
15
Peter B0gh Andersen:
FANGORN - A LANGUAGE FOR GENERATING COHERENT TEXTS

1. INTRODUCTION AND GENERAL IDEAS

Fangorn is a system that reads descriptions of texts
and generates samples of the texts described. It can be
used for checking the empirical adequacy of text descriptions:
if the output deviates (in some sense) from the corpus intended
to be covered by the description, then the description is
empirically inadequate.

Since many texts relate narratives about humans acting in
purposeful, although conflicting, ways, Fangorn must contain
facilities for describing problem-solving algorithms and it
can be used for experiments in that area. However, the emphasis
is not on efficiency but on simplicity, and it is strongly
oriented towards producing readable texts as output. In these
respects it deviates from systems such as TALE-SPIN (Meehan(77)).

Fangorn is heavily influenced by SIMULA and to a lesser
extent by LISP. It is being programmed in SIMULA, but I comtemplate
reprogrammingit in a less expensive language when it is debugged.

A Fangorn program is written in F-expressions (akin to LISP
S-expressions). They are translated into a connected labelled
network with a least upper bound. The network may contain
cycles. It consists of NODES linked together with LINKS.
Every NODE has certain attributes (variables) and in addition
contains a block of actions that are executed when the node
is activated. The attributes of a node are called its structure
and the actions are called its process. Objects containing a
structure an<̂ a process are called aggregates. Every node in
Fangorn is an aggregate, and every operation Fangorn can perform
is a process, that is: it is associated with some node.

Every node has at least two attributes: a variable of type
text, name> and a pointer variable, sue. LINKS have no name;
instead they contain a pointer variable, val, pointing to a
NODE.

FANGORN - A language for generating coherent texts
Peter Bøgh Andersen
Proceedings of NODALIDA 1979, pages 15-29

16

The basic network of FANGORN looks like this

Fig.l

NODEt is a mother of nodes NODE-, NODE-, NODE.. The latter are 1 ------------ 2 ' 3 4
daughters of NODEj^. Two nodes that are daughters of the same
node are said to be sisters with respect to that node.

Note that a node may have several mothers, and that two nodes
may be sisters with respect to one node, but not with respect to
another one.

Fig.l may be drawn in a slightly simplified way as fig.2 or
fig.3:

Fig. 2 Fig. 3

NODE.

NODE- NODE., NODE.2 3 4

A major principle behind Fangorn is that a network must be
able to reproduce itself, if it is to bear a likeness to natural
language. We know that a natural language is thus structured that
children, when exposed to it, learn it in an amazingly uniform
way. We know too that no simple copying operation is involved
(copying the contents of the adult brain into the child's brain
or the like). Instead, the child's language is built up, stage
by stage, and at each stage it is capable of functioning as a
language. A grammar does not only produce sentences: it also
reproduces itself at the very same time as it produces sentences.

16Proceedings of NODALIDA 1979

17

and largely by means of the very same mechanisms it uses to produce
those sentences.

For a "programming" language, this has the following consequence:
the products it produces must be of the same kind as the program
itself, and the operations by means of which it creates its output
must be sufficient to create an output that is functionally equivalent
to itself.

Of course, any programming language could be fixed to meet these
requirements: if it contained a procedure run(file) that would
compile and execute the program, written on file, then a program
could write another program on file, possibly a copy of itself;
rvin (file) would then compile and execute the program written on file.
The difference between Fangorn and our hypothetical language is
that the products of Fangorn are "programs" that may be executed
without further ado, whereas our hypothetical program produces
descriptions of programs that must be translated by very complicated
processes before they can be executed.

Suppose that a parent network produced an offspring network in
Fangorn: then the parent would be a very skillful educator of the
infant, because the infant is structured as any other object that
the parent can create and manipulate - the parent may use the same
techniques it would use in any other situation when educating the
child.

On the other hand, our hypothetical program would be a very poor
educator: presumably, the child must be killed (the program must be
terminated) and a new version written and compiled (bornI) if changes
are to be made. We just dont do such things nowadays I

If follows that a Fangorn program may change itself - it can
educate itself. And this is obviously a desirable ability: because
in many novels the protagonist changes during the narrative: for exampl«
his problem-solving algorithms may change as a result of successes,
failures, new insights, or what have you.

These are the principial reasons why every bit of a Fangorn
program is an energetic aggregate, ready to act when requested.

17Proceedings of NODALIDA 1979

18

It has certain drawbacks, however. It makes recursive programming
exetremely expensive, because every time a "procedure" is called,
a copy of the whole procedure must be created. Copying the
local variables of the procedure does not suffice, since the
procedure may change its body during execution.

