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Abstract

We investigate the impact of search strategies
in neural dialogue modeling. We first com-
pare two standard search algorithms, greedy
and beam search, as well as our newly pro-
posed iterative beam search which produces a
more diverse set of candidate responses. We
evaluate these strategies in realistic full con-
versations with humans and propose a model-
based Bayesian calibration to address annota-
tor bias. These conversations are analyzed us-
ing two automatic metrics: log-probabilities
assigned by the model and utterance diversity.
Our experiments reveal that better search al-
gorithms lead to higher rated conversations.
However, finding the optimal selection mecha-
nism to choose from a more diverse set of can-
didates is still an open question.

1 Introduction

There are three high-level steps to building a neu-
ral autoregressive sequence model for dialog mod-
eling, inspired by work of Vinyals and Le (2015).
First, decide on a network architecture which will
consume previous utterances as well as any ex-
tra information such as speaker identifiers. Sec-
ond, choose a learning strategy. Finally, decide
on a search algorithm, as neural autoregressive se-
quence models do not admit a tractable, exact ap-
proach for generating the most likely response.

Recent research in neural dialogue modeling
has often focused on the first two aspects. A
number of variants of sequence-to-sequence mod-
els (Sutskever et al., 2014; Cho et al., 2014; Kalch-
brenner and Blunsom, 2013) have been proposed
for dialogue modeling in recent years, includ-
ing hierarchical models (Serban et al., 2016) and
transformers (Mazaré et al., 2018; Yang et al.,
2018). These advances in network architectures
have often been accompanied by advanced learn-
ing algorithms. Serban et al. (2017) introduce la-

tent variables to their earlier hierarchical model
and train it to maximize the variational lower
bound, similar to Zhao et al. (2017) who propose
to build a neural dialogue model as a conditional
variational autoencoder. Xu et al. (2017) and Li
et al. (2017b) train a neural dialogue model as con-
ditional generative adversarial networks (Mirza
and Osindero, 2014). These two learning algo-
rithms, variational lower-bound maximization and
adversarial learning, have been combined into a
single model by Shen et al. (2018), which has been
followed by Gu et al. (2018).

Despite abundant endeavors on modeling and
learning, search has received only a little attention
(Dinan et al., 2019). Most of the work on search
has focused on training an additional neural net-
work that provides a supplementary score to guide
either greedy or beam search. Li et al. (2015) pro-
pose a maximum mutual information criterion for
decoding using a reverse model. This has been ex-
tended by Li et al. (2017a), where an extra neural
network is trained to predict an arbitrary reward
given a partial hypothesis and used during decod-
ing. Similarly, Zemlyanskiy and Sha (2018) train a
neural network that predicts the other participant’s
personality given a partial conversation and use its
predictability as an auxiliary score for re-ranking
a set of candidate responses. None of these ap-
proaches study how the choice of the underlying
search algorithm, rather than its scoring function,
affects the quality of the neural dialogue model.

In this paper, we investigate the effects
of varying search and selection strategies on
the quality of generated dialogue utterances.
We start with an attention-based sequence-to-
sequence model (Bahdanau et al., 2014) trained on
the recently-released PersonaChat dataset (Zhang
et al., 2018). We evaluate three search algorithms:
greedy search, beam search and iterative beam
search, the last of which we design based on ear-
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lier works by Batra et al. (2012). These algorithms
are qualitatively different from each other in the
size of subspace over which they search for the
best response.

We compare all of these alternatives using two
families of metrics. First, we use human eval-
uation of full, multi-turn conversation. The re-
sulting distribution of annotator’s scores has huge
variance that is rarely discussed nor analyzed by
other groups. This variance comes from each an-
notator’s individual attitude towards and under-
standing of the task, which we call annotator bias.
In order to address this bias, we propose model-
based Bayesian calibration that explicitly factors
in each annotator’s bias and the algorithm’s un-
derlying score, and report the posterior mean and
variance of each algorithm’s score. Additionally,
we also compare automatic metrics that capture
the model’s intrinsic preference (log-probability)
and the diversity of responses (distinct-n).

We make two key observations from the ex-
periments. A better search strategy can indeed
generate responses that are both intrinsically pre-
ferred by the underlying model and diverse, with-
out re-designing or re-training the neural dialogue
model. However, this observation does not neces-
sarily carry over to human evaluation, as the best
performing strategy according to these automatic
metrics was not the best strategy according to hu-
man annotators. These results highlight both the
importance of search algorithms as well as the dif-
ficulty in evaluating neural dialogue systems in a
realistic, full conversation setup.

