
Developing without developers: choosing labor-saving tools for language
documentation apps

Luke D. Gessler
Department of Linguistics

Georgetown University
lg876@georgetown.edu

Abstract

Application software has the potential to
greatly reduce the amount of human labor
needed in common language documentation
tasks. But despite great advances in the matu-
rity of tools available for apps, language docu-
mentation apps have not attained their full po-
tential, and language documentation projects
are forgoing apps in favor of less specialized
tools like paper and spreadsheets. We argue
that this is due to the scarcity of software de-
velopment labor in language documentation,
and that a careful choice of software devel-
opment tools could make up for this labor
shortage by increasing developer productiv-
ity. We demonstrate the benefits of strategic
tool choice by reimplementing a subset of the
popular linguistic annotation app ELAN using
tools carefully selected for their potential to
minimize developer labor.

1 Introduction

In many domains like medicine and finance, ap-
plication software has dramatically increased pro-
ductivity, allowing fewer people to get more done.
This kind of labor reduction is sorely needed in
language documentation, where there is not nearly
enough labor to meet all the demand in the world
for language documentation.

There is every reason to think that application
software (“apps”) could also help language docu-
mentation (LD) practitioners get their work done
more quickly. But despite the availability of sev-
eral LD apps, many practitioners still choose to
use paper, spreadsheets, or other generic tools
(Thieberger, 2016). Why aren’t practitioners us-
ing apps?

1.1 Perennial problems in LD apps

The simplest explanation is that the apps are not
helpful enough to justify the cost of learning and

adjusting to them. While it is clear by now from
progress in natural language processing that it is
technically possible to make laborious tasks such
as glossing and lexicon management less time-
consuming by orders of magnitude, flashy features
like these turn out to be only one part of the prac-
titioner’s decision to adopt an app. It seems that
other factors, often more mundane but no less im-
portant, can and often do nullify or outweigh these
benefits in today’s apps. Three kinds of problems
can be distinguished which are especially impor-
tant for LD apps.

First, there is the unavoidable fact that the user
will need to make unwanted changes to their work-
flow to work within an app. By virtue of its struc-
ture, an app will always make some tasks prerequi-
sites for others, or at least make some sequences of
tasks less easy to perform than others. Ideally, an
app designer will be successful in identifying the
task-sequences that are most likely to be preferred
by their user and ensure that these workflows are
supported and usable within the app. But no mat-
ter how clever they are, their app will always push
some users away from their preferred workflow.
For app adoption, this presents both a barrier to
entry and a continuous cost (if a user is never able
to fully adapt themselves to the app’s structure).

Second, app developers often make simplifying
assumptions which sacrifice generality for devel-
opment speed. For instance, an app’s morphologi-
cal parser might not be capable of recognizing dia-
critics as lexically meaningful, which would limit
the app’s usability, e.g. for the many languages
which represent lexical tone with diacritics.

Third, an app might lack a feature altogether.
An app might only work on a particular operat-
ing system like Windows, or might not work with-
out an internet connection, both of which might
single-handedly make an app unusable. In another
vein, it might be critical for a project to have texts



be annotated with a syntactic parse, or for all texts
to be exportable into a particular format, like as an
ELAN (Wittenburg et al., 2006) or FLEx (Moe,
2008) project. If a user cannot perform a cru-
cial kind of linguistic annotation, or move their
data into another app which is critically impor-
tant for them, they are likely to not use the app at
all, no matter how good it might be at segmenting
text into tokens, morphologically parsing words,
or managing a lexical inventory. Indeed, the fea-
tures which might be absolutely necessary for any
given practitioner are in principle at least as nu-
merous as the number of formalisms and levels of
analysis used by all linguists, and it is to be ex-
pected that an app will be inadequate for a great
number of potential users.

1.2 The need for more developer labor

Whatever the exact proportions of these prob-
lems in explaining the under-adoption of apps, it
seems clear that they all could be solved relatively
straightforwardly with more software engineering
labor. Much of the hard work of inventing the
linguistic theories and algorithms that would en-
able an advanced, labor-saving LD app has already
been done. What remains is the comparatively
mundane task of laying a solid foundation of ev-
eryday software on which we might establish these
powerful devices, and the problem is that in LD,
software engineering labor is—as in most places
in science and the academy—markedly scarce.

