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Abstract

Building a controllable neural conversation
model (NCM) is an important task. In this
paper, we focus on controlling the responses
of NCMs by using dialogue act labels of re-
sponses as conditions. We introduce an ad-
versarial learning framework for the task of
generating conditional responses with a new
objective to a discriminator, which explicitly
distinguishes sentences by using labels. This
change strongly encourages the generation of
label-conditioned sentences. We compared the
proposed method with some existing meth-
ods for generating conditional responses. The
experimental results show that our proposed
method has higher controllability for dialogue
acts even though it has higher or comparable
naturalness to existing methods.

1 Introduction

A dialogue act is defined as the intention or the
function of an utterance in dialogues. Dialogue act
labels are defined as unique classes to distinguish
between kinds of dialogue acts (Boyer et al., 2010;
Bunt et al., 2012). Some existing studies have ex-
ploited the dialogue act as a component in model-
ing the dialogue strategy of dialogue systems (Me-
guro et al., 2010; Yoshino and Kawahara, 2015;
Shibata et al., 2016; Keizer and Rieser, 2017).

Neural conversation models (NCMs), which
learn a direct mapping between a dialogue history
and a response utterance, are widely researched as
a scalable approach to building non-task oriented
dialogue systems (Vinyals and Le, 2015; Serban
et al., 2016). However, it is difficult to control their
responses on the basis of actual constraints such as
dialogue act classes. Some existing studies have
tackled this problem to control responses from

NCMs by using actual labels; however, these mod-
els still had some limitations (Wen et al., 2015; Li
et al., 2016; Sun et al., 2017; Zhao et al., 2017;
Huang et al., 2018; Zhou et al., 2018). One crucial
issue was that they do not have any explicit train-
ing objectives to guarantee that a generation has a
discriminability for a given condition.

We extend a framework of the generative adver-
sarial network for sequential generation (Yu et al.,
2017) for improving the controllability of NCMs
under the constraint of a given dialogue act con-
dition. We propose an adversarial learning frame-
work that alternatively trains between conditioned
generator and a conditioned discriminator. The
discriminator has a multi-class objective that ex-
plicitly classifies a generated response into an ap-
propriate dialogue act class. This improves the
discriminability of generation.

In this paper, we first describe the task of con-
ditional response generation given a dialogue act
label and its existing approaches (Section 3). Sec-
ond, we introduce an adversarial learning frame-
work and extend its architecture and objective to
fit the problem of conditional generation (Sec-
tion 4). In experiments, we use metrics to evalu-
ate the controllability and naturalness of responses
(Section 5). The experimental results show that
our proposed model achieved the best controllabil-
ity score in both automatic and human subjective
evaluations even if it achieves better or compara-
ble naturalness to existing methods (Section 6).

2 Related Work

Dialogue systems that have dialogue management
modules determine a dialogue act or dialogue state
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of a system response by using statistical meth-
ods such as reinforcement learning (Young et al.,
2010; Meguro et al., 2010; Yoshino and Kawahara,
2015; Keizer and Rieser, 2017). Response gen-
eration modules generate responses according to
these dialogue acts or dialogue states on the ba-
sis of the rules, templates, agendas or other sta-
tistical models (Oh and Rudnicky, 2000; Xu and
Rudnicky, 2000). Recently, neural network based
generation modules have been widely used.

Wen et al. (2015) proposed a conditional
language model (Semantically Conditioned
Long Short-Term Memory; SC-LSTM) for
task-oriented systems, which generates utterances
on the basis of any dialogue acts and frames in
the domain of restaurant navigation dialogue by
using gating mechanism. However, the training
framework of SC-LSTM requires state frames
that express the function and the contents of target
utterances entirely. Thus, it is not realistic to apply
this method to building an open-domain dialogue
system. Zhao et al. (2017) proposed an NCM
based on a variation of the conditional variational
autoencoder (CVAE), which generates responses
that have high diversity in discourse level by
using latent variables as dialogue acts. However,
this model has no mechanism to guarantee for
generating discriminable responses for given
dialogue acts.

There is another research trend in controlling
NCMs with a given condition, such as speaker or
emotion labels (Li et al., 2016; Sun et al., 2017;
Huang et al., 2018; Zhou et al., 2018). These
NCMs are optimized by softmax cross-entropy
loss (SCE-loss), which calculates a loss word-
by-word. However, such existing training objec-
tives do not necessarily guarantee that a gener-
ated response has high discriminability to for a
given class label. In other words, SCE-loss is not
an appropriate objective that explicitly evaluates
whether a generated response reflects the property
of the given class label or not. Therefore, the gen-
erated response will be biased by majority class
labels.

