
The OPUS Resource Repository: An Open Package for Creating Parallel
Corpora and Machine Translation Services

Mikko Aulamo, Jörg Tiedemann
Department of Digital Humanities / HELDIG

University of Helsinki, Finland
{name.surname}@helsinki.fi

Abstract
This paper presents a flexible and pow-
erful system for creating parallel corpora
and for running neural machine translation
services. Our package provides a scalable
data repository backend that offers trans-
parent data pre-processing pipelines and
automatic alignment procedures that fa-
cilitate the compilation of extensive par-
allel data sets from a variety of sources.
Moreover, we develop a web-based inter-
face that constitutes an intuitive frontend
for end-users of the platform. The whole
system can easily be distributed over vir-
tual machines and implements a sophisti-
cated permission system with secure con-
nections and a flexible database for stor-
ing arbitrary metadata. Furthermore, we
also provide an interface for neural ma-
chine translation that can run as a service
on virtual machines, which also incorpo-
rates a connection to the data repository
software.

1 Introduction

Parallel corpora are tremendously useful for a va-
riety of tasks. Their natural home is the devel-
opment of machine translation (MT) where data-
driven approaches such as neural MT are data-
hungry and still most language pairs and tex-
tual domains are under-resourced. Besides MT,
there is also plenty of other work that exploits
parallel corpora for, e.g., annotation projection
(Tiedemann and Agić, 2016), representation learn-
ing (Artetxe and Schwenk, 2018), word sense
disambiguation (Lefever, 2012), discovery of id-
iomatic expressions (Villada Moirón and Tiede-
mann, 2006) and automatic paraphrase detection
(Sjöblom et al., 2018). Finally, we should not
forget translation studies (Doval and Sánchez Ni-
eto, 2019) and computer-aided language learning

(Frankenberg-Garcia, 2005) as additional applica-
tion areas.

We have a long tradition in collecting and pro-
viding parallel corpora for the public use. OPUS1

has become the major hub for such data sets and
we are now in the process of developing software
that makes it easier for external collaborators to
contribute to the collection. For this purpose, we
have created the OPUS resource repository toolkit
that we introduce in this paper. The purpose of
this software package is to implement a scalable
data processing pipeline that can be accessed via
intuitive interfaces and powerful and secure APIs.

Figure 1 illustrates the overall architecture of
the repository software. The package is divided
into a distributed backend that combines stor-
age servers, metadata databases, a cluster of pre-
processing nodes, and a frontend that provides the
interface to the backend via secure HTTPS con-
nections. More details about both parts will be
given further down.

Finally, we also implement a translation tool
that connects to the repository software. The main
purpose of that tool is to serve translation engines
that can be trained on parallel data from the repos-
itory or other sources via a clean web-interface
with options for donating data to the project. More
details are given in section 3.2.

The software itself is available as open source
from github2 and we provide a public instance
of the toolkit from http://opus-repository.

ling.helsinki.fi/. The implementation of the
online translator is also available3 and currently
we run an instance for the translation between
Scandinavian languages (Swedish, Danish, Nor-
wegian) and Finnish.4

1http://opus.nlpl.eu
2https://github.com/Helsinki-NLP/OPUS-repository
3https://github.com/Helsinki-NLP/OPUS-translator
4https://translate.ling.helsinki.fi

 BackendFrontend

Web
interface

(flask)

Backend server
REST API

SLURM server

Backend server
REST APIBackend server

REST API
Storage servers

gitgitgit

Backend server
REST APIBackend server

REST API
Backend clients

(SLURM nodes)

Meta DB

API calls

HTTPS

UH gitlab server

Figure 1: Overall architecture of the OPUS resource repository software.

2 Resource Repository Backend

The backend of the resource repository is based
on software development for LetsMT! (Vasiļjevs
et al., 2012), a project within the ICT Policy
Support Programme of the European Commis-
sion.5 The basic architecture of the OPUS re-
source repository is the same as in the package de-
veloped in that project but the software has been
updated and extended in various ways:

• The job scheduler now uses SLURM6 for
workload management and the distribution of
jobs over connected nodes in the cluster.