With a few notable exceptions1, LD apps have
largely been made by people (often graduate stu-
dents) who have undertaken the project on top of
the demands of their full time occupation. Con-
sidering how in industry entire teams of highly-
skilled full-time software engineers with ample
funding regularly fail to create successful apps, it
is impressive that LD apps have attained as much
success as they have. Nevertheless, most LD soft-
ware will continue to be produced only in such
arid conditions, and so the question becomes one
of whether and how it might be possible to cre-
ate and maintain a successful app even when the
only developers will likely be people like graduate
students, who must balance the development work
with their other duties.

While pessimism here would be understand-
able, we believe it is possible to create an app that

1FLEx, ELAN, and Miromaa all have at least one full-
time software engineer involved in their development.

is good enough to be worth using for most prac-
titioners even under these circumstances. While
there is still not much that is known with certainty
about productivity factors in software engineering
(Wagner and Ruhe, 2018), many prominent soft-
ware engineers believe that development time can
be affected dramatically by the tools that are used
in the creation of an app (Graham, 2004).

Apps depend on existing software libraries, and
these libraries differ in dramatic ways: some
databases are designed for speed, and others are
designed for tolerating being offline; some user in-
terface frameworks are designed for freedom and
extensibility, and others double down on opinion-
ated defaults that are good enough most of the
time; some programming languages are always
running towards the cutting edge of programming
language research, and others aim to be eminently
practical and stable for years to come. It is obvi-
ous that these trade-offs might have great conse-
quences for their users: a given task might take a
month with one set of tools, and only a few days
with another.

We should expect, then, that the right combina-
tion of tools could allow LD app developers to be
much more productive. If this is true, then if only
we could choose the right set of tools to work with,
we might be able to overcome the inherent lack of
development labor available for LD apps.

2 Cloning ELAN

To put this hypothesis to the test, we recreated
the rudiments of an app commonly used for LD,
ELAN (Wittenburg et al., 2006). Choosing an ex-
isting app obviated the design process, saving time
and eliminating a potential confound. ELAN was
chosen in particular because of its widespread use
in many areas of linguistics, including LD, and be-
cause its user interface and underlying data struc-
tures are complicated. We reasoned that if our ap-
proach were to succeed in this relatively hard case,
we could be fairly certain it could succeed in eas-
ier ones, as well.

With an eye to economic problems of LD app
development outlined in section 1.2, we first deter-
mined what features we thought an advanced LD
app would need to prioritize in order to make de-
velopment go quickly without compromising on
quality. Then, we chose software libraries in ac-
cord with these requirements.



2.1 Requirements and tool choices

There were four requirements that seemed most
important to prioritize for an LD app. These were:
(1) that the app be built for web browsers, (2) that
the app work just as well without an internet con-
nection, (3) that expected “maintenance” costs be
as low as possible, and (4) that graphical user in-
terface development be minimized and avoided at
all costs.

2.1.1 Choice of platform: the browser

15 years ago, the only platform that would have
made sense for an LD app was the desktop.
These days, there are three: the desktop, the web
browser, and the mobile phone. While the mobile
phone is ubiquitous and portable, it is constrained
by its form factor, making it unergonomic for
some kinds of transcription and annotation. The
desktop platform has the advantage of not expect-
ing an internet connection, and indeed the most
widely used LD apps such as FLEx and ELAN
have been on the desktop, but it is somewhat dif-
ficult to ensure that a desktop app will be usable
on all operating systems, and the requirement that
the user install something on their machine can be
prohibitively difficult.

The web browser resolves both of these diffi-
culties: no installation is necessary, since using
an app is as easy as navigating to a URL, and the
problem of operating system support is taken care
of by web browser developers rather than app de-
velopers.

2.1.2 Offline support: PouchDB

The notable disadvantage of web browsers com-
pared to these other platforms, however, is that
the platform more or less assumes that you will
have an internet connection. The simple problem
is that language documentation practitioners will
often not have a stable internet connection, and if
an app is unusable without one, they will never use
the app at all.

Fortunately, there are libraries that can enable a
browser app to be fully functional even without an
internet connection. The main reason why a typ-
ical browser app needs an internet connection is
that the data that needs to be retrieved and changed
is stored in a database somewhere on the other end
of a network connection. But there are databases
that can be installed locally, removing the need for
an uninterrupted internet connection.