Fangorn is a forest in The Lord of the Rings by Tolkien, and
since the program treats its network as a collection of trees,
I thought that "Fangorn" fitted very well, the novel being one
of my favourite books. But there is a little more to it than that:
Fangorn is a very peculiar forest, consisting of trees, some of
which are alive and move and act, and some of which are asleep
and hard to wake. I have always been fascinated by Fangorn, because
it contradicts the common idea of the world as consisting of two
separate phenomena: things that are dead and passive, and beings
that are alive and active. This conception simply does not
fit language: a text, for example, is a thing: but it is also
a process, influencing the reader in complicated ways, and leading
him to conclusions that he may be most unwilling to draw.

In many programming languages, the passive-active dichotomy
emerges as the rigid data-statement division, which may be a
useful distinction in some areas, but is extremely cumbersome
when natural language is concerned. I have sometimes wondered
whether this stubborn insistence on the passive-active dichotomy
might not be due to an underlying powerful ideology that classifies
everything as either being passive, subordinate and willing to
undergo manipulation, or as being capable of and entitled to
doing the manipulation, with nothing in between. But such a division
does not accord with the facts, even if it accords with the
wishful thinking of the present potentates.

However that may be, in Fangorn I have tried to obliterate
the distinction as far as possible, insisting that every action
is performed by some entity that can itself be acted upon, and
conversely, that every entity has at least a rudimentary action
potential.

18Proceedings of NODALIDA 1979

19

2. FLOW OF CONTROL

When a node is activated, it executes its process and then
activates one of its daughters defined by its structure. Most
nodes conform to the following pattern: they have at most 3
possible outcomes, success, failure and dont know, which correspond
to its 3 rightmost daughters in that order. For example, the
node BELIEVED may have 3 results: true, false or dont know. A
person may believe a sentence, he may believe its negation or
he may just dont know. If he believes it, the last-but-two
sister is activated, if he disbelieves the last-but-one sister
is activated, and if he dont know the last sister is activated.

Some nodes may have only one outcome, succes. For example,
the node SET has 3 daughters; it assigns the daughters of its second
daughter to its first daughter, and then activates its third
daughter, thereby corresponding to the assignment statement.

A node may have operands; they are always the youngest
daughters. SET has two operands, its first two daughters.

Observe, that the format

(operands) + succes + (failure + (dontknow))

does not prevent a node from playing more than one role at a time.
I fig.4, A plays the role of operand and at the same time functions
as the succes-node:

Fig. 4 SET

B
1

The daughters of A are replaced by the daughters of B, and lastly
A is activated.

19Proceedings of NODALIDA 1979

20

3. MATCHING AND ASSIMILATING NETWORKS

Let A be a node. The network consisting of all nodes accessible
from A via mother-daughter relations is called the network defined
by A (or dominated by A). Instead of the phrase "the network
dominated by A ” I will sometimes write just "A" when no confusion
results.

The network defined by A is said to match the network defined
by B iff there is an isomorphism L from A into a subset of B,
preserving

1. names
2. mother-daughter relations
3. sister relations

and such that
4. L(A) = B

Thus, node 1 matches node 7 but not node 18:

Fig. 5 Fig. 6 Fig. 7

<7

because there is an isomorphism L from 1 into 7,

Fig. 8
L = {(1,7) ,(2,8) , (3,9) , (4,10) ,(5,11) ,(6,12) }

20Proceedings of NODALIDA 1979

21

If A matches B, then B is said to be an instance of A
If L is an isomorphism and S is any node, then ASSIM(S,L)

is the network dominated by S, except that each node A in
the domain of L is replaced by L(A). For example, if we assimilate
node 1 into node 100 using the isomorphism L i fig. 8, then
we get:

Fig. 9
X/

K •7

Assimilation, using the isomorphism produced by matching, is
used in several different ways in Fangorn. Limitations of space
prevent me from describing the processes in any detail, but I
will give a rough outline. The relevant processes are:

1. instantiation/ binding of variables (node: INSTANCE)
2. transformations in two varieties (node: REORDER)
3. expansions in two varieties (node: GROW and EXPAND)
4. anaphors (not implememted yet)

3.1 INSTANTIATION

In Fangorn it is possible to state conditions. There are
four types of conditions, SOME, ALL, EXCEPT and NONE. A condition
has exactly one daughter called its proposition. To give an
example, SOME requires that at least one instance of its pro
position be true at the "time" of the condition.

21Proceedings of NODALIDA 1979

22

To instantiate a condition means to replace the proposition by
certain sets of instances of the proposition or its negation.
Example:

Fig.10 SOME
ISENT

SOME
1SENT

BOY HAS TOY I—BOY
IJOHN

HAS TOY
GRASPS A BLUE CAR

BOY, HAS and TOY may function as variables, to which the values
JOHN, GRASPS and A BLUE CAR are assigned.

