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Abstract

Recently proposed hyperbolic neural embed-
dings naturally represent latent hierarchical se-
mantic relations, and could provide a suitable
bridge from the discrete world of biological
networks to continuous geometric representa-
tions, enabling down-stream machine learning
tasks, such as link prediction. In some cases,
however, link prediction is modeled by sepa-
rating hyperbolic embeddings using classifiers
that operate in a flat Euclidean space, thus un-
derexploiting the inherently curved geometric
space of embeddings. Herein we present and
analyze how recently introduced large-margin
classifiers in hyperbolic space could be used
in conjunction with hyperbolic embeddings,
in order to perform biological link prediction,
which exploits the curved geometry of com-
plex biological information.

1 Introduction

Link prediction is the task of finding missing
or unknown links among inter-connected entities.
This assumes that entities and links can be rep-
resented as a graph, where entities are nodes and
links are edges (if relationships are symmetric)
or arcs (if relationships are asymmetric). When
dealing with link prediction in knowledge bases,
the semantic information contained is usually en-
coded as a knowledge graph (KG) (Sri Nurdiati
and Hoede, 2008). For the purposes of this work
we simply treat a knowledge graph as a graph
with labelled edges (arcs), meaning that two en-
tities may be connected with more than one link
of different types. In addition, we conform to the
closed-world assumption. This means that all the
existing (asserted) links are considered positive,
and all the links which are unknown are consid-
ered negative. This separation into positive and
negative links naturally allows us to treat the link
prediction problem as a supervised classification

problem with binary classifiers (one classifier for
each relation type). However, while this separa-
tion makes it possible to use a wide array of well-
studied machine learning algorithms for link pre-
diction, the main challenge is how to find the best
representations for the links. This is the core sub-
ject of the recent research trend in learning suit-
able representations for knowledge graphs, largely
dominated by so-called neural embeddings. Most
commonly, neural embeddings are numeric rep-
resentations of nodes and relations of the knowl-
edge graph in some continuous space with vecto-
rial structure. An overview of state-of-the-art ap-
proaches can be found in (Nickel et al., 2016).

Predicting links is especially relevant in the
biomedical domain, where biological knowledge
lends itself naturally to be modelled with knowl-
edge graphs. Indeed, biological entities such as
genes and gene functions can be modelled as
nodes, and links among these entities as edges or
arcs. Neural embeddings Θ for these biological
entities could be trained with embedding models.
And by training a binary classifier on these contin-
uous numeric representations Θ, we could, for ex-
ample, estimate the probability Pl((u, v) = 1 |Θ)
of having a link l = HAS-FUNCTION (e.g., la-
belled edge) between nodes u = TRIM28 GENE

and v = NEGATIVE REGULATION OF TRAN-
SCRIPTION BY RNA POLYMERASE II.

More recently, researchers in machine learning
have turned their attention to hyperbolic space as
a better candidate for continuous geometric rep-
resentation of graph-based data (Nickel and Kiela,
2017; Chamberlain et al., 2017; De Sa et al., 2018;
Nickel and Kiela, 2018). This approach could be
of special interest for the representation of com-
plex biological networks, which were found to in-
herently exhibit a hyperbolic structure (Krioukov
et al., 2010; Alanis-Lobato et al., 2016). How-
ever, as argued in (Cho et al., 2018), in many sit-



uations hyperbolic embeddings are used in classi-
fication tasks (such as link prediction) that operate
in ill-fitted Euclidean space. This leads to a situ-
ation where (flat) Euclidean classifiers misuse all
the learned curved information that lives in hyper-
bolic embeddings.

Contribution of this work. In this work we
compare hyperbolic and Euclidean large-margin
classifiers when used for biological link prediction
with the embeddings learned in flat and curved
geometric spaces. We believe that the lessons
learned from this comparison will help in the iden-
tification of next steps required for end-to-end
hyperbolic embedding training pipelines to ade-
quately exploit inherently curved geometry, and
to uncover latent hierarchical semantic relations of
complex biological patterns.

