratum, 

the associated knowledge language deals with sets of features. In the syntactic 

stratum trees with feature sets in nodes are the dominating representation. In 

this paper we outline the com; ational methods used in our logico-semantic 

stratum which deals with directed acyclic graphs.

AWARE - DAG-transformations for Semantic Analysis
Aarno Lehtola, Timo Honkela
Proceedings of NODALIDA 1987, pages 58-68



DAG-transformations are practical for inferring NL meaning. For instance, they 

may be used to spesify which NL expressions are near by meaning. Graph rewrite 

rules may be used to map their syntactic representations into each other. Such 

rewrite rules would form a meaning-preserving rulebase for a canonizing process. 

Graph rewrite rules have proved to be convenient also for solving ellipses and 

anaphoras.

-  59 -

KNOWLEDGE PROCESSES REPRESENTATIONS

Figure 1. A stratified model of NL interpretation.

In this paper we present the AWARE DAG-transformation system for modelling 

logico-semantic analysis. First we outline the architecture of AWARE. Then we 

demonstrate the power of AWARE-rules by examples which deal with canonization of 

sentence structures, recognition and marking of semantic predications and solution 

of certain ellipses. Furthermore we discuss how the resulting predication DAGs 

can be translated into linear expressions, in our case into queries in an 

universal relation query language. Next we wiev the knowledge acquisition and 

rule-base maintenance tools. In the end we evaluate the performance of AWARE.

2 THE ARCHITECTURE OF AWARE-SYSTEM

The AWARE-system consists of rule-base maintenance tools and a run-time system 

(Figure 2). The rule-base is divided into rule packets, which contain rules of

59Proceedings of NODALIDA 1987



equal priority. Momentarily one or more packets are active. The activation order 

of packets is specified by a special control language. Each packet has a name and 

a type. Possible types are 'bottom-up-recursive-scan', 'top-down-recursive-scan , 

'wait' and 'transfer'. The type label defines the way the search is carried out.

-  60 -

In AWARE-system the DAGs are usually formed from trees by introducing extra 

connections. They have one node as the ancestor of all the other nodes. This 

node we call the root node although in general graph terminology that term is not 

used. Those nodes which have no descendants we call leaves. The edges are 

directed out from root nodes towards leaves. The label 'bottom-up-recursive-scan' 

makes the system to start the search for possible transformations from the leaves 

and to proceed towards the root node. The recursion comes from the fact that 

after a succesful transformation the system restarts using the new structure, 

'top-down-recursive-scan' works similarly but starts from the root. It is 

convenient sometimes to let a transformation rule evaluate partially. This is the 

case when we try to model distant dependencies eg. certain ellipses and anaphora. 

The rules in 'wait' packets are then used to finnish the incomplete 

transformations. The label 'transfer' marks those packets which contain 

attributed rules for recursive descent compilation. These rules are called 

transfer-rules.

Figure 2. The architecture of the AWARE-system.

60Proceedings of NODALIDA 1987



The rulebase maintenance tools include a rule editor, a rule hypothesis generator 

and an automatic book keeping system for corpora. The run-time system contains a 

control language interpreter, a rule tracer, a precompiler and an interpreter for 

the actual DAG-transformation rules and for the recursive descent compilation 

rules.

AWARE-rules may function locally without paying attention into larger contexts of 

the processed constructs. They may also cover whole utterances and on global 

grounds recognize semantic predications which have their parts syntactically 

distributed. Rules’ may amplify themselves by referring to other rules. Also 

recursive transformations are possible.

An AWARE-description inherits its type definitions from the formal grammar 

description of the preceding dependency parser (see Lehtola & al. 1985 and 

Valkonen & al . 1987). A user may also define extra types to be used only in 

transformations and thereafter (Lehtola Sl al. 1987b). AWAJiE is aware of all 

information that has been derived by the preceding morphological analysis, the 

lexicalization and disambiguation process and the dependency parser.

-  61  -

3 HOW TO USE TRANSFORMATION RULES

In the following examples we demonstrate the use of transformation rules for 

different semantic recognition tasks. In many cases the graph transformation 

reduces into a tree transformation. The first example is very simple, later on we 

will present more complicated ones.

Canonization of sentence structure 

SEKA

X
'SEKA
I
^ ---------------------^ ----------------------- ^ ---------------------- ^

I I I
Y 'ETTA Z

= >
ROOT-ONLY

X
' JA 

Advcp
j

+------- +-------- -h
I I
Y Z

In the rule above one defines a trivial situation where the conjunction phrase 

SEKA-ETTA (ie. BOTH-AND) is turned to an AND phrase. The rule is composed of a 

name and two patterns combined with the rewrite operator The first pattern

61Proceedings of NODALIDA 1987



-  62 -

(ie. left-hand-side of the rule, later abbreviated by Ihs) shows the topological 

and feature conditions which will make the rule to perform a transformation.