• The storage servers rely on git as their default
data repository backend. Other backends are
also still supported such as SVN repositories
and plain file systems without revision con-
trol. We also support the connection to a re-
mote git server for automatic replication and
backups of the data.

• The software has been updated to run on
Ubuntu servers with the current versions
of software libraries and tools. This up-
date included numerous bug fixes and per-
formance optimizations to reduce bottlenecks
and memory leaks in the backend.

• The data processing pipeline has been im-
proved in various ways, e.g. integrating mod-
ern language identifiers (langid.py (Lui and

5http://project.letsmt.eu
6https://slurm.schedmd.com

Baldwin, 2012) and CLD27) and robust doc-
ument conversion tools such as ApacheTika8

running in server mode.

• The APIs have been extended with many
additional functionalities. This includes
changes to the job control API, metadata
search and the storage API. We now also
support the creation of translation mem-
ories for better interoperability. More
details can be found in the online docu-
mentation of the repository software at
https://github.com/Helsinki-NLP/

OPUS-repository/tree/master/doc

• New sentence alignment modes have been
added, word alignment using eflomal9

(Östling and Tiedemann, 2016) has been in-
tegrated and an experimental call for setting
up interactive sentence alignment has been
added.

An important feature for the backend is scala-
bility. The system has been designed in a mod-
ular way to ensure that additional servers can be
connected to the network to adjust for increasing
workloads. Figure 1 shows the overall picture of
the backend architecture. The main server pro-
vides the REST API that can be accessed from
the outside for the different actions and requests

7https://github.com/CLD2Owners/cld2
8https://tika.apache.org
9https://github.com/robertostling/eflomal

to be send to the system. It also serves the meta-
data DB that stores the essential information for
all data records, users and permissions. The ac-
tual data sets can be distributed over several stor-
age servers. In the basic setup, they will also be
placed on the main backend server with local git
repository on mounted file systems. Communica-
tion between all nodes in the backend and from the
frontend to the backend is done via secure HTTPS
connections with signed certificates and private
keys. The main bottleneck for the repository is
data pre-processing and alignment. For scalability
and robustness we, therefore, implement a work-
load manager based on SLURM that can distribute
data processing tasks to various worker clients in
the backend cluster. Those workers communicate
with the SLURM server and with the storage and
metadata servers via the repository API.

The metadata DB is based on a flexible key-
value store using TokyoTyrant and TokyoCabi-
net10. It enables fast access and complex queries
about data records and configurations. It scales
well to large numbers of data records and pro-
vides the essential functionality that we require in
a system, which will be further enhanced in the fu-
ture and that requires extensive meta-information,
which is not pre-defined and strictly categorical.
The key-value store allows arbitrary data records
to be connected with any data record in the repos-
itory. It is also used to control jobs and process
configurations.

Each backend client includes the software nec-
essary for converting and processing data includ-
ing language identification, data validation, text
extraction, sentence boundary detection, tokeniza-
tion and sentence alignment. The result of this
conversion process is a unified format for paral-
lel corpora based on XCES Align for the standoff
sentence alignment and a standalone XML format
for encoding the textual documents. With this, we
follow the structure of OPUS to be immediately
compatible with that data source.

The repository software and pre-processing
pipelines received substantial improvements. The
system now runs ApacheTika servers for ro-
bust document conversion, another server for lan-
guage identification based on langid.py and CLD2
and the system supports pre-processing with UD-
compatible models using UDpipe (Straka and
Straková, 2017) with pre-trained models from

10https://fallabs.com/tokyotyrant/

the universaldependencies project.11 In the basic
setup, this includes sentence boundary detection
and tokenisation but even full parsing is supported.
Alternative pre-processing tools are also available
such as the Moses tokenizers (Koehn et al., 2007)
and OpenNLP pre-processing modules.12 Addi-
tional tools may be added later on.