Figure 1: PouchDB imitates a traditional database, but
it exists alongside the app in a user’s local machine
rather than on a remote server. When an internet con-
nection becomes available, PouchDB can sync with the
remote server and other clients, meaning that sharing
and securely backing up data is still possible.

The most advanced database for this purpose
is PouchDB. PouchDB is a browser-based im-
plementation of the database system CouchDB.
This means that PouchDB acts just like a nor-
mal database would, except it is available lo-
cally instead of over a network connection. And
when an internet connection does become avail-
able, PouchDB is able to share changes with a
remote instance of CouchDB, which then makes
them available to other collaborators, as seen in
figure 1. PouchDB and CouchDB were specially
designed to make this kind of operation easy, and
retrofitting the same behavior with a more tradi-
tional choice of tools would be extremely time
consuming.

An added benefit of adopting this database strat-
egy is that it dramatically reduces the need for
client-server communication code. Normally, an
entire layer of code is necessary to package, trans-
mit, and unpackage data between the client and the
server, which most of the time amounts to noth-
ing more than boilerplate. With this approach, all
of that is taken care of by the replication proto-
col which allows PouchDB instances to sync with
CouchDB instances, and the server code that is re-
quired by a small set of cases (e.g. triggering a
notification email) can still exist alongside this ar-
chitecture.

We are not the first to realize PouchDB’s po-
tential for writing an LD app: FieldDB (aka
LingSync) (Dunham et al., 2015) uses PouchDB.



2.1.3 Minimizing maintenance:
ClojureScript

Software requires some degree of modification as
time goes on. Almost all software relies on other
software, and when breaking changes occur in a
dependency, an app must also have its code mod-
ified to ensure that it can continue operating with
the latest version of its dependency. For instance,
much of the Python community is still migrating
their code from Python 2 to Python 3, an error-
prone process that has consumed many thousands
of developer-hours worldwide.

This kind of maintenance is, at present,
quite common for browser apps: web browsers,
JavaScript, and JavaScript frameworks are evolv-
ing at a quick pace that often requires teams to
constantly modify their code and compilers, and
sometimes to even abandon a core library alto-
gether in favor of a better one, which incurs a
massive cost as the team excises the old library
and stitches in the new one. These maintenance
costs are best avoided if possible, as they con-
tribute nothing valuable to the user: in the best
case, after maintenance, no change is discernible;
and if the best case is not achieved, the app breaks.

We surveyed programming languages that can
be used for developing browser applications and
were impressed by the programming language
called ClojureScript. ClojureScript is a Lisp-
family functional programming language that
compiles to JavaScript. The language is remark-
ably stable: ClojureScript written in 2009 still
looks essentially the same as ClojureScript writ-
ten in 2018. The same cannot often be said for
JavaScript code.

A full discussion of the pros and cons of Clo-
jureScript is beyond the scope of this paper, but it
might suffice to say that ClojureScript offers very
low maintenance costs and powerful language fea-
tures at the cost of a strenuous learning process.
Unlike Python, Java, or JavaScript, ClojureScript
is not object-oriented and does not have ALGOL-
style syntax, making it syntactically and seman-
tically unfamiliar. This is a serious penalty, as it
may reduce the number of number of people who
could contribute to the app’s development. How-
ever, this may turn out to be a price worth paying,
and as we will see in section 2.3.2, this disadvan-
tage can be mitigated somewhat by allowing users
and developers to extend the app using more fa-
miliar programming languages.

Figure 2: Trafikito, an app that uses Material-UI to sup-
port for mobile and desktop clients.

2.1.4 Minimizing GUI development:
Material-UI

Creating user interface components for the
browser from scratch is extremely time consum-
ing. In the past several years, however, numer-
ous comprehensive and high-quality open source
component libraries for the browser have been re-
leased. Most parts of an LD app can be served
well by these off-the-shelf components, making it
an obvious choice to outsource as much UI devel-
opment as possible to them.

The only concern would be that these libraries
might be abandoned by their maintainers. While
this is always a possibility, the communities that
maintain the most prominent among these libraries
are very active, and in the event that their current
maintainers abandoned them, it seems likely that
the community would step up to take over mainte-
nance.