This rule will be fired if it recognizes a node with the lexeme SEKA and with 

three subordinates on the right. The second subordinate must have the lexeme 

ETTA. X and Y are called glue variables and they are used in the construction of 

a new structure. The right hand side of the rule forms a new tree to substitute 

the matched one. When the Ihs of the previous rule is matched the glue variable X 

will have as its value the structure headed by SEKA. The glue variable Y is bound 

to the first subordinate and the variable Z to the third subordinate. The root 

node of the new structure is the previous SEKA node (ie. root only of the 

structure bound to X) with its lexeme changed to JA and with a role label Advcp. 

The root will have two subordinates. The first is the same as the first 

subordinate in the matched tree and the second is the same as the third 

subordinate in the matched tree.

In the previous rule we provided the Ihs-nodes with restrictive feature conditions 

(eg. 'SEKA and 'ETTA) and glue variables. In addition it is possible to provide 

them with the following directives; ANYNUMBER, ANYORDER, ANYOPTS, ANYDEPS. 

ANYNUMBER states that a node may have unrestrictedly many subordinates of the 

specified type. ANYORDEIR lets the subordinates to be located in any mutual order. 

ANYOPTS states that a node may have unlimited number of optional subordinates. 

ANYDEPS is a 'wildcard' for totally relaxing the subordinating structures. 

Finally the nodes may have references to other rules. By inserting a name of a 

rule into a node one amplifies his definition. In order to satisfy such rule the 

substructure starting from the marked node must satisfy the named rule.

The rhs-nodes may be provided with features to be over-written teg. 'JA and 

Advcp) and with references to glue variables. The directive R00T-J.^ILY is used i d  

cut out the connections to the subordinates. In the example ru.e it is used to 

cut out the previous connections of 'SEKA node (referred ty X) so that the new 

connections introduced in the rhs of the rule would not be overlapping.

62Proceedings of NODALIDA 1987



-  63 -
Recognizing predications 

KUULUA
'KUULUA 

PersForm 
3P

ANYORDER
ANYOPTS
REST

Y
' 3 ui) 1 e c t 
Noun
concrete 
(OR Nom Part) 
ANYDEPS

: >

Y
Adverbial

Noun
legal_person 

All
ANYDEPS

'POSSESSION
Predication

Y
Actor

I
X REST

The preceding rule demonstrates how transformations can be used to define word 

valencies and to detect semantic predications. The example word is the Finnish 

verb KUULUA (to belong, to be part of, to be audible etc.). The rule describes

one instance of the use of verb KUULUA. Here it is stated that the verb KUULUA 

expresses possession, when it is in a third person personal form and when it has 

the following two subordinates:

(1) a subject, which is a noun in nominative or partitive case 

and means a concrete thing

(2) an adverbial, which is a noun in allative case and means 

a legal person

Both of the subordinates may have any subordinates. The root verb KUULUA may have 

those subordinates in any order and it may also have unrestricted number of 

optional subordinates that are to be bound to the set variable REST.

Solving ellipses 

JA
X3 
' JA
I

X2
(AKO: X5) 
Noun

X4
(AKO: X5) 
Noun

XI 
' JA

ANYNUMBER

Gen
(AKO: legal_person) 

Noun

ROOT-ONLY
X3

ROOT-ONLY
X2

X4

63Proceedings of NODALIDA 1987



The rule aibove is an example of how ellipses inside sentences can be solved by 

DAG-transformations. The rule is semantically restricted to the case of the form 

"the entityl and entity2 of leganpersonA. legalpersonB, ... ,and legalpersonX". 

The dependency tree given by the parser has as its root the conjuntion phrase 

containing the entities. The two (AKO: X 5 ) expressions test that the nouns X2

and X4 coordinate semantically. The conjunction phrase made of the legal persons 

is syntactically subordinated only to the first entity. The parser does not 

recognize the ellipsis that also the second entity is in relation with the same 

legal persons. The meaning of the rule is that when the described situation is 

recognized the structure XI is made to be shared by both of the entities.

Wait-rules for distant bindings

-  64 -

One may leave the filling part (rhs) of a rule partially unspecified. Part of a 

tree structure is replaced with a call of a wait-rule. Wait-rules are activated 

afterwards and they loolc for the matching element from the whole tree structure. 