To prevent these problems, we introduce the

Figure 1: Task of response generation conditioned by
dialogue act labels.

framework of the generative adversarial network
(Yu et al., 2017; Li et al., 2017a; Tuan and Lee,
2019). This framework makes it possible to con-
sider the total quality of generated sequences un-
like SCE-loss, which is optimized for each token.
We extend adversarial networks to generate qual-
ified and controlled sentences given a condition,
especially dialogue act labels.

3 Response Generation Conditioned by
Dialogue Act Label

3.1 Task Settings

The task we focus on is building a control-
lable NCM with a given condition, typically dia-
logue act labels. The problem is defined as gen-
erating the ith response word sequence Ri =

{w1, w2, · · · , wT } given a dialogue history M =

{Mi−1,Mi−2, . . . ,Mi−n} and dialogue act label
di. Here, n is the length of a dialogue, and T is
the number of words in an utterance. As shown in
Figure 1, a response Ri is required to satisfy not
only the behavioral characteristic of a given dia-
logue act but also the appropriateness in the dia-
logue context (=history).

One of the simplest approaches to building such
a conditional generation system given a class label
in NCM is adding the class label to the input of
a decoder (Li et al., 2016; Zhao et al., 2017; Sun
et al., 2017). We describe this baseline in the fol-
lowing section.

3.2 Conditional NCM with Dialogue Acts

We introduce a general conditional NCM that is
conditioned by dialogue act labels as a baseline.
We built an NCM on the basis of a hierarchical
encoder-decoder model that explicitly gives labels
to the decoder at any of the steps of decoding as
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Figure 2: Conditional-NCM with dialogue acts.

shown in Figure 2.
Recurrent neural networks (RNNs) such as long

short-term memory (LSTM) are generally used
to model a sequential generation of responses
in NCMs (Hochreiter and Schmidhuber, 1997;
Vinyals and Le, 2015; Serban et al., 2016). The
encoder receives a word at each time step by using
forward RNNs to encode an utterance into a fixed
length vector (utterance encoder). Utterance vec-
tors of a dialogue are input to another fixed length
vector according to their time sequence to encode
the dialogue context (dialogue encoder). The re-
sultant vector is fed into the decoder to generate a
response sentence (word sequence). We used the
same encoder architecture as Tian et al. (2017).

In the decoding steps of the NCMs, the decoder
receives a previous hidden vector ht−1, memory
cell ct−1, and generated word wt−1 to generate a
word wt. Here, t is an actual time-step of genera-
tion. The model has been changed to receive not
only the previous word wt−1 but also the dialogue
act label d in conditional generation. The vector
representations of d and wt are concatenated and
used as the input of the decoder at time-step t.1

The decoder itself also predicts the vector repre-
sentation of words. This architecture is also the
same as those of the models proposed by Zhao
et al. (2017).

Softmax cross-entropy loss (SCE-loss) is
widely used to train the model.

losssce = − log
exp(xc)∑|V|
k exp(xk)

. (1)

1wt and d are converted into vector representation and
then concatenated.

Here, |V| indicates the vocabulary size, x ∈ R|V|

indicates the output of the projection layer in the
decoding steps, and xk ∈ R|V| indicates the kth
element of x. xc is the target word. SCE-loss op-
timizes the prediction of words at each decoding
step. However, it does not use the information of a
given dialogue act label in the loss calculation dur-
ing training. Thus, the resultant model often gen-
erates a response that does not consider a given di-
alogue act label or a biased response by using the
majority dialogue act labels in the training data.
We tackle this problem by introducing an explicit
training objective to generate a conditioned word
sequence in adversarial learning.

4 Conditional Response Generation
Based on Adversarial Learning

We introduce sequential generative adversarial
networks (SeqGANs) (Yu et al., 2017; Li et al.,
2017a; Tuan and Lee, 2019) to improve the con-
trollability and quality of conditional response
generation. SeqGAN is a prospective approach
to preventing the problems caused by SCE-loss
based training because it can evaluate not only the
word prediction of each decoding step but also the
whole quality of a generated sequence. In this
section, we first describe the architecture of Se-
qGAN (Section 4.1) and then propose our exten-
sion of SeqGAN to realize conditional response
generation by using given dialogue act labels (Sec-
tion 4.2).