3.2. EXPANSIONS

We have two expansion atoms, EXPAND and GROW.
GROW is a generalisation of Chomsky's rewrite rules; its process

searches a list for a network B that is an instance of another
network A. If A matches B, then B is assimilated into A's context:

Fig.11 (A)
SENT+

(B)
SENT

(A)
SENT

BOY HAS TOY rBOY HAS TOY
I IJOHN GRASPS

BOY HAS TOY
— I--- rBLUE CAR rJOHN GRASPS A BLUE CAR

EXPAND is like GROW in that it searches a list in order to find
matching nodes; but in this case B must be a daughter of a node X
on the list, and B must match A and not conversely. If B is found,
then A is assimilated into X, and X is inserted as the left sister
of A. Example:

Fig.12 (A)
I—BOY
1JOHN

SENT3HAS tJ)y
'— I------- rA BLUE CAR

22Proceedings of NODALIDA 1979

23

Fig.12 (continued)

SOME
1

SENT

HAS

(X) SEQ

SENT

iibMAN GIVES
1 ~
TO

----- 1(B) SENT

BOY HAS TOY

Before assimilation the rule reads: if someone has a toy, and he
gives it to a boy, then the boy has the toy. After assimilation,
the rule reads: if someone has a blue car, and he gives it to John,
then John has a blue car.

3.3. TRANSFORMATIONS

Both varieties, TRANSFORM and MOVE, consist of a structural
description part (SD) and a structural change part (SC). A
transformation is applicable to any network that its SD
matches (actually, we allow two kinds of variables in the
SD, the one being the X-variable of transformational grammar).

3.3.1 TRANSFORM

Let a SD match network A, producing isomorphism L. Then A
is assimilated into SC using L. And this modified SC is equal
to the result of the transformation.

Example: the passive transformation could be formulated:

23Proceedings of NODALIDA 1979

24

Fig.13 TRANSFORM

SENT,H o

SUBJ

' 1 rTHINGMt
~i rACTION

n r~PERSON'll

SENTv,o

'M V.
fBEro EN, Prj

BY,ry

SENT^q is the structural description, and SENT^^ is the structural
change. If fig.l3 is applied upon fig .14 we get fig .15 5

Fig. 14

SENTj.j'
1 1

Fig. 15

SENT,̂ ,̂
1

SUBJg-̂ 1SUBJî ^ v v .
n

PERSON
1

1 1
ACTION^p THING^j 1 rTHING/-, BE 1 fo

1 1ACTION̂ ÊNj-/ 1---

r

1
PERSON,-,

1
PETERsri

' • 1 BREAK , THE WINDOW, , 4/ fcS
— 1THE WINDOW,^

<V if
BREAK^/ BYT y

1PETER

40 matches 55, and assimilating 55 into 47 gives fig. 15.
Not all transformations can be represented in this way, and therefore

another format is supplied, called MOVE. The SD part is similar to
the SD above, but the SC is different. It consists of orders as

ADD (as) L(eft)S(ister)
PUT (as) R(ight)D(aughter)

The first daughter of an order defines the object to be moved, and
its second daughter defines the destination.

24Proceedings of NODALIDA 1979

25

WH-movement could be represented thus

Fig.16

MOVE

SENT51 PUTLS_J__

NP(0

The node defined by 62 is detached and attached as a left
sister of the node defined by 60, eg:

Fig. 17

SENT

Expansions and transformations work on plans as well as on
sentences; production of sentences and of plans are seen as
essentially similar processes, both involving a grammar containing
expansion rules and transformational rules, cf. B0gh Andersen
(73, 77 and 78). Thus, sentence production is seen as a special
kind of goal-directed behavior, that is; work.

25Proceedings of NODALIDA 1979

26

4. A SIMPLE FANGORN PROGRAM

A FANGORN program is a connected network with an upper bound,
and the input language is simply a description of this network
using parentheses and anaphors. Fig.18 shows a simple FANGORN
program, and fig.19 shows how it is described in the input language.

The program contains a list of expansion rules (RSET) and an
algorithm for using these rules (the subnetwork dominated by DOWN).
The rules are applied on the network dominated by GOAL. Most of
the atoms in the algorithm refer to an implicit pointer C, that is:
RIGHT moves C to its right sister, ISLASTSIS checks whether C is
the last sister, etc.

The algorithm expands the SENT-node under GOAL into a sentence.
Initially, the pointer C points to GOAL. DOWN moves it down to SENT,
and GROW tries to expand the value of C, that is: SENT. If it
succeeds the pointer is moved down to its first daughter, else
we check whether C is the last sister. If not, then C is moved to
the right and the new pointer value is expanded. If C is the last
sister, then we check whether C points to GOAL (ISTOPGOAL). If not,
C is set to its mother(UP) and we check whether C is now the last sister,
If C points to the top goal we have finished, and the sentence is
written on a file called OUTDATA. Then the pointer is moved to the
ACTOR node (TOP) and the whole actor is written on a file named
PAPER. Then the algorithm stops.