Here we demonstrate the use of wait-rules in case of ellipsis. Lets consider the 

following sentences:

(1) "Anna yritykset, Joiden liikevaihto on suurempi kuin
metsialalla keskimdArin1" (Give the companies the turnover of 
which is greater than the averagenal in forestry)

(2) "Anna yritykset, joiden liikevoiton suhde liikevaihtoon on
suurempi kuin metsaalalla keskimaa.rinl" (Give the companies 
the ratio of profit and turnover of which is greater than 
the averagenal in forestry)

Both sentences have an elliptical expression 'the averagenal (turnover/ratio ..) 

in forestry'. The system cannot locally decide what is the property referred to. 

By applying wait-rules the decision can be delayed and the larger context is taken 

into account.

The following rule matches with the expression 'metsaalalla keskimaarin' (the

64Proceedings of NODALIDA 1987



averagenal in forestry). The rhs of the rule contains a call of a wait-rule. 

Rule(s) WAIT-PROPEIRTY specifies different ways of expressing a property of 

something. See also the label 'AVE' for average which will be attach to the 

property found.

FIELD
X3

(AKO: ala)
'AdjPostAttr 

Common 
SG 
Ad
I
^----- ^

I

'KESKIMXXRIN 
'Adverbial

= >
'HAVE-PROPERTY

I
^-------------- ^------ ^
I I

'HAVE-PROPERTY WAIT-PROPERTY
1 AVE
I

*1------ -------•»-
i I

'YRITYS ROOT-ONLY
PL X3

The following WAIT-rules match with our examples (1) and (2).

WAIT-PROPERTY

XI
(AKO: property)

= > XI

-  65  -

WAIT-PROPERTY

'SUHDE 
X3

(AKO: property) 

= >

(AKO: property)

X3

WAIT-rules are contained in a packet of their own. This packet is activated after 

the packet of the calling transformations has been analyzed. Each call of 

WAIT-rules may cause only one WAIT-rule to fire. If there is a firing WAIT-rule 

for each call, the whole dependency structure has been satisfied.

4 RECURSIVE DESCENT TRANSLATION

For the production of linear expressions there is an attribute grammar facility. 

Special translation rules specify the way how different DAG constructs are 

translated into linear expressions and how a collection of such expressions is 

mapped into a larger one. The idea is that the transfer rules are seen 

analogously to the cfg-rules in Knuth's attribute grammars (Knuth 1960). In this

65Proceedings of NODALIDA 1987



case we are not recognizing a linear language, but rather a graph. The names of 

AWARE rules correspond to the nonterminals of Ihs-parts of cfg-rules. The

amplifying rule name references in the match patterns of AWARE rules correspond to 

the nonterminals in rhs-parts of cfg-rules. In attribute grammar there may be 

attribute values associated to nonterminals and passed up and down in the 

constituent tree. In AWARE similar bidirectional attribute value propagation is 

possible between rules which together cover the recognized graph. In Knuth's 

grammar attributes are properties of nonterminals, in AWARE they are properties of 

rule references.

The attribute values may be referred in the equations associated to

transfer-rules. These equations consist of tests, assignments, semantic functions

and structure building functions. Once a graph is succesfully covered with

match-patterns of transfer-rules the equations are instantiated and solved. If 

there exists solutions the active transfer rules are satisfied, otherwise the 

search proceeds. The solving process brings the wanted token sequences.

5 RULEBASE MAINTENANCE TOOLS

The rule editor lets the user to manipulate his rules in graphical form. There

are two user modifiable representations of the rules, a graphic one and a list

expression. The following abstract example demonstrates the parallel use of

graphic and list representations:
< rule_name>

< tree_variablel>..
<node_propertyl>..
<any_relaxationl>..

-  66 -

<tree_variable2>, 
<node_property2>, 

<any_relaxation2>,

+------
I

<ule name3>.

<tree_variable4>. 
<node_property4>. 

<any_relaxation4>.

= >
<tree_var_ref1>. 
< insert_j5ropl>. .

<tree_var_ref2>.. <rule_name_ref3> , 
<insert_prop2>.. (insert_prop3>..

Is the same as:

(< rule_name >
((DEP: (DEP: <rule_name3> 

<tree_variable2>.. 
<node_property2>.. 
<any_relaxation2>. 

<tree_variablel>.. 
<node_propertyl>.. 
<any_relaxationl>..
(DEP: <tree_variable4>.. 

= >
( (DEP: <tree__var_ref 2> . .
< tree_var_ref1>..
< insert_propl>..
(DEP: (rule name ref3>..

(node__property4>,

(insert_prop2>..)

(insert__prop3>. . ) ) )

(any_relaxation4>, ) )

66Proceedings of NODALIDA 1987



The list representations are isomorphic with the graphic representations and the 

user may choose which ones to edit. The graphical editor supports insertion, 

modification and deletion of rules. The strength of it becomes apparent when one 

is doing topological changes into rules. Also nodes are easy to manipulate in 

graphical form.