4.1 SeqGAN for Response Generation

The generation process in SeqGAN is formalized
as a Markov decision process (MDP) and opti-
mized with reinforcement learning (RL) (Li et al.,
2017a; Tuan and Lee, 2019). The problem of re-
sponse generation in NCMs is generating response
word sequence R = {w1, · · · , wT } given a dia-
logue context M . Such a word selection process
in the generation is defined as an action sequence,
which is generated by an actual policy in MDP. In
SeqGAN, the generator generates a sentence ac-
cording to the current policy. The discriminator
gives an evaluation score to the generated sentence
after the generation. The evaluation score is fed as
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a reward to update the policy of the generator in
RL. We use a policy gradient (Williams, 1992) to
train the policy. The objective function and its gra-
dient of the policy gradient are defined as follows2.

J(θ) =
∑
w1:T

Gθ(wt|w1:t−1,M)・Q
Gθ
Dϕ

((w1:t−1,M), wt)

(2)

∇J(θ) ≃ 1

T

T∑
t=1

∑
wt∈V

Q
Gθ
Dϕ

((w1:t−1,M), wt)

· ∇θGθ(wt|w1:t−1,M) (3)

=
1

T

T∑
t=1

Ewt∼Gθ [Q
Gθ
Dϕ

((w1:t−1,M), wt)

· ∇θ log p(wt|w1:t−1,M)] (4)

Here, θ is a parameter of the policy. w1:t−1 in-
dicates a word sequence, V is a vocabulary, and
p is the generative probability of word wt ∈ V .
QGθ

Dϕ
((w1:t−1,M), wt) is an action-value function

that gives an expected future reward when the
system takes the action of generating word wt

given the state: already generated word sequence
w1:t−1 and dialogue context M . ϕ is a parame-
ter of the discriminator. The discriminator only
outputs the reward after the whole generation of
the sequence. Thus, the value of the action-value
function QGθ

Dϕ
((w1:t−1,M), wt) for each step is

calculated by using a Monte Carlo tree search
(MCTS) under the current policy and its param-
eter θ (Browne et al., 2012).

The discriminator is trained to classify a gener-
ated sentence (fake) and sentence in training data
(real). Its training objective is defined as,

min
ϕ

−ER∼pdata(·|M)[logDϕ(R,M)]

−ER∼Gθ(·|M)[log(1−Dϕ(R,M))]. (5)

The generator and the discriminator are trained
alternatively to train their network adversarially.

4.2 SeqGAN for Conditional Response
Generation with Dialogue Acts

The generator and the discriminator in SeqGAN
are extended to produce responses according to
given dialogue acts. The adversarial framework is
extended for jointly optimizing both networks: a
generator network to produce response utterances

2Detailed derivation is shown in (Yu et al., 2017).

under specified dialogue acts, and a discriminator
network to distinguish between generation (fake)
and training data (real) that reflect their conditions.

As the generator network, we applied the
conditional-NCM described in Section 3.2. Equa-
tions (2) - (4) are changed as follows.

J(θ) =
∑
w1:T

Gθ(wt|w1:t−1,M, d) ·QGθ
Dϕ

((w1:t−1,M, d), wt)

(6)

∇J(θ) ≃ 1

T

T∑
t=1

∑
wt∈V

Q
Gθ
Dϕ

((w1:t−1,M, d), wt)

· ∇θGθ(wt|w1:t−1,M, d) (7)

=
1

T

T∑
t=1

Ewt∼Gθ [Q
Gθ
Dϕ

((w1:t−1,M, d), wt)

· ∇θ log p(wt|w1:t−1,M, d)] (8)

As the discriminator network, we incorporated
dialogue act labels in the classification model (Fig-
ure 3). In the discriminator model, the utter-
ance encoder converts dialogue contexts into fixed
length vectors and uses them as features of dis-
crimination. We propose to use two discriminators
for incorporating dialogue act label information
in the discriminator: implicit and explicit. Each
method is described below in respective sections.