We will make trained models, code and human
evaluation transcripts publicly available. Ran-
domly sampled transcripts for each strategy are
available in 2 additional pages of examples. All
transcripts are given in additional materials and we
encourage everyone to read it.

2 Neural dialogue modeling

Since Vinyals and Le (2015), a neural autore-
gressive sequence model based on sequence-to-
sequence models Sutskever et al. (2014); Cho et al.
(2014) have become one of the most widely stud-
ied approaches to dialogue modeling (see, e.g.,
Serban et al., 2016, 2017; Zhao et al., 2017; Xu
et al., 2017; Li et al., 2016, 2017a,b; Zemlyanskiy
and Sha, 2018; Zhang et al., 2018; Miller et al.,
2017; Shen et al., 2018; Gu et al., 2018). In this ap-
proach, a neural sequence model is used to model

a conditional distribution over responses given a
context which consists of previous utterances by
both itself and a partner in the conversation as well
as any other information about the speaker.

2.1 Neural autoregressive sequence modeling
A neural autoregressive sequence model learns
the conditional distribution over all possible
responses given the context. Each condi-
tional distribution is modelled by a neural net-
work, and popular choices include recurrent neu-
ral networks (Mikolov et al., 2010; Sutskever
et al., 2014; Cho et al., 2014; Bahdanau
et al., 2014), convolutional networks (Dauphin
et al., 2016; Gehring et al., 2017) and self-
attention (Sukhbaatar et al., 2015; Vaswani et al.,
2017). We explore search strategies and fix the
model to a recurrent neural network.

Learning: Maximum Likelihood Each exam-
ple in a training set D consists of auxiliary infor-
mation or context U (such as a persona profile or
external knowledge context) and a sequence of ut-
terances, each of which is marked with a speaker
tag, i.e., C = (U, (Y a

1 , Y
b

1 , . . . , Y
a
L , Y

b
L) ∈ D,

where Y s
l is the utterance from the l-th turn by

a speaker s. The conditional log-probability as-
signed to this example given by a neural sequence
model is then written as

log p(C) =
∑

s∈{a,b}

L∑
l=1

log p(Y s
l |Y s

<l, Y
s̄
≤l, U),

(1)

where s̄ = a if s = b and otherwise s̄ = b.
Learning maximizes the log-probabilities of all

the conversations in the training set:

L =
1

|D|
∑
C∈D

log p(C), (2)

often done using stochastic gradient descent with
backpropagation (Rumelhart et al., 1985).

2.2 Inference (generation)
In this paper, we generate a response to the cur-
rent state of the conversation (but do not attempt
to plan ahead to future exchanges), maximizing

p(Y |Y s
<l, Y

s̄
<l, U) =

T∏
t=1

log p(yt|y<t, Y
s
<l, Y

s̄
<l, U).

Unfortunately, it is intractable to solve this prob-
lem due to the exponentially-growing space of all
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possible responses w.r.t. the maximum length T .
It is thus necessary to resort to approximate search
algorithms.

Greedy search Greedy search has been the
search algorithm of choice among the recent pa-
pers on neural dialogue modeling (Gu et al., 2018;
Zhao et al., 2017; Xu et al., 2017; Weston et al.,
2018; Zhang et al., 2018). It moves from left to
right selecting one token at a time, simply choos-
ing the most likely token at the current time step:

ŷt = arg max
v∈V

log p(yt = v|ŷ<t, Y
s
<l, Y

s̄
<l, U).

Greedy search has been found significantly sub-
optimal within the field of machine translation
(see, e.g., Table 1 in Chen et al., 2018), where sim-
ilar neural sequence models are frequently used.

Beam search Instead of maintaining a single hy-
pothesis at a time, as in greedy search above, at
time step t beam search maintains a set of K hy-
pothesesHt:

Ht = {(y1
1, . . . , y

1
t ), . . . , (yK1 , . . . , y

K
t )}. (3)

Each hypothesis hi
yit
, i ∈ {1, . . . ,K} from Ht is

expanded with all possible next tokens v from the
vocabulary V to form candidate hypotheses. Each
candidate is in the form of

h̃iv = hiyt‖(v) = (yi1, . . . , y
i
t, v), (4)

and is assigned a score:

s(h̃iv) = s(hiyit
) + log p(v|yi≤t). (5)

The new hypothesis set of K hypotheses is then
constructed as

Ht+1 = arg-top-k
i,v

s(h̃iv). (6)

From the new hypothesis set, we find and copy
finalized hypotheses (sequences ending with the
special token 〈eos〉 for “end of sequence”) to a
candidate sequence setMt. That is,

Mt =
{
hiv ∈ Ht+1|v = 〈eos〉

}
.