2 Background and Methods

Hyperbolic space can not be embedded with-
out distortion in Euclidean space (Efimov, 1963),
however, there are several useful models of hy-
perbolic geometry formulated as a subset of Eu-
clidean space. Two related models of hyper-
bolic space, popular in the deep learning commu-
nity, are hyperboloid and Poincare-ball. In the
first model of n-dimensional hyperbolic geome-
try points are represented on the forward sheet
of a two-sheeted hyperboloid (generalization of
hyperbola) of (n + 1)-dimensional Minkowski
space. Minkowski space, roughly speaking, is
a linear ambient space endowed with a bilin-
ear metric (generalization of inner product) given
by 〈u, v〉n+1 = −u0v0 +

∑n
i=1 uivi. Thus,

an n-dimensional hyperboloid Hn is a collec-
tion of points Hn = {x ∈ Rn+1|〈x, x〉n+1 =
−1, xn+1 > 0}. Under this setting, the dis-
tance between two points on the hyperboloid is
computed with dHn(u, v) = cosh−1(−〈u, v〉n+1).
The second model of hyperbolic space is obtained
by projecting each point of Hn onto the hyper-
plane x0 = 0 using the rays emanating from
(−1, 0, . . . , 0). The latter gives us a Poincare
ball model, identified with the collection of points
Bn = {x : (x0, . . . , xn) ∈ Rn | ‖x‖2 < 1}.

Both models have found their use in litera-
ture. On one hand, the Poincare ball model
is more intuitive to visualize in lower dimen-
sions (Nickel and Kiela, 2017). On the other hand,
a hyperboloid model permits much simpler ex-
pression for parameter updates with Riemannian

gradient descent, and makes computation signifi-
cantly faster (Wilson and Leimeister, 2018; Nickel
and Kiela, 2018). These two models are equiv-
alent and points can be converted via diffeomor-
phisms from one space to another. Hyperboloid to
Poincare ball with p(x0, . . . , xn) = (x1,...,xn)

x0+1 , and
reciprocally with its inverse p−1(x1, . . . , xn) =
(1+‖x‖2,2x1,...,2xn)

1−‖x‖2 .

Datasets. In this work we consider two bi-
ological knowledge graphs: UMLS (subset of
the Unified Medical Language System (Bodenrei-
der, 2004) semantic network) and BIO-KG (Al-
shahrani et al., 2017). BIO-KG is a comprehensive
and curated biological knowledge graph that in-
corporates knowledge from several biological on-
tologies and databases, including human protein
interactions, human chemical-protein interactions
and drug side effects and drug indication pairs.
UMLS has 46 relation types, 137 biological enti-
ties and a total number of 6257 links, BIO-KG has
9 relation types, 346,225 biological entities and
1,619,239 links in total.

Neural embedding models. We compare two
shallow semi-supervised neural embedding mod-
els (Nickel and Kiela, 2017; Agibetov and
Samwald, 2018), which aim at learning entity em-
beddings Θ in a d-dimensional Hyperbolic Hd and
Euclidean Rd spaces, respectively. Both models
are simple. They embed observed connected pairs
of entities (positives) close to each other, and place
entities that do not share any links (generated neg-
atives) farther apart. As in many neural embedding
approaches, the weight matrix Θ of the hidden
layer of the neural network represents entity em-
beddings (latent representations). The neural net-
work is trained by minimizing, for each observed
connected pair (u, v), the following loss function

arg minΘ L(Θ) :=
∑

(u,v) log e−d(Θ(u),Θ(v))∑
(u,v′)∈Negu

e−d(Θ(u),Θv′) ,

(1)
where Θ(u) is the currently learned d-dimensional
representation of entity u, and Negu represents all
negative pairs of u (i.e., u, v′ do not share any
link). Both models have the same signature, but
operate in different spaces, which means that dis-
tance d and parameters Θ are computed/updated
differently. For the hyperbolic model we em-
ploy the hyperbolic distance dHn and Riemanian
SGD with geodesic updates (Wilson and Leimeis-



ter, 2018), the implementation of which is avail-
able on GitHub 1. The Euclidean model is trained
with StarSpace toolkit 2; details on preparing data
and training neural embeddings with this model
can be found in (Agibetov and Samwald, 2018).

Large-margin classification in Hyperbolic
space. In (Cho et al., 2018) authors propose
Hyperbolic Linear Support Vector classification
as the extension of the well-known Euclidean
SVM to hyperbolic geometry. Analogously to
the Euclidean case, we consider a set of decision
functions that lead to linear decision boundaries
in the hyperbolic space. Linear decision bound-
aries in hyperbolic space are a set of geodesics
(curves) that are obtained by intersecting the
hyperboloid Hn with an n-dimensional hyper-
plane (〈w, x〉n+1 = 0) in the ambient space
Rn+1. Authors (Cho et al., 2018) formulate the
optimization problem to solve maximum margin
classification with linear decision boundaries in
hyperbolic space as

argmin
w∈Rn+1

f(w) := −
1

2
〈w,w〉n+1+

C

m∑
j=1

max(0, sinh
−1

(1)− sinh
−1

(y
(j)

(〈w, x
(j)〉n+1))),

(2)

which closely resembles the Euclidean version,
where Euclidean inner products are replaced with
Minkowski inner products. The parameter C
in Eq. 2 controls the tradeoff between minimiz-
ing misclassification and maximizing margin. In
all our experiments we use our own Python im-
plementation 3 of Hyperbolic Linear SVM com-
patible with scikit-learn (Pedregosa et al., 2011),
which we based on the official open source imple-
mentation in Matlab 4.