4.2.1 Binary Objective;
Implicit-Discriminator

We built a simple extension for the discriminator
that incorporates dialogue acts in the feature vec-
tors of the discriminator. We call this architecture
“implicit.” This discriminator is defined as,

min
ϕ

−ER∼pdata(·|M,d)[logDϕ(R,M, d)]

−ER∼Gθ(·|M,d)[log(1−Dϕ(R,M, d))]. (9)

We expect that the implicit discriminator can
use the information of dialogue acts as a fea-
ture and discriminate generated results as fakes if
they do not follow a given dialogue act (Figure 3,
lower-right). There are some works that have
similar approaches in emotional response gener-
ation (Sun et al., 2018; Kong et al., 2019). How-
ever, this discriminator is still a simple extension
of the standard discriminator, which classifies re-
sponse in two classes. In other words, the objec-
tive is not changed; thus it probably has difficulty
in distinguishing the class (dialogue act label) of
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responses. We propose another discriminator to
solve this problem in the next section.

Figure 3: Implicit & Explicit-Discriminator.

4.2.2 Multi-class Objective;
Explicit-Discriminator

We propose an approach extending the classifica-
tion problem of the discriminator from the binary
classification of fake/real to multi-class classifica-
tion to distinguish target dialogue act classes (Fig-
ure 3 upper-right). This discriminator has a multi-
class objective for N+1 class classification. Here,
N is the number of unique dialogue act classes;
another one is a fake class for categorizing the
responses as generated. We call this architecture
“explicit.” Its objective function is defined as,

min
ϕ

−
N∑
i=1

ER∼pdata(·|M,d)[logDϕ(di|R,M)]

−ER∼Gθ(·|M,d)[logDϕ(dfake|R,M)]. (10)

We used the posterior probability Dϕ(d|R,M) es-
timated by the discriminator as the reward of the
generator. We expect that this discriminator will
encourage training the generator to generate dis-
criminative sentences with dialogue acts because
generations that follow different dialogue act man-
ners are penalized even if they are natural. Odena
(2016) proposed a similar idea to use multi-class
objective in GAN for the image generation task.

4.3 Speeding Up Adversarial Learning Using
Simple Recurrent Unit

Using LSTM or GRU as an encoder and decoder is
a general method for building NCMs (Vinyals and
Le, 2015; Serban et al., 2016). LSTM is also of-
ten used for classification problems to encode a hi-
erarchical structure, such as the discriminators of

GANs (Tran et al., 2017). However, the training
speed of LSTM is much slower than other types
of networks, although LSTM has dominant per-
formance (Lei et al., 2017). This characteristic is
critical for adversarial learning, which requires a
large number of iterations.

We used the policy gradient in this research to
update the parameters of the generator, which is
based on expected reward calculation by MCTS.
However, MCTS requires enormous calculation
costs because it requires scanning the discrimina-
tor and generator r × w times per one update of
generator, where r is the number of rollouts and w

is the number of words in a response each time
step. Thus, we propose to use a simple recur-
rent unit (SRU) (Lei et al., 2018) in our genera-
tor and discriminator. SRU is known as an exten-
sion of RNN, which has comparable performance
to LSTM even if it works at significantly higher
speed. SRU is defined as follows.

ṽt = Wvt (11)
f t = σ(W fvt + bf ) (12)
rt = σ(W rvt + br) (13)
ct = f t ⊙ ct−1 + (1− f t)⊙ ṽt (14)
ht = rt ⊙ g(ct) + (1− rt)⊙ vt (15)

Here, vt is the input vector at time-step t, ft is
the forgetting gate, rt is the input gate, ct is the
memory cell, and ht is the hidden vector. The key
idea of SRU is minimizing the number of vectors
and gates affected by previous states. Under this
definition, only ct is affected by the previous state
ct−1. Furthermore, ct and ht are calculated only
by the element-wise production and summation of
a vector for easy speed up. It was reported that for-
ward and backward propagations in SRU are 10-
16 times faster than LSTM (Lei et al., 2018). SRU
leads to computational advantage compared with
another type of RNNs including GRU as well. We
expect to have a significant improvement in speed-
ing up adversarial learning by using SRU instead
of LSTM. However, applying SRU to NCM has
no track record; thus, we introduce SRU to both
the existing methods and our proposed adversarial
network; however, we also perform a comparison
with another baseline implemented by LSTM.
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5 Experimental Settings

5.1 Dataset

We used the DailyDialog corpus that covers ten
categories from a wide variety of topics (Li et al.,
2017b). The corpus contains 13,118 dialogues,
with a total of 102,979 utterances annotated with
dialogue act labels: inform (46,532 utterances),
questions (29,428 utterances), directives (17,295
utterances) and commissive (9,724 utterances).
We divided the corpus into training/validation/test
sets with 11,118/1,000/1,000 dialogues according
to the work of Li et al. (2017b). In all experiments,
the vocabulary size was set to 25,000, and all the
OOV words were replaced by “UNK” symbol.