The rule hypothesis generator is integrated with the graphical editor. The idea 

is that by menus the user chooses one of the already created intermediate results 

to be the Ihs of his new rule. The hypothesis generator generalizes the match 

pattern according to certain heuristic rules and automatically forms a rhs 

pattern. This rhs pattern is a reduced version of the Ihs pattern and the 

Icnowledge engineer reforms it by the rule editor. The newly created rule is 

precompiled and ready for use as the user exists the hypothesis generator. The 

Icnowledge acquisition has been very fast by using these tools.

There is an automatic book-keeping facility that records the input sentences and 

their analysis results into a corpus file. This recording may be done 

automatically for all input or it may be invoked by the user. The idea is to 

collect test material to ensure monotonic improvement of knowledge descriptions. 

After a non trivial change is done in the rulebase, the system runs all test 

sentences and the results are automatically compared to the previous ones.

-  67 -

6 PERFORMANCE

The AWARE-system has proved to be practical in logico-semantic analysis of Finnish 

and in query synthesis. It is in daily use in our database interface prototype 

for a Finnish business dataibase. Total processing of a one line long question 

takes between 5 and 50 seconds of CPU-time on VAX-11/780. The DAG transformations 

and the conceptual query synthesis consume about 50 percent of this. The size of 

the rule base is currently almost 400 rules.

At the first glance the figures may depress. Taken into account that the 

complexity of the transformational analysis is very high the time consumption is 

not surprising. At the moment the rules are precompiled into effective data 

structures, an inverted index is created out of the match conditions and structure 

sharing is used to minimize memory consumption. Internal data structures are only 

partly dynamic for the reason of fast information fetch. In spite of the

67Proceedings of NODALIDA 1987



preceding measures there are still many ways to improve the performance. The 

current implementation is in FranzLisp.

7 CONCLUSIONS

Compared to certain well known transformation systems (eg. Periphrase of ALPS, 

MITRE) the AWARE-system offers the following extra properties;

; ^ich type system,
(2 processing generalized for directed acyclic graphs,
(3) orientation towards dependency structures,
(4) powerful tools for knowledge base maintenance,
(5) extensive use of graphics to illustrate the operation,
(6) attribute grammar facility for translation
(7) separate control language
(8) lazy evaluation possible using 'wait' rules

One of the design objectives in AWARE has been to make it so general that it could 

be used also in machine translation. Dependency structures have been found a good 

syntactic representation for machine translation purposes. Our dependency parser 

(Lehtola & al. 1985 and Valkonen & al. 1987) together with AWARE gives 

interesting prospects for MT.

-  68  -

References

ALPS (1986) ;
Periphrase Introduction. Report of A.L.P. Systems, Provo, 25 p.

Hobbs, J . , Grishman, R. (1976):
The Automatic Transformational Analysis of English Sentences; An I.-npiemen: at ion. 
Intern. J. Computer Math. 1976, Section A, Vol. 5, pp. 267-283.

Jappinen, H . , Honkela, T . , Lehtola, A. and Valkonen, K. (1988):
Hierarchical Multilevel Processing Model for Natural Language Database Interface. 
Proceedings of the 4th IEEE Conference on Artificial Intelligence A.pplications, 
San Diego, California, 6 p. (in print).

Knuth, D. E. (1968);
Semantics of Context-Free Languages. Mathematical Systems Theory, vol. 2, no. 
2, Springer-Verlag, New York, pp. 127-145.

Lehtola, A., JSLppinen, H. and Nelimarkka, E. (1985);
Language-based Environment for Natural Language Parsing. Proceedings of the 2nd 
European Conference of ACL, Geneve, pp. 98-106.

Lehtola, A. and Valkonen, K. (1987a);
Knowledge Representation Formalisms and Metadescriptions for the Interpretation of 
Finnish. Proceedings of the Third Finnish Symposium on Theoretical Computer 
Science, pp. 64-87.

Lehtola, A. and Honkela, T. (1987b):
AWARE - A DAG Production System with Attribute Grammar Facility >*frevised report»^. 
Publications of the Kielikone-project, Series B, report 4, Helsinki, 36 p. 
Valkonen, K . , JAppinen, H. and Lehtola, A. (1987);
Blackboard-based Dependency Parsing. 10th International Joint Conference of 
Artificial Intelligence, Milano, pp. 700-702.

Winograd, T. (1983);
Language as a Cognitive Process. Volume I; Syntax. Addison-Wesley Publishing 
Company, Reading, 640 p.

Zwicky, A., Friedman, J., Hall, B., Walker, D. (1965):
The MITRE Syntactic Analysis Procedures for Transformational Grammars.
Proceedings of the Fall Joint Computer Conference 1965, pp. 317-326.

68Proceedings of NODALIDA 1987