Beam search terminates when | ∪tt′=1 Mt| ≥
K ′, where K ′ is the maximum number of candi-
date sequences to be returned, or when t ≥ Lmax,
where Lmax is the maximum length allowed for
each candidate sequence. When terminated, beam

search returns all the candidate sequences inM =
∪tt′=1Mt.

One can increase the size of the subspace
over which beam search searches for a response
and size of M by changing hyper-parameters
K,K ′, Lmax. However, beam search is known to
suffer from the problem that most of the hypothe-
ses discovered in M are near each other in the
response space (Li et al., 2016, 2015). For tasks
such as dialogue modeling, which are much more
open-ended than e.g. machine translation, this is
particularly troublesome as many high quality re-
sponses may be missing in the beam.

Final sequence selection We consider search
strategies to produce a set of candidate responses
for the model to choose from. While greedy search
provides only a single possible sequence, beam
search generates a candidate set of size |M|. It
is usual practice to use the score s(h) used dur-
ing the search to select the final sequence, but it is
an open question whether there are better selection
strategies for choosing between these final candi-
date responses.

Avoiding repeating n-grams Although this has
not been reported in a formal publication in the
context of neural dialogue modeling to our knowl-
edge, Paulus et al. (2017) and Klein et al. (2017)
implement so-called n-gram blocking. In n-gram
blocking, a hypothesis in a beam Ht is discarded
if there is an n-gram that appears more than once
within it.

3 Uncovering hidden responses

We now propose an improved search strategy. To
address the locality issue in beam search, we pro-
pose an iterative beam search to radically increase
the size of search space without introducing much
computational overhead, inspired by earlier work
on diverse beam search (Vijayakumar et al., 2018;
Batra et al., 2012; Li et al., 2016).

3.1 Iterative beam search

The search space over which beam search has op-
erated can be characterized by the union of all par-
tial hypothesis sets Ht in Eq. (3): S0 = ∪Tt=1Ht,
where we use the subscript 0 to indicate that beam
search has been done without any other constraint.
Re-running beam search with an increased beam
widthK would result in the search space that over-
laps significantly with S0, and would not give us
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much of a benefit with respect to the increase in
computation.

Instead, we keep the beam size K con-
stant but run multiple iterations of beam search
while ensuring that any previously explored space
S̄<l = ∪l−1

l′=0Sl′ is not included in a subsequent it-
eration of beam search. This is done by setting
the score of each candidate hypothesis s(h̃it+1) in
Eq. (5) to negative infinity, when this candidate is
included in S̄<l. We relax this inclusion criterion
by using a non-binary dissimilarity metric, and say
that the candidate is included in S̄<l, if

min
h∈S̄<l

∆(h̃it+1, h) < ε, (7)

where ∆ is a string dissimilarity measure, such as
Hamming distance used in this work, and ε is a
similarity threshold.

This procedure ensures that a new partial hy-
pothesis set of beam search in the l-th iteration
minimally overlaps with any part of the search
space explored earlier during the first l − 1 iter-
ations of beam search. By running this iteration
multiple times, we end up with a set of top hy-
potheses from each iteration of beam search, from
which the best one is selected according to for in-
stance the log-probability assigned by the model.
We build a final candidate set M as a set of all
these best hypotheses from beam search iterations.

Practical implementation A major issue with
iterative beam search in its naive form is that it re-
quires running beam search multiple times, when
even a single run of beam search can be pro-
hibitively slow in an interactive environment, such
as in dialogue generation. We address this compu-
tational issue by performing these many iterations
of beam search in parallel simultaneously. At each
time step in the search, we create sets of candi-
date hypotheses for all iterations in parallel, and
go through these candidate sets in sequence from
the (l = 0)-th iteration down to the last iteration,
while eliminating those candidates that satisfy the
criterion in Eq. (7). We justify this parallelized ap-
proach by defining the similarity measure ∆ to be
always larger than the threshold ε when the previ-
ous hypothesis h is longer than h̃it+1 in Eq. (7).