5.2 Training Settings

We used the same setting for embedding: words,
256, dialogue acts, 100. The mini-batch size was
32. In the training for conditional-NCM, we set
two-layers RNNs in both the encoder and the de-
coder and used the Adam optimizer with a learn-
ing rate of 1e-5.

In the proposed adversarial learning, we fol-
lowed the training procedure proposed by Li et al.
(2017a). The training algorithm that we used is
shown as follows.

Algorithm 1 Training procedure
1: for number of iterations do

2: G′ ← G

3: for number of G-steps do

4: sample (MG, RG, dG) from training data

5: generate response R̂G by using G′ on (MG, dG)

6: compute reward rRG
for (MG, R̂G, dG) by using D

7: update G on (MG, R̂G, dG) using rRG

8: for number of D-steps do

9: sample (MD, RD, dD) from training data

10: generate response R̂D by using G on (MD, dD)

11: update D using (MD, R̂D, dD) and (MD, RD, dD)

In the training of SeqGAN for conditional re-
sponse generation based on dialogue acts, we pre-
pare well pre-trained conditional generator and a
discriminator in advance. After initializing param-
eters by pre-trained models, G-steps for the gen-
erator G and D-steps for the discriminator D are

applied alternatively to train them. In G-steps, a
generated response R̂G is sampled by using a di-
alogue history MG and dialogue act dG, and then
the reward rR̂G

for the generation is calculated by
the discriminator D. By using the calculated re-
ward rR̂G

, parameters of G are updated. In D-
steps, a real response RD, given a dialogue history
MD and a dialogue act label dD, is sampled from
the training data. A fake response R̂D is generated
from the generator G by using the dialogue history
MD and the dialogue act label dD. Parameters of
the discriminator D is updated by using the real
sample and the fake sample.

We set the number of G-steps to 4 and D-steps
to 20. In the generator, we used two-layers SRUs
in both the encoder and the decoder as 1024 hid-
den units. We used the Adam optimizer with a
learning rate of 1e-5. For the discriminator, we
used a one-layer SRU, 1024 hidden units, and the
SGD optimizer with a learning rate of 1e-3. We
set the number of rollout to 5 in MCTS.

5.3 Automatic Evaluation Metrics

We automatically evaluated generation results by
comparing with references in the test-set. As the
automatic evaluation, we used three different types
of metrics: perplexity, relevance scores, and con-
trollability.

Perplexity is a metric for evaluating a language
model performance. Likelihoods of models for
reference responses are calculated as perplexities.
Note that the perplexity score does not directly re-
flect the quality of generation; dull responses also
have good perplexity scores.

Relevance scores are similarities between refer-
ences and generated results. We used NIST, a vari-
ation of BLEU, which focuses on content words
more than BLEU (Doddington, 2002). How-
ever, using count-based metrics such as BLEU
and NIST are not appropriate, because they have
small correlations with human judgment score in
response generation tasks (Liu et al., 2016). Thus,
we also used three different relevance scores pro-
posed by Liu et al. (2016): embedding aver-
age (“Average”), greedy matching (“Greedy”) and



204

vector extrema (“Extrema”)3. “Average” calcu-
lates a cosine similarity between the reference sen-
tence vector and the generated sentence vector.
Each sentence vector is calculated by an average
of word embedding vectors in the sentence. “Ex-
trema” also calculates a cosine similarity between
sentence vectors; however, the sentence vector is
constructed in a different way. Each dimension
of the sentence vector is selected from the same
dimension of a word embedding vector, which
has the highest absolute value in the sentence.
“Greedy” calculates cosine similarities of word
pairs in the reference and the generated sentence,
which is paired by alignment, and then averages
these similarities.

The last automatic metric we used is “controlla-
bility”, which is given by the classification result
of the pre-trained dialogue act classifier by using
the training set. We connected our encoder for
conditional-NCM (Figure 2 left side) to a multi-
class softmax layer to build the classifier.4 Any
generated sentences are labeled by the classifier
and then compared with the given condition label
to calculate the label accuracy.