The boxed portion of fig.18 shows a sentence generated by the
program.

OUTDATA and PAPER are "channels" connecting the FANGORN program
to the file system. OUTDATA and PAPER belong to different types of
channels: when a network is written on OUTDATA only its leaves (or
terminal nodes) are printed, so OUTDATA is oriented towards accepting
natural language texts. When a network is written on PAPER it is
translated into the input language, so PAPER can be used for storing
and retrieving parts of the FANGORN program.

Fig.18 is very simple and does not generate stories or coherent
texts, but facilities for these tasks are present in the program.
In other programs, EPIC will have daughters representing the
sequence of actions performed by the ACTORs. CAST may contain more
than one actor, acting in a pseudo-parallel way. The algorithm in
fig.18 may be replaced by algorithms for building and executing
plans; in that case, RSET contains means-end rules, and CONT dominates

26Proceedings of NODALIDA 1979

27
O
G

WTJHn

o ■ > cn
1-3

ZO>1-3>

cn►3.O
50Hi

►3W

'Z
1̂ '•m

D

*0H-iQ
•H
00

27Proceedings of NODALIDA 1979

28

Fig.19

(ACT ACTOR ALL B ACKTRAC K B E L I E V E D CAST CURRENT DEEP
D E L E T E DOWN EMBRYO EXCEPT F I R S T L E A F GROW r iASMOTHER
I N S T A N C E I S C O N D I S F I R S T S I S I S L A S T L E A F I S L A 3 T S I S I S L E A F
I S P R O P I S S E O I S T O P G O A L LE FT NEGATE NEXTACTOR NONE READ
REORDER R I G H T S A T I S F Y SET SOME STACK STOP STORY T E R M I N A T E
T E S T T I ME O U T TOP TOPGOAL TRACK TRUE UNS TACK UP WR I T E)

(S T O R Y
E P I C
(C A S T

(ACTOR
(0 ! DOWN

(1 ! GROW
0 ? DOWN
(2 ! I S L A S T S I S

(I S TOP GOA L
(WR I T E

OUTDA TA
(3 ! TOP (W R I T E P APE R STOP S T O P))
3? TOP

)
(UP 2? I S L A S T S I S)

)

))

(R I G H T 1? GROW)
)))
(DATA

(R S E T
(S E N T SUBJ V ADVN OBJ ADV)
(S U B J NP)
(ObJ l OBJ DOBJ)
(OBJ N I L)
(l O B J NP)
(l O B J N I L)
(DOBJ NP)
(NP P E T E R)
(N P HANNE)
(NP HUNDEN)
(N P KATTE N)
(V GAV)
(V BR AG T E)
(ADVN I K K E)
(ADVN N I L)
(ADV I G A A R)
(ADV S I O S T F J UL)
(ADV N I L)

)
(CONT (GOAL F E N T))

))

28Proceedings of NODALIDA 1979

29

a network representing the beliefs and goals of the actor.
The implicit pointer C may be moved into the "algorithmic"

part of the actor, and the actor may thus change himself.
Also, an actor may contain rules for generating new actors;

when they are fully developed, they may be raised from the
goal part into the CAST, and start interacting with the older
actors.

It is possible to simulate the ontogenetic or phylogenetic
development of language by means of a meta grammar that contains
an object grammar in its goal part. The meta grammar generates
part of the object grammar, activates the object grammar, thereby
causing it to produce sentences; control is returned to the meta
grammar,which enlarges or transforms the object grammar, again
the latter is activated, etc., etc. The output will consist of
sentences from encreasingly more complex grammars; the aim is
to write a meta grammar that produces a sequence of object grammars
whose sentences mirrors the development of linguistic skill in
children.

At the time of writing, the FANGORN system is implemented but
not debugged. It contains 47 different atoms, but I plan to add
approximately 10 new atoms, so the final number will be 55-60.

REFERENCES

Peter Bøgh Andersen: Handlinger og symboler. Elementer af handlingens
syntaks (Akademisk Forlag, 1973)

: Sproget på arbejde (GMT, 1977)
: "The syntax of texts and the syntax of actions"

(in: Pragmalinguistics, ed. J.L.Mey, Mouton,1979)
"TALE-SPIN, an Interactive Program that Writes
Stories" (in: 5th Int. Joint Conf. on Art. Int.,
1977, p.91 - 98)
"The nonlinear nature of plans" (in: 4th Int. Joint
Conf. on Art. Int., 1975, p.206 - 214)
The structure for plans and behavior (Elsevier
Computer Science Library, Elsevir, 1977)
"Conceptual Graphs for a Database Interface"
(IBM Journal of Research and Development, July,1976)

J. R. Meehan

Earl D. Sacerdoti

John F . Sowa

29Proceedings of NODALIDA 1979

