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Abstract

Learned dynamic weighting of the condition-
ing signal (attention) has been shown to im-
prove neural language generation in a variety
of settings. The weights applied when generat-
ing a particular output sequence have also been
viewed as providing a potentially explanatory
insight into the internal workings of the gen-
erator. In this paper, we reverse the direction
of this connection and ask whether through
the control of the attention of the model we
can control its output. Specifically, we take a
standard neural image captioning model that
uses attention, and fix the attention to pre-
determined areas in the image. We evaluate
whether the resulting output is more likely to
mention the class of the object in that area than
the normally generated caption. We introduce
three effective methods to control the attention
and find that these are producing expected re-
sults in up to 27.43% of the cases.

1 Introduction

Sequential deep learning language models with an
attention mechanism are able to use not only the
immediately previous inputs, but can involve con-
text by “attending to” select parts of the whole in-
put sequence at each time step. This has first been
shown to be helpful for neural machine transla-
tion, which operates on sequences of words. Here,
deep learning networks with attention are capa-
ble to jointly learn the alignment and translation
of languages (Bahdanau et al., 2014; Luong et al.,
2015).

From the beginning, the dynamics of the atten-
tion while generating output sequences has been
seen as providing insight into the workings of the
models, if only qualitatively. This is in particular
applicable to the interdisciplinary fields of natu-
ral language processing and computer vision like
image captioning. For example, Xu et al. (2015)

Figure 1: A caption generated by an image captioning
model. The attention is pixelated and summed up over
all time steps. In addition, the dog and the bicycle are
framed with the corresponding bounding boxes.

overlay the attention weights over the input image
and show how it shifts while generating the image
caption step by step. We show a variant of this
visualisation type in Figure 1. The implicit argu-
ment at least seems to be that this is informative,
because there is a causal relation between where
the attention is placed and what is being produced,
which has been critically discussed recently (Ser-
rano and Smith, 2019; Jain and Wallace, 2019).

In this paper, we address the question of
whether this assumed connection can be used to
assert additional control over the generation pro-
cess. We train a caption generation model with
spatial attention in the usual way, but then at test
time override its attention mechanism and force
it to attend to pre-determined parts of the image.
Does this cause the generated output to be dif-
ferent from what would otherwise have been pro-
duced, in predictable ways? Our results show that
this expectation is partially supported.
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2 Related Work

There have been several attempts to achieve more
control over neural language generation. Ander-
son et al. (2017) control the output of a captioning
model at test time with an enhanced beam search.
An external system is generating image tags as a
control signal at the decoder level. They show
that adding the additional hints for the genera-
tion process actually improves the performance for
out-of-domain captioning. Although this approach
works, there is no attention effecting mechanism
involved. Zarrieß and Schlangen (2018) evaluate
a “trainable decoding” approach that inserts task-
specific concerns into the decoding process.

Interfering with the attention mechanism after
training, however, has to our knowledge been tried
less often. Cornia et al. (2018) train a captioning
model not only to learn the distribution for im-
ages and sentences, but also for bounding boxes
and noun chunks. In addition, the model has to
learn when to switch between boxes. As a result,
the captioning model is controllable by a bound-
ing box sequence provided as an input to the net-
work at test time. Although this approach has been
shown to work well, here the model is explicitly
designed to be controllable.

In contrast to the previous approaches, we as-
sume that an attention-aware captioning model is
inherently controllable by its spatial attention. In
such a sense, our approach is an inverse of the vi-
sual grounding task. In one of their experiments,
Rohrbach et al. (2016) try to localize phrases
within an image by deriving bounding boxes from
the spatial attention of a specially trained model.
We try to reverse this direction and fix the atten-
tion to manually chosen parts of the image after
training to generate captions about that region.

3 An Attentive Image Captioning Model

We implement a standard neural image captioning
architecture that uses spatial attention, which has
shown to correlate objects within the image with
spatial attention (Xu et al., 2015). As a modifica-
tion, we use the image features of the pooling layer
in the fifth convolutional block like Yang et al.
(2015). This modification lead to higher BLEU
scores for our setup.

The network is trained on the training split of
the MSCOCO dataset for the Captioning Chal-
lenge 2015. This split provides five ground-truth
captions for each of the 82,783 images. The

dataset images are resized to 448x448 pixels not
keeping the aspect ratio. We apply only basic tok-
enization on the captions. Then the captions of the
dataset are prepared to contain only captions that
have a maximal length of 16 words. Furthermore,
the vocabulary is constrained to the 10,000 most
common words and we discard captions that are
containing words not included in this vocabulary.
The caption-image pairs are shuffled randomly be-
fore training. As in the work of Xu et al. (2015),
we apply dropout and use the Adam optimizer to
minimize the loss function

L = −log(P (y|x)) + λ

L∑
i

(1−
C∑
t

αit)
2 (1)

with the alpha-regularizer λ, L as the number
of image features, C as the caption length and
αit as the spatial attention for an image feature
at a specific time-step. The alpha-regularizer λ
constraints the caption generator to distribute the
spatial attention more equally among the image
areas during the whole generation process. Xu
et al. (2015) noted that this regularizer is important
for the resulting overall BLEU score, but they did
not mention the exact value to be chosen. There-
fore we tried 0.001, 0.005, 0.010 and found that
λ = 0.005 produces the best scores.