5.4 Human Subjective Evaluation Metrics

The automatic evaluation scores still have a prob-
lem in that they do not have high correlations with
human subjective evaluation results (Liu et al.,
2016). Thus, we also evaluated systems with a
human subjective evaluation to confirm the natu-
ralness and controllability of responses.

In the evaluation of naturalness, we used a 3-
point scale score in accordance with the existing
work (Li et al., 2019). Thirty generated responses
were randomly selected from each dialog act (120
in total) and human annotators selected an evalua-
tion for the sample in following instructions.

• 2: The response can be used as a reply and
it is informative and interesting; the response
is natural and can make the conversation con-
tinue.

3We used fastText embeddings trained by wikipedia-
dump data. The size of vectors was 300.

4The accuracy of the classifier in the test-set was 0.8303.

• 1: The response can be used as a reply, but it
is too generic like“ I don’t know.”

• 0: The response cannot be used as a reply to
the given dialogue history. It is either seman-
tically irrelevant or disfluent.

Each sample was evaluated by three annotators,
and the final score was decided by majority voting.
If the evaluation was completely separated (0, 1
and 2), the example was evaluated as 1.

In the controllability evaluation, we requested
one annotator to annotate dialogue acts for gen-
erated responses, who had two years experience in
dialogue act annotation. The annotator was trained
by using training data of DailyDialog corpus be-
fore the evaluation.

6 Experimental Results

6.1 Results of Automatic Evaluation

Table 1 shows the results of the automatic
objective evaluation. We compared our pro-
posed SeqGAN based on explicit-discriminator
(Adversarial-Explicit) with the following base-
lines. “Vanilla-NCM” shows performances of
vanilla LSTM, which has no mechanism to receive
condition labels. These scores indicate a gen-
eral performance of systems in DailyDialog cor-
pus. “Conditional-NCMs” show performances of
NCMs that receives condition labels on its decoder
as proposed by Zhao et al. (2017). We compared
two variations of “Conditional-NCMs”, LSTM
and SRU, to check the performance of SRU com-
pared with LSTM. “Adversarial-Implicit” shows
performances of SeqGAN that has implicit dis-
criminator, which is proposed by Sun et al. (2018)
and Kong et al. (2019). “Adversarial-Explicit” in-
dicates the proposed model that has a multi-class
discriminator on its SeqGAN. The table shows
both results of beam search (width=5) and random
sampling in the decoding process.

6.1.1 Speeding up Using SRU

The comparison between “Conditional-NCM w/
LSTM” and “Conditional-NCM w/ SRU” indi-
cates that the speeding up using SRU works well;
SRU achieves higher relevance scores to LSTM.
SRU used 53,539K parameters, whereas LSTM
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Relevance
Decoding Models Perplexity NIST Average Greedy Extreme Controllability
Beam search Vanilla-NCM w/ LSTM 33.9076 0.0386 0.7603 0.5763 0.5079 　　 -

Conditional-NCM w/ LSTM 33.2739 0.0502 0.7804 0.5980 0.5319 　 0.8651
Conditional-NCM w/ SRU 36.6614 0.0610 0.7850 0.5981 0.5380 　 0.8702
Adversarial-Implicit 39.2864 0.0596 0.7773 0.6041** 0.5417** 　 0.8615
Adversarial-Explicit 39.6993 0.0613 0.7824 0.6034** 0.5401* 　 0.8946**

Sampling Vanilla-NCM w/ LSTM 33.9076 0.0265 0.7746 0.5326 0.4662 　　 -
Conditional-NCM w/ LSTM 33.2739 0.0342 0.7867 0.5540 0.4849 　 0.8015
Conditional-NCM w/ SRU 36.6614 0.0365 0.7917 0.5590 0.4905 　 0.8176
Adversarial-Implicit 39.2864 0.0401** 0.7853 0.5641** 0.5018** 　 0.8081
Adversarial-Explicit 39.6993 0.0411** 0.7907 0.5687** 0.5036** 　 0.8531**

Table 1: Results in automatic evaluation: note that results of random sampling are an average of five decoding
runs, each decoding is initialized with random seed. *: p < 0.05 and **: p < 0.001 indicate results of significance
tests (vs. conditional-NCM w/ SRU).

required 82,924K parameters. These results sup-
port our experiments using SRU instead of LSTM.
We will mainly focus on comparisons of SRU
models in the following sections.