A final feature is the automatic word aligner
based on eflomal and pre-trained models from the
OPUS project. The system can use model priors
derived from existing OPUS data to reliably align
even the smallest document pair that arrives in the
repository. This is, however, an experimental fea-
ture and not enabled by default.

The backend provides a number of complex
APIs that control the system. Those APIs are only
accessible via verified connections. The frontend
implements the public interface that allows exter-
nal users to communicate with the system. This
interface supports the essential functionality of the
system. Details will be given in the following sec-
tion.

3 Interfaces

The project includes open source online inter-
faces for the resource repository backend13 and
for a translation system.14 Both of the interfaces
are written in Python using the Flask web frame-
work15 and our running instances are accessible
via any common web browser. Users can regis-
ter on either website and the same account may
be used to login to both of these services. Using
the translator is possible without a user account,
but gaining access to the repository requires being
logged in as a registered user.

3.1 Online repository
The online repository website is a graphical user
interface for the resource repository API. With the
API, one can upload documents, that are transla-
tions of each other, and the backend aligns them
on the sentence level. The interface enables the
use of the API without certification and command
line operations. In practice, whenever a user takes
an action on the repository website, a command
line request is sent to the API. The API sends a re-
sponse, which is parsed and displayed on the web-

11https://universaldependencies.org
12https://opennlp.apache.org
13https://github.com/Helsinki-NLP/OPUS-interface
14https://github.com/Helsinki-NLP/OPUS-translator
15http://flask.pocoo.org/

Figure 2: A screenshot of the OPUS resource repository interface.

site in an appropriate way depending on the type
of request. Anytime a web page or a part of a web
page is generated, all the data, that is presented, is
received from the API, e.g. lists of corpora, docu-
ments, jobs or users.

In order to use the interface, one must first reg-
ister to the website and login. Once logged in,
users may create new corpora with metadata and
settings, which can be edited later. User groups
can also be created, and a corpus may be set to
be accessible to only a specific group. Users can
upload translated documents to a corpus, which
are then aligned in the backend. Currently, the
allowed document formats are PDF, DOC, TXT,
XML, HTML and EPUB. Multiple files may be
uploaded at once using TAR, TAR.GZ, or ZIP
archives. All uploaded documents and the result-
ing alignment files are browsable using the tree file
system on the interface. Figure 2 shows an exam-
ple. The website also has a function to search for
public corpora and to clone them for further use.

3.2 Online translator

The current translation application runs two mul-
tilingual translation models: Finnish to Dan-
ish/Norwegian/Swedish (fi-da/no/sv) and Dan-
ish/Norwegian/Swedish to Finnish (da/no/sv-fi).
The models are trained using the Marian Neu-
ral Machine Translation framework (Junczys-
Dowmunt et al., 2018) and they run using
the framework’s web-socket server feature. To
translate a text, a source language is first se-
lected from two options: Finnish or Dan-
ish/Norwegian/Swedish. The source language can

also be automatically detected. Language detec-
tion is performed using pycld2 Python bindings16

for Google Chromium’s Compact Language De-
tector 2.17 The target language is chosen from
Finnish, Danish, Norwegian, or Swedish. Once
the source and target languages are selected and
an input text is entered, the text can be trans-
lated. If the source language is Finnish and the
target language is either Danish, Norwegian or
Swedish, the source sentence is translated with fi-
da/no/sv model. If the source language is Dan-
ish/Norwegian/Swedish and the target language is
Finnish, da/no/sv-fi model is used. The result-
ing translation is represented on the web page. A
screenshot of the interface is shown in Figure 3.

The online translator includes a feature to do-
nate more training data. There are three different
options to upload data. The first option is to upload
translation memories, which can be either TMX or
XLIFF files. The second option is to upload doc-
uments that are translations of each other and the
files must be in XML, HTML, TXT, PDF, DOC,
SRT, RTF or EPUB format. In the third option,
the user enters two URLs, which point to two web
pages that are translations of each other. When up-
loading translated files or entering translated web
pages, the user has an option to receive a TMX file
created from their contributed data.