4 Dialogue evaluation

Broadly there are two ways to evaluate a neu-
ral dialogue model. The first approach is to use

a set of (often human generated) reference re-
sponses and compare a single generated response
against them (Serban et al., 2015; Liu et al.,
2016). There are several methods for this com-
parison: (1) measure the perplexity of reference
responses using the neural dialogue model, (2)
compute a string match-based metric of a gener-
ated response against reference responses, and (3)
use human annotators to compare model gener-
ated responses against reference or other models’
responses. None of these approaches capture the
effectiveness of a neural sequence model in con-
ducting a full conversation, because the model re-
sponses are computed given a human-written con-
text, i.e., it does not see its own responses in the
dialogue history, but gold responses only.

We concentrate on a second approach for eval-
uation where a neural dialogue model has a multi-
turn conversation with a human partner (or anno-
tator) (Zhang et al., 2018; Zemlyanskiy and Sha,
2018; Weston et al., 2018; Dinan et al., 2019).
Unlike other approaches, it requires active human
interaction, as a conversation almost always devi-
ates from a previously collected data even with the
same auxiliary information (U in Eq. (1)). This
evaluation strategy reflects both how well a neural
dialogue model generates a response given a cor-
rect context as well as how well it adapts to a dy-
namic conversation—the latter was not measured
by the first strategy, where the model only had to
generate a single response.

4.1 Human evaluation of a full conversation

An annotator is asked to make a conversation with
a randomly selected model (search strategy) for at
least five turns. At the end of the conversation, we
ask the annotator three sets of questions:

1. Overall score ({1, 2, 3, 4})
2. Marking of each good utterance-pair ({0, 1})
3. Marking of each bad utterance-pair ({0, 1})

The first overall score allows us to draw a con-
clusion on which algorithm makes a better con-
versation overall. We use a 4 point scale in or-
der to avoid having a “catch-all” category in the
answer (Dalal et al., 2014). The latter two ques-
tions are collected to investigate the relationship
between the overall impression and the quality of
each utterance-pair.
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Figure 1: Graphical model used for Bayesian Calibra-
tion. M annotators participated such that in total N
observed scores are presented.

4.2 Bayesian calibration

Although human evaluation is desirable, raw
scores collected by annotators are difficult to use
directly due to the annotator bias. Some are more
generous while others are quite harsh, as recently
reported in Zhang et al. (2018); Zemlyanskiy and
Sha (2018). We propose using Bayesian inference
as a framework to account for the bias of each an-
notator, and describe two instances of this frame-
work below.

1-4 star rating of a conversation We treat both
the unobserved score Mi of each model, in our
case each search algorithm, and the unobserved
bias Bj of each annotator as latent variables. The
score of the i-th model follows the following dis-
tribution: µi ∼ U(1, 4) and Mi ∼ N (µi, 1

2),
where U and N are uniform and normal distribu-
tions. It states that a priori each model is likely
to be uniformly good or bad. The annotator bias
Bj follows Bj ∼ N (0, 12), where we are assum-
ing that each annotator does not have any bias a
priori.

Given the model score Mi and annotator bias
Bj , the conditional distribution over an observed
score Sij given by the j-th annotator to the i-th
model is then:

Sij ∼ N (Mi +Bj , 1
2).

Due to the nature of human evaluation, only a few
of Sij’s are observed. Figure 1 shows the graphical
model described above.

The goal of inference in this case is to infer the

posterior mean and the variance:

E[Mi| {Sij |Sij ∈ O}], (8)

V[Mi| {Sij |Sij ∈ O}],

where O is a set of observed scores.

Binary rating of an utterance When an annota-
tor labels pairs of utterances from the conversation
with a binary score {0, 1} (such as whether that
pair was a “good” exchange), we need to further
take into account the turn bias Tk: Tk ∼ N (0, 12).
As we will use a Bernoulli distribution for each
observed score rather than a 1-4 rating, we mod-
ify the prior of the model scores accordingly:
Mi ∼ N (0, 12).