Link prediction with neural embeddings. The
usual way to perform link prediction with neural
embeddings Θ is to use them as some kind of rep-
resentation of a link li between u and v. In Eu-
clidean space, one could leverage the underlying
vector space structure and come up with link rep-
resentations, such as vector addition (li := Θ(u)+
Θ(v)) and element-wise multiplication of vector
elements (Grover and Leskovec, 2016). Once we

1
https://github.com/lateral/

geodesic-poincare-embeddings
2
https://github.com/facebookresearch/StarSpace

3
https://github.com/plumdeq/hsvm

4
https://github.com/hhcho/hyplinear

fix our link representation method, we can train
binary classifiers f(li) to perform link prediction
(i.e., f(li) > 0.5 if there is a link between u and
v and f(li) ≤ 0.5 otherwise). Such link repre-
sentations may take into account more geomet-
rical patterns than those that rely on the notion
of distance alone (e.g., Fermi-Dirac distribution
P ((u, v) = 1 |Θ) = 1/(e(d(Θ(u),Θ(v))−r)/t + 1)
as in (Nickel and Kiela, 2017)).

Experimental setting. For each knowledge
graph we perform a nested cross-validation pro-
cedure for 10 runs. In each run, first, we split
independently positive links 10 times into train
(80%) and test (20%) datasets. We further gen-
erate negative links for each split dataset with the
positive to negative ratio 1:1 (i.e., both train and
test datasets have this ratio). We then use positive
links of the train dataset to compute neural em-
beddings in hyperbolic ΘHn and Euclidean spaces
ΘRn by minimizing the loss function in Eq. 1.
Note that we pre-train hyperbolic embeddings on
flat graph-representations of knowledge graphs,
i.e., all edges are unlabelled, and each pair is con-
nected with at most one edge (the description of
this pipeline in Euclidean space in (Agibetov and
Samwald, 2018)). Next, we train separate binary
classifiers for each relation type with Euclidean
and hyperbolic SVM classifiers. Performance of
binary classifiers is evaluated with the area un-
der the receiver-operator curve (ROC AUC), and
is averaged over all 10 runs. This nested cross-
validation procedure with 10 runs is computed
separately in Euclidean and hyperbolic cases for
dimensions d ∈ {2, 5, 10}. For a fair comparison
we train embeddings for 500 epochs each time. In
both hyperbolic and Euclidean SVMs, the parame-
ter C ∈ {0.1, 1, 10} (Eq.2) is optimized separately
on the training dataset for each run.

3 Results and discussion

Table 1 summarizes results of our experiments,
where we compared the classification performance
of Euclidean and hyperbolic embeddings in con-
junction with Euclidean and hyperbolic large-
margin classifiers. Each score in this table repre-
sents an average classification score of 10 nested
cross-validation runs over all relations in the
knowledge graph (each relation score itself is an
average over 10 runs, and the final score is the
average over all relations). Our comparisons are
reported for a increasing number of dimensions

https://github.com/lateral/geodesic-poincare-embeddings
https://github.com/lateral/geodesic-poincare-embeddings
https://github.com/facebookresearch/StarSpace
https://github.com/plumdeq/hsvm
https://github.com/hhcho/hyplinear


Euclidean embeddings Hyperbolic embeddings

dim d Euc SVM Hyp SVM Euc SVM Hyp SVM

UMLS
2 0.661± 0.023 0.616± 0.019 0.695± 0.026 0.703 ± 0.018
5 0.780 ± 0.023 0.743± 0.024 0.735± 0.030 0.743± 0.024
10 0.793 ± 0.025 0.754± 0.022 0.767± 0.031 0.742± 0.026

BIO-KG

2 0.692 ± 0.010 0.691± 0.010 0.613± 0.006 0.676± 0.009
5 0.776 ± 0.010 0.771± 0.011 0.697± 0.008 0.756± 0.011
10 0.732± 0.009 0.723± 0.008 0.711± 0.010 0.763 ± 0.010

Table 1: Performance comparison of flat and curved embeddings and large-margin classifiers for biological link
prediction task. Link prediction is performed by training large-margin classifiers in Euclidean (Euc SVM) and
hyperbolic (Hyp SVM) spaces on Euclidean and hyperbolic embeddings (classifiers and embeddings are trained
separately). Embeddings are trained once per graph, while one separate classifier is trained for each type of
relation. Performance of a classifier to predict a link of a certain type is measured with ROC AUC score. Each
cell represents a ROC AUC score (± SD (standard deviation)) averaged over all relations in a graph (each relation
ROC AUC score is itself averaged after a 10 fold cross-validation.