We chose to work with Material-UI, a library of
components for Facebook’s React UI framework
that adheres to Google’s Material Design guide-
lines. Beyond providing a set of high-quality com-
ponents, with the v1.0 release of Material-UI, all
components have been designed to work well on
mobile clients, which has the potential to make an
app developed with Material-UI usable on mobile
phones at no extra development cost for the app
developer, an incredible timesaving benefit. (See
figure 2.)

2.2 Results

Using these tools, we were able to create a browser
app that implements a subset of ELAN in about 3



Figure 3: A screenshot of ELAN, above, and EWAN, below, for a given sample project.



weeks of development time2. Our implementation
process basically confirmed our hypothesis: that
our careful choice of tools made developers more
productive, and vastly simplified the implementa-
tion of certain features that are critical to LD apps.

ELAN is an app that allows users to annotate
a piece of audio or video along multiple aligned
“tiers”, each of which represents a single level
of analysis for a single kind of linguistic or non-
linguistic modality. For instance, in the example
project in figure 3 (shown in both ELAN and our
reimplementation, EWAN), for one of the speak-
ers, there is a tier each for the speaker’s sentence-
level utterance, the speaker’s utterance tokenized
into words, IPA representations of those words,
and the parts of speech for those words; and there
is another tier for describing the speaker’s gestic-
ulations. Users are able to configure tiers so that
e.g. a child tier containing parts of speech may
not have an annotation that does not correspond to
a word in the parent tier, and the app coordinates
the UI so that the annotation area always stays in
sync with the current time of the media player.

We implemented ELAN’s behavior to a point
where we felt we had been able to evaluate our
hypothesis with reasonable confidence. In the end,
this amounted to implementing the following fea-
tures: (1) a basic recreation of the ELAN interface,
(2) importing and exporting ELAN files, (3) read-
only display and playback of projects, (4) editing
of existing annotations, and (5) completely offline
operation with sync capabilities. Most notably
missing from this list is the ability to create new
tiers and annotations, but we did not feel that im-
plementing these features would have significantly
changed our findings.

The creation of the interface with Material-UI
was straightforward. The only UI components that
involved significant custom development were the
tier table and the code that kept the table and the
video in sync: everything else, including the forms
that allowed users to create new projects and im-
port existing projects, was simply made with the
expected Material-UI components.

ClojureScript’s XML parsing library made im-
porting and exporting ELAN project files a
straightforward matter. Internally, EWAN uses
the ELAN project file format as its data model,

2Our app can be seen at
https://lgessler.com/ewan/ and
our source code can be accessed at
https://github.com/lgessler/ewan.

so there was no additional overhead associated
with translating between EWAN and ELAN for-
mats. To ensure the validity of the data un-
der any changes that might be made in EWAN,
we used ClojureScript’s cljs.spec library to en-
force invariants3. cljs.spec is one language fea-
ture among many that we felt made ClojureScript a
good choice for enhancing developer productivity:
cljs.spec allows developers to declaratively en-
force data model invariants, whereas in most other
languages more verbose imperative code would
have to be written to enforce these invariants.

Projects were stored in PouchDB, and all the
expected benefits were realized: an internet con-
nection is no longer needed. Indeed, on the demo
deployment of the app, there is not even a re-
mote server to accompany it: once the app has
been downloaded, users may use the app in its en-
tirety without an internet connection. With ease,
we were able to set up an instance of CouchDB on
a remote server and sync our EWAN projects with
it, even in poor network conditions.

2.3 Extensions

At the point in development where we stopped,
there were features which we were close enough
to see with clarity, even though we did not imple-
ment them. These are features we expect would
be easily within reach if a similar approach were
taken to creating a LD app.

2.3.1 Real-time collaboration
Google Docs-style real-time collaboration, where
multiple clients collaborate in parallel on a sin-
gle document, is well supported by our choice of
PouchDB. Implementation is not entirely trivial,
but the hard part—real-time synchronization with-
out race conditions or data loss—is handled by
CouchDB’s replication protocol. It is debatable
how useful this feature might be in an LD app, but
if it were needed, it would be easily within reach.

2.3.2 User scripts with JavaScript
Power users delight in the opportunity to use a
scripting language to tackle tedious or challeng-
ing tasks. Because this app was built in the web
browser, we already have a language with excel-
lent support at our disposal that was designed to

3An invariant in this context is some statement about the
data that must always be true. For example, one might want
to require that an XML element referenced by an attribute in
another element actually exists.