The distribution of an observed utterance-pair
score is then Sijk ∼ B(sigmoid(Mi +Bj + Tk)),
where B is a Bernoulli distribution. The goal of
inference is then to compute

EMi|{Sijk|Sijk∈O} [sigmoid(Mi)] , (9)

VMi|{Sijk|Sijk∈O} [sigmoid(Mi)] ,

which estimate the average number of positively
labelled utterance-pairs given the i-th model and
the uncertainty in this estimate, respectively.

Inference We use no-u-turn (NUTS) sam-
pler (Hoffman and Gelman, 2014) for posterior in-
ference in Pyro (Bingham et al., 2018).

5 Experiment Settings

5.1 Data: Persona-Chat

We use Persona-Chat, released recently by Zhang
et al. (2018) and the main dataset for the Con-
versational Intelligence Challenge 2 (ConvAI2),1

to train a neural dialogue model. The dataset
contains dialogues between pairs of speakers ran-
domly assigned personas from a set of 1,155, each
consisting of 4-5 lines of description about the part
they should play, e.g. “I have two dogs” or “I
like taking trips to Mexico”. The training set con-
sists of 9,907 such dialogues where pairs of part-
ners play their roles, and a validation set of 1,000
dialogues. The ConvAI2 test set has not been re-
leased. Each dialogue is tokenized into words, re-
sulting in a vocabulary of 19,262 unique tokens.
See Zhang et al. (2018) for more details.

1 http://convai.io/

http://convai.io/
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5.2 Neural dialogue modeling

Model We closely follow Bahdanau et al. (2014)
in building an attention-based neural autoregres-
sive sequence model. The encoder has two bidi-
rectional layers of 512 LSTM (Hochreiter and
Schmidhuber, 1997) units each direction-layer,
and the decoder has two layers of 512 LSTM units
each. We use global general attention as described
by Luong et al. (2015). We use the same word
embedding matrix for both the encoder and de-
coder, which is initialized from 300-dimensional
pretrained GloVe vectors (Pennington et al., 2014)
for the 97% of the vocabulary which overlaps with
GloVe. We allow word embedding weights to be
updated during the training.

Learning We use Adam (Kingma and Ba, 2014)
with the initial learning rate set to 0.001. We
apply dropout (Srivastava et al., 2014) between
the LSTM layers with the dropout rate of 0.5 to
prevent overfitting. We train the neural dialogue
model until it early-stops on the validation set.2

The perplexity of trained model on the Con-
vAI2 validation set is 24.84, which is competitive
compared to the other entries on the competition’s
leaderboard.3 Our model serves well as an under-
lying system for investigating the effect of search
algorithms.

5.3 Search Strategies

We test three search strategies; greedy and beam
search from §2.2, and iterative beam search (iter-
beam) from §3.1.

Beam search (beam) uses beam sizeK = 5 and
K ′ = 15. This decision is based on preliminary
experiments where we found that smaller beam
sizes work better than larger ones do. We use the
length penalty, described by Wu et al. (2016) and
n-gram blocking from §2.2.

Iterative beam search (iter-beam) uses 15 itera-
tions of beam search with beam size 5 resulting in
a candidate set of size 15. We use the same length
penalty and n-gram blocking as in beam search
(beam). Given the hyper-parameters above both
beam and iter-beam produce 15 candidates and
selects the final response based on log-probability.

2 When the validation loss does not improve for twelve
epochs, we early-stop.

3 https://github.com/DeepPavlov/convai/
blob/master/leaderboards.md
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Figure 2: The distribution of averaged overall scores
given by annotators to greedy search (greedy). Each
row plots scores given by a single annotator over mul-
tiple conversations. Counts show how many dialogues
each annotator performed.

5.4 Evaluation

Human evaluation We use ParlAI (Miller et al.,
2017) which provides seamless integration with
Amazon Mechanical Turk (MTurk) for human
evaluation. A human annotator is paired with a
model with a specific search strategy, and both
are randomly assigned personas out of a set of
1,155, and are asked to make a conversation of at
least either five or six turns (randomly decided).
We allow each annotator to participate in at most
six conversations per search strategy and collect
approximately 50 conversations per search strat-
egy and additional human-human test.4 Each con-
versation is given a single overall score and two
sequences of binary utterance pairs flags, as de-
scribed in §4.1.