(d ∈ [2, 5, 10]).

Results for UMLS confirmed the main hypoth-
esis supported in (Nickel and Kiela, 2017; De Sa
et al., 2018) that hyperbolic embeddings outper-
form Euclidean embeddings with fewer dimen-
sions. And, as reported in (Cho et al., 2018), that
large-margin classification in hyperbolic space uti-
lizes the curved geometry of the learned embed-
dings better than its flat counterpart (linear eu-
clidean SVM classifier). Moreover, the UMLS
graph contains many links (e.g., PART OF) that
inherently encode hierarchical semantic relations
between the nodes, which are better represented in
the hyperbolic space. However, as we increase the
number of dimensions, Euclidean embeddings and
Euclidean SVM outperform its hyperbolic com-
petitors.

In case of a bigger and complex graph (BIO-
KG) the situation seems to be the exact opposite
– hyperbolic toolbox largely outperforms its Eu-
clidean counterpart as we increase the size of di-
mensions (d = 10), while flat classifier and flat
embeddings perform better with fewer dimensions
(d = 2, 5). This could be due to the fact that 500
epochs are not enough to disentangle complex bio-
logical knowledge in the hyperbolic space in lower
dimensions.

In all of our experiments Hyperbolic SVM had
significantly better training performance (ROC
AUC) than Euclidean SVM, which shows that the
curved hyperbolic space does represent the train-
ing data better, however, has a poorer generaliza-
tion trait than its Euclidean counterpart.

4 Lessons learned and future directions

The benefit of learning hyperbolic embeddings is
that they require fewer dimensions to capture la-
tent semantic and hierarchical information. This is
important for scalability and interpretability (eas-
ier to visualize 2 or 3 dimensional embeddings).

From our preliminary results we observed that
hyperbolic embeddings capture latent hierarchi-
cal semantic relations of the UMLS graph better
than Euclidean embeddings in lower dimensions,
similar to the state-of-the-art results for the recon-
struction of hierarchical relationships (Nickel and
Kiela, 2017, 2018; Ganea et al., 2018). For com-
plex and big graphs, such as BIO-KG, we would
recommend training hyperbolic embeddings for
longer periods (> 500 epochs) in order to better
disentangle complex information.

While training hyperbolic embeddings is notori-
ous for long computational time, recent advances
in Riemannian SGD optimization in hyperboloid
model of hyperbolic space (Wilson and Leimeis-
ter, 2018) provide us with computational tools
that run much faster than analogous approaches
in Poincare ball model (Nickel and Kiela, 2017)
(still much slower than in the Euclidean case). Fi-
nally, we believe that in order to learn better hyper-
bolic embeddings (and do it faster), the next steps
should be focused on end-to-end hyperbolic em-
bedding training, where hyperbolic large-margin
classifier loss is directly incorporated during the
training process.
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Matthieu Perrot, and Èdouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research.

S.N. Sri Nurdiati and C. Hoede. 2008. 25 years de-
velopment of knowledge graph theory: the results
and the challenge. Number 2/1876 in Memoran-
dum. Discrete Mathematics and Mathematical Pro-
gramming (DMMP).

Benjamin Wilson and Matthias Leimeister. 2018. Gra-
dient descent in hyperbolic space. arXiv.

https://arxiv.org/abs/1807.10511
https://arxiv.org/abs/1807.10511
https://arxiv.org/abs/1807.10511
https://doi.org/10.1038/srep30108
https://doi.org/10.1038/srep30108
https://doi.org/10.1038/srep30108
https://doi.org/10.1093/bioinformatics/btx275
https://doi.org/10.1093/bioinformatics/btx275
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
http://arxiv.org/abs/1705.10359
http://arxiv.org/abs/1705.10359
https://arxiv.org/abs/1806.00437
https://arxiv.org/abs/1806.00437
https://arxiv.org/abs/1804.03329
https://arxiv.org/abs/1804.03329
https://arxiv.org/abs/1804.01882
https://arxiv.org/abs/1804.01882
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1103/{PhysRevE}.82.036106
https://doi.org/10.1103/{PhysRevE}.82.036106
http://arxiv.org/abs/1705.08039
http://arxiv.org/abs/1705.08039
http://arxiv.org/abs/1705.08039
https://arxiv.org/abs/1806.03417
https://arxiv.org/abs/1806.03417
https://arxiv.org/abs/1806.03417
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1109/JPROC.2015.2483592
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://arxiv.org/abs/1805.08207
https://arxiv.org/abs/1805.08207