6.1.2 Qualities of Generated Responses

The “Vanilla-NCM w/ LSTM” scores show the
difficulty of conversation modeling in Daily-
Dialog corpus. By comparing these scores
with scores of other conditional generation mod-
els, “Conditional-NCM” and “Adversarial”, con-
ditional generation models improved relevance
scores even if they have controllability. This is
probably because the dialogue act condition can
be a training constrain to prevent dull responses.
Generation methods using adversarial learning im-
proved relevance scores than “Conditional-NCM
w/ SRU”.

6.1.3 Controllability of each Dialogue Act

By comparing “Controllability” scores, the pro-
posed “Adversarial-Explicit” achieved best scores
in both beam-search and sampling decoding. For a
detailed analysis, we show a controllability score
of “Adversarial-Explicit” for each dialogue act la-
bel in Table 2 and Table 3 (beam-search and sam-
pling). Tables show precision, recall and their
harmonic mean (F1) for each dialogue act, and
the improvement from the score of “Conditional-
NCM w/ SRU”, which achieved the best con-
trollability in baselines (improv.). The proposed
“Adversarial-Explicit” achieved improvements for
any classes, but in particular, it achieved large
improvements on “Directives” and “Commissive”

Dialogue acts Prec. Recall F1 (improv.)
Inform (46%) 0.8881 0.9291 0.9081 (+0.0167)
Questions (30%) 0.9693 0.9982 0.9836 (+0.0060)
Directives (16%) 0.9372 0.7164 0.8121 (+0.0971)
Commissive (8%) 0.6285 0.6921 0.6588 (+0.0240)
Weighted avg 0.8980 0.8946 0.8935 (+0.0192)

Table 2: Result for beam search decoding, controlla-
bility of each dialogue act (adversarial-explicit). The
score in round brackets indicates the improvement from
conditional-NCM w/ SRU.

Dialogue acts Prec. Recall F1 (improv.)
Inform (46%) 0.8684 0.8973 0.8826 (+0.0164)
Questions (30%) 0.9243 0.9738 0.9484 (+0.0281)
Directives (16%) 0.7628 0.6652 0.7107 (+0.1152)
Commissive (8%) 0.6338 0.5579 0.5934 (+0.0382)
Weighted avg 0.8477 0.8531 0.8494 (+0.0257)

Table 3: Result for random sampling, controllabil-
ity of each dialogue act (adversarial-explicit). The
score in round brackets indicates the improvement from
conditional-NCM w/ SRU.

tags. Our model generated more discriminative
sentences even if these classes have similar at-
tribute.

6.2 Results of Human-Subjective Evaluation

Table 4 and Table 5 show human evaluation re-
sults for naturalness and controllability, respec-
tively. We used beam search (beam width of 5)
for generating examples to be evaluated. Regard-
ing the naturalness of responses (Table 4), mod-
els used adversarial learning produced a more ac-
ceptable response to the dialogue context. Regard-
ing the controllability of response generation (Ta-
ble 5), the adversarial-explicit model achieved the
best performance among the compared models.

In summary, the proposed model based on
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Models +2 +1 +0
Conditional-NCM w/ SRU 0.06 0.43 0.51
Adversarial-Implicit 0.04 0.53 0.43
Adversarial-Explicit 0.06 0.51 0.42

Table 4: Response quality of each model. This table
show the distribution of scores.

Models Accuracy Weighted-F1
Conditional-NCM w/ SRU 0.7432 0.7583
Adversarial-Implicit 0.7058 0.6810
Adversarial-Explicit 0.7971 0.7868

Table 5: Controllability of response generation. Ta-
ble shows filtered results of contradicted responses.
Weighted-F1 is a weighted average of F1 score of each
dialogue act.

adversarial learning with multi-class objective
achieved the best controllability, the main focus
of this paper, even if it realized a comparable nat-
uralness to existing methods.

7 Conclusion

In this paper, we introduced an extended frame-
work of the generative adversarial network that is
optimized by both conditioned generation and dis-
crimination of dialogue act classes. Experimental
results showed that our conditional response gen-
eration model improved both the response quality
and controllability in neural conversation genera-
tion. In future works, we will examine the possi-
bility of incorporating our adversarial framework
in various generation approaches (Serban et al.,
2017; Shen et al., 2017; Zhou and Wang, 2018)
to build a more generalized conditional response
generation model. We will also focus on different
types of labels to be used as conditions.
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