Figure 4: Examples of what a JavaScript scripting in-
terface for EWAN might look like. An API imple-
mented in ClojureScript with functions intended for use
in JavaScript that can modify EWAN’s data structures
is made available in a global namespace, and power
users can use the scripting functions to perform bulk
actions and customize their experience.

be easy for users to pick up and write small snip-
pets with: JavaScript.

Since ClojureScript compiles to JavaScript and
is designed for interoperation, it is very easy to
make such a system available. As shown in figure
4, a special module containing user-facing func-
tions that are meant to be used from a JavaScript
console could be created. This could be used for
anything from bulk actions to allowing users to
hook into remote NLP services (e.g. for morpho-
logical parsing, tokenization, etc.).

The possibilities are endless with a user-facing
API, and a thoughtfully constructed scripting API
could do much to inspire and attract users. It’s
worth noting that this feature was made possible
by our choice of platform: had we not been using
the browser, we would have had either implement
an entire scripting language or embed an existing
one (like Lua) into the app.

2.3.3 Extensions
As noted in section 1.1, there will always be for-
malisms or levels of analysis that will not have ro-
bust support in an app. Normally, this pushes users
who really need such support to either use another
app or revert to a more generic medium.

To try to tackle this issue, an app structured
like EWAN could be enriched with API’s to al-
low users to customize deeper parts of the app, as
shown in figure 5. Suppose that a user is a se-
manticist who has designed a new semantic pars-
ing formalism, and wants to be able to annotate

Figure 5: A high-level representation of EWAN’s API
layers and how UI and business logic layers could be
extended if extension functions at the DB and business
logic layers were made.

texts with it. This would require the creation of at
least a new UI. If the user is comfortable with writ-
ing JavaScript, the user could use these extension
API’s to implement support for their own formal-
ism, provided these extension API’s are powerful
and approachable enough for use by novice pro-
grammers. The user could then not only benefit
themselves, but also share the extension with the
community.

If this were done well, a major problem driv-
ing the continued fragmentation of the LD app
landscape would be solved, and the LD commu-
nity could perhaps begin to converge on a common
foundation for common tasks in LD.

3 Conclusion

Because of the economic conditions that are en-
demic to software development in language docu-
mentation, app developers cannot reasonably hope
to succeed by taking software development ap-
proaches unmodified from industry, where devel-
oper labor is much more abundant. We have ar-
gued these economic conditions are the major rea-
son why LD apps have not realized their full po-
tential, and that the way to solve this problem is
to be selective in the tools that are used in mak-
ing LD apps. We have shown that choice of tools
does indeed affect how productive developers can
be, as demonstrated by our experience recreating
a portion of the app ELAN.

It is as yet unclear whether our choices were
right—both our choices in which requirements to



prioritize, and in which tools to use to address
those requirements. Offline support seems secure
as a principal concern for LD apps, but perhaps
it might actually be the case that it is better to
choose a programming language that is easy to
learn rather than easy to maintain. What we hope
is clear, however, is that choice of tools can af-
fect developer productivity by orders of magni-
tude, and that the success of language documenta-
tion software will be decided by how foresighted
and creative its developers are in choosing tools
that will minimize their labor.

Acknowledgments

Thanks to Mans Hulden, Sarah Moeller, Anish
Tondwalkar, and Marina Bolotnikova for helpful
comments on an earlier version of this paper.

References
J. Dunham, A. Bale, and J. Coon. 2015. LingSync:

web-based software for language documentation. In
Proceedings of the 4th International Conference on
Language Documentation Conservation.

P. Graham. 2004. Hackers and Painters: Essays on the
Art of Programming. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA.

R. Moe. 2008. FieldWorks Language Explorer 1.0.
SIL Forum for Language Fieldwork.

N. Thieberger. 2016. Language documen-
tation tools and methods summit report
http://bit.ly/LDTAMSReport.

S. Wagner and M. Ruhe. 2018. A systematic review of
productivity factors in software development. Com-
puting Research Repository, abs/1801.06475.

P. Wittenburg, H. Brugman, A. Russel, A. Klassmann,
and H. Sloetjes. 2006. ELAN: a professional frame-
work for multimodality research. In Proceedings of
LREC 2006, Fifth International Conference on Lan-
guage Resources and Evaluation.