Bayesian calibration In order to remove anno-
tator bias, or inter-annotator variability, we use
Bayesian calibration from §4.2. We take 50 warm-
up steps and collect 150 samples using NUTS
sampler for inferring the posterior mean and vari-
ance of the model score in Eq. (8). We use
30 warm-up steps and 100 samples for inferring
the mean and variance of the average portion of
positively or negatively labelled utterance-pairs in
Eq. (9).5

Automatic metrics In addition to human evalu-
ation, we compute automatic metrics to quantita-
tively characterize each search algorithm. First,
we report the log-probability of a generated re-
sponse assigned by the model which is a direct

4 Some conversations were dropped due to technical er-
rors, resulting in total 50, 51, 49 and 53 conversations for
greedy, beam, iter-beam and humans, respectively.

5Variances of inferred posterior distribution and original
data distribution are not comparable, as the former reflects
the uncertainty in posterior inference rather than the spread
of scores.

https://github.com/DeepPavlov/convai/blob/master/leaderboards.md
https://github.com/DeepPavlov/convai/blob/master/leaderboards.md
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Search log-p↑ Overall Score (1-4)↑ % Good Pairs↑ % Bad Pairs↓
strategy Raw Calibrated Raw Calibrated Raw Calibrated

greedy -9.66±2.73 2.56±0.98 2.30±0.24 0.45 0.28±0.07 0.38 0.54±0.07
beam -7.26±2.28 2.67±0.86 2.70±0.27 0.58 0.44±0.08 0.35 0.27±0.01

iter-beam -5.95±1.35 2.80±0.90 2.67±0.23 0.58 0.45±0.08 0.31 0.32±0.03

human -42.95±18.87 3.62±0.71 3.37±0.22 0.76 0.76±0.06 0.07 0.04±0.003

Table 1: The average log-probabilities and model scores (average±standard deviation) assigned to the responses
during human evaluation. Better search algorithms find responses with higher log-probabilities according to the
model. Without observing standard deviations and calibrated scores one can make erroneous conclusions.

indicator of the quality of a search algorithm. Sec-
ond, we compute the average number of unique n-
grams generated per conversation normalized by
the number of generated tokens in the conversa-
tion, called distinct-n from (Li et al., 2015), with
n = 1, 2, 3.

We compute distinct-n in two different settings.
First, we compute distinct-n over the candidate
set M given by the search algorithm. Second,
we compute distinct-n over the final selected re-
sponses for each search strategy. The former
shows diversity within the possible response can-
didates, while the latter shows diversity among the
actual selected dialogue outputs.

6 Result

6.1 Human Evaluation

Annotator bias In Fig. 2, we plot the averaged
scores provided by the human annotators for one
search strategy (greedy), where each row corre-
sponds to each annotator. Consider the three an-
notators with id 3, 4, 10. Their means are clearly
separated from each other, which points to the ex-
istence of annotator bias. This observation sup-
ports the necessity of the Bayesian calibration de-
scribed in §4.2.

Human evaluation In Table 1, we present the
scores from human evaluation. In total 41 unique
annotator participated within 201 collected con-
versations. We make a major observation which
is that greedy search (greedy), which has been
the search algorithm of choice in neural dialogue
modeling, significantly lags behind the variants
of beam search (beam, iter-beam) in all metrics.
This stark difference is worth our attention, as this
difference is solely due to the choice of a search
algorithm and is not the result of different network
architectures nor learning algorithms. In fact, this
cannot even be attributed to different parameter
initialization, as we use only one trained model for

all of these results.
The model scores assigned to human conversa-

tions (humans) are far superior to all search strate-
gies. It is clear with both overall score and ut-
terance pairs proportion scores. This tells us that
there are many open questions how to improve
neural dialogue models.

6.2 Automatic Metrics
Search quality: log probability (log-p) Better
search algorithms find responses with higher log-
probability according to the model, as shown in
Table 1. This is a natural consequence from ex-
ploring a larger subset of the search space.

A notable observation from Table 1 is that
the neural sequence model assigns very low log-
probabilities to human response. This implies that
there is a limit to improving this specific neural di-
alogue model by using a better search algorithm
and instead there is more room to improve the
models and learning algorithms to place a high
probability on human responses. It is necessary to
test the proposed search strategies with new mod-
els and we leave this for the future.

Diversity: distinct-n The diversity metric is
measured before (pre) and after (post) selecting
the final response from the candidate set M for
both beam search and iter-beam search. Since
greedy and humans produce only single response,
we compute the diversity metric only using those
final responses for both greedy search and hu-
mans. In both pre and post settings, the normal-
ization is done per each conversation.