Our best model achieves 69.8, 51.8, 37.2, 26.6
in BLEU-1,2,3,4, respectively. Thus we were able
to partially increase on the reported scores on the
same validation split. Xu et al. (2015) reported
70.7, 49.2, 34.4, 24.3, so our model is worse by
−0.9 in BLEU-1 scores, but better by +2.6, +2.8,
+2.3 in the other scores.

4 Methods

Assuming that a sufficiently well trained caption-
ing system is capable of talking about a variety
of objects and object configurations, we expect
that the caption generation process is controllable
when forcing the attention to specific parts in the
image. We create a dataset for this specific cap-
tioning task using the MSCOCO validation split
for the Detection Challenge 2015, which provides
one or more bounding boxes for each of the 40,504
images (Lin et al., 2014). The boxes frame distinct
(but possibly overlapping) objects in the images
that are each labelled with one of 80 categories.
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4.1 Constructing Spatial Attention Vectors

The distinct objects in the images are framed with
bounding boxes which are rectangles defined by
their width, height and the xy-coordinates of the
left upper corner. We discard all bounding boxes
that are smaller than the median size, because the
model less likely attends to small objects in the
images. From the remaining boxes we derive the
spatial attention vectors for the experiments.

To construct a spatial attention vector, we define
a matrix Z ∈ ZW×H withW×H as the according
image size and a box coordinate space B ∈ Z2

with each point that falls into the box. Given these
we set the values in the matrix as the following:

αxy =

{
255 if (x, y) ∈ B
0 otherwise

(2)

We use 255 as the attention values to align to
RGB format, so that we can easily present the
maps along with the their images. We resize the
matrix to 14 × 14 using nearest neighbor down-
sampling not keeping the aspect ratio. Finally, the
matrix is flattened to a 196-dimensional vector and
the softmax function is applied, so that

∑
αi = 1

and α ∈ [0, 1] is guaranteed like in the implemen-
tation of Xu et al. (2015). An important detail is
that no value is actually zero. The model is still al-
lowed to include image aspects outside the boxes
for the caption generation. In addition, when using
255 as an initial attention value, we found that we
need to interpolate for each vector the pixels val-
ues following [0, 255]→ [0, 1], because otherwise
the softmax results in too much weight on indi-
vidual spatial areas and leads to qualitative worse
captions e.g. the model is referring to polar bear
for the dog on the ground.

4.2 Forcing the Spatial Attention

The trained image captioning model has to pro-
duce what we call a box caption for each con-
structed attention vector. That is, the spatial at-
tention is derived from the bounding box like in
section 4.1 and applied to the model in one of the
following ways.

(a) Unlimited step-wise fixed attention. For
this experiment, we feed the spatial atten-
tion vector at each time step to the model for
the whole caption generation process. The
model’s own predicted attention is dismissed.

Sensitivity
general (diff) method (diff)

unlimited 88.68 (0.55) 52.65 (0.54)
limited-3 85.23 (0.55) 35.20 (0.55)
limited-6 87.90 (0.56) 46.49 (0.55)
limited-9 88.88 (0.55) 51.81 (0.54)
additive-1 85.51 (0.54) 33.43 (0.51)
additive-2 87.26 (0.54) 41.25 (0.53)
additive-3 85.49 (0.54) 44.29 (0.52)

Table 1: The degree of sensitivity as the percentage of
117,798 box captions which deviate from the control
(method sens.) or self-attending (general sens.) caption
in at least a single word. The differentness for the ac-
cording subset is given in parentheses as WER scores.

(b) Limited step-wise fixed attention. We feed
the spatial attention vector for the first i =
{3, 6, 9} time steps which are empirically
chosen. After the ti time step, the model is
again “free to choose” the spatial attention
depending on its state and the previous word.

(c) Step-wise additive attention. At each time
step, the spatial attention vector is added to
the one predicted by the model. We introduce
a factor to control the weight of the externally
induced attention and divide by the according
term plus 1.

5 Results

For the test image shown in Figure 1, the model
produces the caption “a dog is laying down on the
street” with unlimited fixed attention on the dog,
whereas when forcing the attention on the bicycle:
“a bicycle parked in front of a bicycle”.

Likewise, when forcing the attention on the
bike, the model is producing bike related captions
“a bicycle parked in front of a building” for our
limited step-wise configurations. In contrast to
that, additive attention in this case leads to dog re-
lated captions “a dog is sitting on the sidewalk next
to a bike” for lower weights up to two and bike re-
lated captions “a bicycle parked in front of a build-
ing” for weights higher than two. More examples
can be found in the supplementary material.