4 Conclusions

This paper presents a new public resource repos-
itory for creating and managing parallel corpora

16https://pypi.org/project/pycld2/
17https://github.com/CLD2Owners/cld2

translate

detect input languagemultilingual model select output
language

upload
training data

send a
translation
memory

Figure 3: A screenshot of the translator interface.

with a scalable backend and intuitive interfaces. A
translation demonstrator is also provided and the
software is released as open source.

Acknowledgments

The work was supported by the Swedish Culture
Foundation and we are grateful for the resources
provided by the Finnish IT Center for Science,
CSC.

References

Mikel Artetxe and Holger Schwenk. 2018.
http://arxiv.org/abs/1812.10464 Massively mul-
tilingual sentence embeddings for zero-shot
cross-lingual transfer and beyond. CoRR,
abs/1812.10464.

Irene Doval and M. Teresa Sánchez Nieto. 2019.
https://doi.org/https://doi.org/10.1075/scl.90 Paral-
lel Corpora for Contrastive and Translation Studies
– New resources and applications. John Benjamins.

Ana Frankenberg-Garcia. 2005. Pedagogical uses of
monolingual and parallel concordances. ELT jour-
nal, 59(3):189–198.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Ger-
mann, Alham Fikri Aji, Nikolay Bogoychev,
André F. T. Martins, and Alexandra Birch.
2018. http://www.aclweb.org/anthology/P18-4020
Marian: Fast neural machine translation in C++. In
Proceedings of ACL 2018, System Demonstrations,
pages 116–121, Melbourne, Australia. Association
for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
http://dl.acm.org/citation.cfm?id=1557769.1557821
Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th
Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages
177–180, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Els Lefever. 2012. ParaSense: parallel corpora for
word sense disambiguation. Ph.D. thesis, Ghent
University.

Marco Lui and Timothy Baldwin. 2012.
https://www.aclweb.org/anthology/P12-3005
langid.py: An off-the-shelf language identification

tool. In Proceedings of the ACL 2012 System
Demonstrations, pages 25–30, Jeju Island, Korea.
Association for Computational Linguistics.

Eetu Sjöblom, Mathias Creutz, and Mikko Aulamo.
2018. http://arxiv.org/abs/1809.07978 Paraphrase
detection on noisy subtitles in six languages. CoRR,
abs/1809.07978.

Milan Straka and Jana Straková. 2017.
http://www.aclweb.org/anthology/K/K17/K17-
3009.pdf Tokenizing, pos tagging, lemmatizing
and parsing ud 2.0 with udpipe. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 88–99, Vancouver, Canada. Association for
Computational Linguistics.

Jörg Tiedemann and Željko Agić. 2016.
https://doi.org/doi:10.1613/jair.4785 Synthetic
treebanking for cross-lingual dependency pars-
ing. Journal of Artificial Intelligence Research,
55:209–248.

Andrejs Vasiļjevs, Raivis Skadiņš,
and Jörg Tiedemann. 2012.
http://www.aclweb.org/anthology/P12-3008
LetsMT!: Cloud-based platform for do-it-yourself
machine translation. In Proceedings of the ACL
2012 System Demonstrations, pages 43–48, Jeju
Island, Korea. Association for Computational
Linguistics.

Begoña Villada Moirón and Jörg Tiedemann.
2006. http://aclweb.org/anthology//W/W06/W06-
2405.pdf Identifying idiomatic expressions using
automatic word-alignment. In Proceedings of the
EACL 2006 Workshop on Multiword Expressions in
a Multilingual Context, Trento, Italy.

Robert Östling and Jörg Tiedemann. 2016.
http://ufal.mff.cuni.cz/pbml/106/art-ostling-
tiedemann.pdf Efficient word alignment with
markov chain monte carlo. The Prague Bulletin of
Mathematical Linguistics (PBML), (106):125—-
146.