As well as in human evaluation, greedy has
lower diversity compared to all the other strate-
gies as shown in Table 2. We see large gap in
pre-selection distinct-n for all n between beam
and iter-beam while the difference is small in
post-selection distinct-n. In other words, while
providing more diverse set of candidates, the fi-
nal selected output response with iter-beam is not
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distinct-n ↑
Search n = 1 n = 2 n = 3
strategy post pre post pre post pre

greedy 0.47 - 0.61 - 0.62 -
beam 0.56 0.06 0.69 0.12 0.63 0.18

iter-beam 0.59 0.18 0.68 0.41 0.60 0.58

human 0.66 - 0.85 - 0.82 -

Table 2: Measuring the diversity of different search and selection strategies. Both beam and iter-beam produce up
to 15 hypotheses each. Column post is distinct-n measured over the final selected output responses given by the
model and allows us to compare the diversity of the best responses each search procedure produces. Column pre
is distinct-n measured over the candidate set M given by the search algorithm and allows us compare diversity
generated within the search.

Beam search Iterative beam search

do you have any pets ? that ’ s cool , what do you like to eat ?
what is your favorite animal ? do you have a favorite color ? mine is pink .
i like to talk about strangers . what do you like to eat ?
do you like animals ? i don ’ t like fish , but my favorite color is pink .
do you like animals ? i want to live at the beach . what color is your hair ?
do you like animals ? i ’ ve a pet . that does sound good , i like to go alone .
do you like animals ? i want to live on the beach . i would love to eat fish .
do you like animals ? i want to live at the beach that makes sense , do you have any hobbies ?
do you like animals ? i ’ ve a monkey . i hear you , my favorite color is pink .
do you like animals ? i want to be a monkey . i want to be a yoga instructor .
do you like animals ? i want to live at the beach , but love it . i did not eat meat , but my favorite color is pink .
do you like animals ? i want to live at the beach , but love monkeys . what are your favorite foods ? mine is pink .
do you like animals ? i want to live at the beach , but they are my favorite . what does your favorite color ? mine is pink .
do you like animals ? i want to live at the beach , but have a monkey . what type of food do you like ?
do you like animals ? i want to live at the beach , but they are my favorite i spend a lot of time alone .

Table 3: beam and iter-beam candidate setsM. These are from one turn of one randomly selected conversation
from human evaluation. iter-beam produces more diverse responses.

particularly diverse. This agrees well with hu-
man evaluation, where both iter-beam and beam
model scores were indistinguishable, as annota-
tors could only see the final response after select-
ing from the candidate set. Table 3 shows pre-
selection candidate sets for both beam search and
iterative beam search.

Finally, we observe a significant gap between
the best search strategy and humans in these diver-
sity metrics. Together with the gap we observed in
human evaluation scores, we suspect that the lack
of diversity in the output responses is a major fac-
tor behind the low performance of the tested neural
dialogue model in the human evaluation.

7 Conclusion and Discussion

We have performed realistic human evaluation of
the neural dialogue model to validate the impor-
tance of exploring better search strategies. We ob-
served that careful design of human evaluation is
necessary to properly evaluate the ability of the
neural dialogue model to conduct a conversation
with a human. The proposed Bayesian calibration
of model scores helps to account the annotator bias
observed in human evaluation.

Extensive analysis reveals that greedy search,
which has been the inference algorithm of choice
in neural dialogue modeling, significantly lags be-
hind more sophisticated search strategies such as
beam search and iterative beam search.

We have proposed the iterative beam search
which produces more diverse set of candidate
responses w.r.t. pre-selection distinct-n metric.
Post-selection final responses with iterative beam
search have higher log-probability compared to
other search strategies. In spite of this, there is
only a marginal difference between iterative beam
search and beam search w.r.t. scores from human
evaluation and post-selection distinct-n. This sug-
gests that final response selection strategy is as im-
portant as the search strategy being used and can
be a major factor in the inference pipeline of the
neural dialogue model. We leave improving this
strategy to future work.

Finally, the model assigns lower probability to
reference responses, which implies suboptimality
in the current neural dialogue model . It is neces-
sary in the future to test the proposed search strate-
gies with new models.