5.1 Quantitative Analysis: Sensitivity
The qualitative results show that the model is ca-
pable to react to changes in its spatial attention.
As a measurement for this capability, we suggest
the degree of sensitivity. Here, we quantify how
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Controllable and distinct
k@1 k@5 k@1 k@5

unlimited 28.56 58.17 9.00 21.39
limited-3 26.36 50.84 6.89 15.24
limited-6 27.69 52.75 8.21 17.86
limited-9 27.32 52.94 7.85 18.03
additive-1 25.86 52.89 6.27 17.23
additive-2 26.98 52.28 7.26 16.70
additive-3 27.35 53.83 7.33 18.69

Table 2: The degree of controllability as the percentage
of box captions containing their category in relation to
all 117,798 box captions. The degree for the distinct
share is based on 87,033 (k@1) or 58,407 (k@5) box
captions with before unmentioned categories.

often the resulting box captions deviate from the
normally generated caption for an image. In the
following, we call the normally generated caption
a self-attending caption, because the attention is
“freely chosen” by the model.

As shown in Table 1, the model has the highest
general sensitivity for the limited-9 fixed attention
method where 88.88% of the box captions differ
from the self-attending caption in at least a single
word. We also compute the WER scores for these
subsets and see that on average the box captions
are changed in every second word in comparison
to the self-attending caption.

In addition, we indicate whether the model’s
changes in caption generation are related to spe-
cific attention forcing methods or a method unre-
lated phenomenon. To do so, we let the model
produce a control caption where the fixed spatial
attention has been distributed uniformly over the
whole image. This makes it possible to study the
effect of the individual forcing methods.

The highest degree of method specific sensitiv-
ity is measured for the unlimited fixed attention
method as depicted in Table 1. Here, 52.65% of
the box captions differ to the control caption in at
least one word. This indicates that among the pre-
sented methods, the unlimited spatial fixation is
the most effective attention induction method.

5.2 Quantitative Analysis: Controllability

Finally, we expect that the produced box captions
are referring to objects in the bounding boxes from
which the spatial attention vectors are constructed.
Thus we evaluate the degree of controllability of
our forcing methods by checking that the box cap-

tions include the according box categories (k@1).1

Table 2 shows the highest degree of controlla-
bility for the unlimited configuration, which re-
sults in 28.56% of the cases in a box caption that
includes its according box category. As the set
of COCO categories is rather restrictive, and e.g.
only states “person” where a caption might say
“woman” or “man”, we also check for the five
nearest neighbors in cosine distance of the model’s
learned word embedding space (k@5). Still, the
limited-6 configuration results in the highest score
with 55.58%, in which, for example, the box cap-
tion contains the category name “person” or one of
its neighbors (“man”, “woman”, “guy” or “girl”).

Furthermore, we compute the degree of control-
lability within the more interesting distinct subset.
In cases where the model already refers to objects
within the bounding box, because they include the
main objects of an image, we cannot conclude
whether the forcing methods have a controllable
impact on the resulting captions. Thus, for the dis-
tinct subset we discard bounding boxes from the
evaluation, which have categories attached that are
already included in the standardly produced cap-
tion (nearest neighbors accordingly).

Table 2 shows for the distinct subset that in
9.00% of the cases the resulting caption includes
the box category, when the spatial attention is fo-
cusing on something new (not mentioned before)
in the image using the unlimited fixed attention
method. The unlimited configuration has also the
highest degree with 21.39%, when we also allow
the five nearest neighbors to be included.

6 Discussion and further work

The results show that a caption generation model
with spatial attention is controllable by the pre-
sented forcing methods. The forced model pro-
duces predictable results in up to 28.56% of the
cases. These results provide evidence that the
model is inherently learning to react to changes in
the spatial attention, although the learning task is
a more general one. Therefore these results show
that specific types of attention like spatial attention
might be useful control mechanisms.

The evaluation is difficult, because we use a
general purpose dataset in MSCOCO. For exam-
ple, the most common category in the dataset is

1The defined metric provides a lower boundary on the per-
formance of attention control, since we compare freely gen-
erated captions with a restricted list of classes. We leave a
manual evaluation for future work.
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“person”, which is also the most diverse one. We
tried to tackle this problem by also looking for the
nearest neighbors of the categories and achieved
up to 21.39% matches in the relevant subset.

Future work will include building and using
cleaner and more balanced datasets for the pro-
posed evaluation task. The model’s performance
is expected to improve when trained on a larger
dataset like Visual Genome (Krishna et al., 2016).
We think that modifying the spatial attention of
a standard neural image captioning model intro-
duces an interesting new research direction for
natural language generation, which will allow re-
searchers to handle and understand the complexi-
ties of these models more easily.
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