84

Acknowledgments

KC is partly supported by Samsung Advanced
Institute of Technology (Next Generation Deep
Learning: from Pattern Recognition to AI) and
Samsung Electronics (Improving Deep Learning
using Latent Structure).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Dhruv Batra, Payman Yadollahpour, Abner Guzman-
Rivera, and Gregory Shakhnarovich. 2012. Diverse
m-best solutions in markov random fields. In Euro-
pean Conference on Computer Vision, pages 1–16.
Springer.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak,
Fritz Obermeyer, Neeraj Pradhan, Theofanis Kar-
aletsos, Rohit Singh, Paul Szerlip, Paul Horsfall,
and Noah D. Goodman. 2018. Pyro: Deep Uni-
versal Probabilistic Programming. arXiv preprint
arXiv:1810.09538.

Yun Chen, Victor OK Li, Kyunghyun Cho, and
Samuel R Bowman. 2018. A stable and effec-
tive learning strategy for trainable greedy decoding.
arXiv preprint arXiv:1804.07915.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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A Selected dialogue transcripts from the
evaluation

We publish dialogue transcripts from human eval-
uation for reader’s analysis. We randomly select
a transcript per each search strategy. Formatted
representations are printed in tables from Table 4
to Table 6. The second row refers to person-
alized context from PersonaChat dataset (Zhang
et al., 2018). The third row prints the whole di-
alogue where each turn is bounded with a box.
Left column named Annotator contains re-
sponses written by the annotator. Middle column
prints positional ordering of turns. Right column
named Model contains responses generated by
the model. The caption contains the search type
and the score given by the annotator. We have pre-
pared all evaluation scripts for reader in additional
materials and we encourage everyone to read it.
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Annotator Model

i lay awake at night so i can watch the stars.

Pe
rs

on
a i like to hike and spend time outdoors.

i m often late for class. i am close to my mother , but not to my father.
i wish i was taller so i could reach the cookie jar. my favorite thing to eat is a burrito.
i want a porsche.
i cuddle up with my dog every night.

Hello how are you? 0 I ’ m doing well, how are you?

I’m great! Waiting for dark so I can look at the stars! 1 that is cool, I love the outdoors, I love to hike.

My dog and I love hiking, and cuddling! 2 I love hiking, I love hiking, I love hiking.

that’s awesome! I drive to the traiils in my porsche. 3 I have a mustang, I ’ ve a mustang, it is a nice car.

That’s really cool! I love sports cars. 4 I like to go hiking, I love to eat burritos.

Table 4: Search strategy: greedy. Annotator score: 3

Annotator Model

my father died when i was 2.
Pe

rs
on

a i believe in aliens.

i have blue eyes. to free my mind from feeling depressed
i look up at the stars at night.

i love fishing. i cannot choose between lollipops and rainbows.
my favorite season is spring. i would love to be a professional eater and not get fat.

i hate cleaning up after my husband and children.

Hey there, how are you? 0 I ’ m good. how are you?

pretty good. I’m planning my next fishing trip! 1 that sounds fun. I ’ m going to be a professional eater

that sounds amazing! I would love that. 2 do you have any hobbies?

I really like going fishing, especially in the spring time. 3 I like to stay at night with my husband and kids

That is nice! I wish I had a family, my dad died
when I was really little. 4 I ’ m sorry to hear that

Table 5: Search strategy: beam. Annotator score: 4

Annotator Model

i eat tuna fish salad at least every day.

Pe
rs

on
a i am a yoga instructor.

my favorite music is two steps from hell and rock opera genre. i married my highschool sweetheart.
i have sandy brown hair and green eyes. pink is my favorite color.
i can t get enough gummy worms to satisfy my sweet tooth. i enjoy being alone.
i read sci fi space adventures with a passion.

hello there friend! 0 hello, how are you?

I’m great. how are you? 1 I ’ m doing well, thank you.

What’s your favorite food? 2 I love pizza, what about you?

tuna fish salad is my favorite. i eat it every day. 3 do you have a favorite color? mine is pink.

I like all of the colors, but my eyes are green. do you have any hobbies? 4 I like to go alone.

ah, I enjoy reading sci-fi. that’s something you do alone. 5 do you have any hobbies?

reading. I also really like rock operas. 6 what is your favorite genre?

rock opera. but my favorite band is two steps from hell. what about you? 7 I like all kinds of music.

is there any food you can’t get enough of? 8 I do not have a lot of free time.

ah, sorry to hear that. It was nice chatting with you, though! 9 it was nice talking to you too!

Table 6: Search strategy: iter-beam. Annotator score: 3


