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Abstract

Stock movements prediction is a highly challeng-
ing study for research and industry. Using social
media for stock movements prediction is an effec-
tive but difficult task. However, the existing predic-
tion methods which are based on social media usu-
ally do not consider the rich semantics and relation
for a certain stock. It leads to difficulty in effec-
tive encoding. To solve this problem, we propose
a CapTE (Capsule network based on Transformer
Encoder) model which uses the Transformer En-
coder to extract the deep semantic features of the
social media and then captures the structural rela-
tionship of the texts through a capsule network. In
this paper, we evaluate our method with different
benchmarks, and the results demonstrate that our
method improves the performance of stock move-
ments prediction.

1 Introduction
According to the Efficient Market Hypothesis (EMH) [Fama
et al., 1969], stock price movements are thought to be related
to the news. In natural language processing (NLP), public
news and social media are two primary content resources for
stock movements prediction. Moreover, social media such
as Twitter is better in timeliness than news, so the condition
that text from social media like Twitter is used to predict the
stock movements draws numerous attention recently. On the
other hand, tweets are able to reflect the investor’s mentality
to some extent. It is useful for the prediction of stock move-
ments.

Many studies focus on stock movements prediction based
on social media. Xu and Cohen [2018] introduce recur-
rent and continuous latent variables for better treatment of
stochasticity, use neural variational inference to address the
intractable posterior inference, and also provide a hybrid ob-
jective with temporal auxiliary to flexibly capture predictive
dependencies. Wu et al. [2018] propose a novel Cross-model
attention based on Hybrid Recurrent Neural Network (CH-
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RNN), which is inspired by the recent proposed DA-RNN
model [Qin et al., 2017].

In order to cross the chasm of prediction ability between
machine and human, a deeper level of semantic information
need to be explored in the text. Obviously, the above methods
do not consider the rich semantic information and structural
information of the social media, which lead to the model be-
ing unable to mine the deep semantics of text. For example,
“Seems Travis is Still Running Uber! Surprised?”, this ex-
pression of the sentence is colloquial which is very difficult
to get the real mentality of the author. Especially, for one
stock, there are more than one tweets on the same day. Ex-
isting methods can not effectively extract semantic features
from these complex texts which are vital for this task.

Therefore, insights on the solutions to stock movements
prediction can be drawn from the novel structure for capturing
a deeper level of semantic information. In this paper, we pro-
pose a CapTE (Capsule network based on Transformer En-
coder) model which uses Transformer encoder to solve this
problem due to its multi-head attention structure. The model
is able to capture more important semantic information from
different texts. Tang et al. [2018] prove that the Transformer
encoder achieves better results in semantic feature extraction
than other models based on CNN and RNN. From our re-
sults, we also prove that the Transformer encoder is better
than other models in the task of stock movements prediction.

At the same time, there will be a lot of tweets for each
stock on the same day. These tweets often contain differ-
ent people’s views on the same stock, and the views are of-
ten different or even opposite. For example, “4 Major Stocks
That Analysts Want You to Buy Now $GE” and “$GE tech-
nical alerts: Non-ADX 1,2,3,4 Bearish, MACD Bullish Sig-
nal Line Cross, 1,2,3 Retracement Be”. So how to capture
valuable information from these different comments and ul-
timately get the right judgment is a very difficult problem.
From the perspective of studying the relationship for differ-
ent tweets contained on one day of one stock, we input the
deep semantic information extracted by the Transformer en-
coder into a capsule network, which achieves the relationship
between the semantic information for stock movements pre-
diction. Ablation experiment proves that the capsule network
effectively improves the accuracy of prediction. Finally, ex-
perimental results show that our integrated model is effective.

Our contributions are as follows:
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• For the stock movements prediction, our model captures
the deep effective semantic features of tweets more ef-
fectively through the Transformer encoder, compared
with neural network models such as CNNs and RNNs.
• Up to date, no work introduces the Transformer to the

task of stock movements prediction except us, and our
model proves the Transformer improve the performance
in the task of the stock movements prediction.
• The capsule network is also first introduced to solve the

problem of stock movements prediction based on social
media. The results show that the capsule network is ef-
fective for this task.

2 Related Work
Stock Market Prediction: There are a series of works pre-
dicting stock movements using text information [Lavrenko et
al., 2000; Schumaker and Chen, 2009; Xie et al., 2013; Peng
and Jiang, 2015; Li et al., 2017]. Pioneering works extract
different types of textual features from texts, such as bags-of-
words, noun phrases, named entities, and structured events.
Ding et al. [2014] showed structured events from open in-
formation extraction. Yates et al. and Fader et al. [2007;
2011] achieved better performance compared to conventional
features, as they capture structured relations. However, one
disadvantage of structured representations for events is that
they lead to increased sparsity, which potentially limits the
predictive power. Ding et al. [2015] proposed to address
this issue by representing structured events and using event
dense embeddings. Ding et al. [2016] leveraged ground
truth from the knowledge graph to enhance event embed-
dings. Shah et al. [2018] retrieved, extracted, and analyzed
the effects of news sentiments on the stock market. Liu et
al. [2018] adopted a two-level attention mechanism to quan-
tify the importance of the words and sentences in given news
and designed a novel measurement for calculating the atten-
tion weights to avoid capturing redundant information in the
news title and content. In this paper, we focus on capturing
the deep semantic features of the social media appeared on
the same day for prediction. The results show that our model
is useful.
Transformer: Vaswani et al. [2017] presented the Trans-
former, the first sequence transduction model based entirely
on attention, replacing the recurrent layers most commonly
used in encoder-decoder architectures with multi-headed self-
attention. Tang et al. [2018] evaluated RNNs, CNNs, and
Transformer on two tasks: subject-verb agreement and word
sense disambiguation. Their experimental results showed
that: 1) Transformer and CNNs did not outperform RNNs
in modeling subject-verb agreement over long distances;
2) Transformer performed distinctly better than RNNs and
CNNs on word sense disambiguation. Radford et al. [Rad-
ford et al., 2018] performed three different ablation studies
and analyzed the effect of the Transformer by comparing it
with a single layer 2048 unit LSTM using the same frame-
work. They observed a 5.6 average score drop when using
the LSTM instead of the Transformer. In our model, we ob-
tain more semantic features through the Transformer. It is
better than other baselines based on CNN and RNN.

Capsule Network: Hinton et al. [2011] firstly introduced
the concept of “capsules” to address the representational lim-
itations of CNNs and RNNs. Capsules with transformation
matrices allow networks to automatically learn part-whole
relationships. Consequently, Sabour et al. [2017] proposed
capsule networks that replace the scalar-output feature detec-
tors of CNNs with vector-output capsules and max-pooling
with routing-by-agreement. The capsule network has shown
its potential by achieving a state-of-the-art result on MNIST
data. Xi et al. [2017] further tested out the application of
capsule networks on CIFAR data with higher dimensionality.
Hinton et al. [2018] proposed a new iterative routing pro-
cedure between capsule layers based on the EM algorithm,
which achieved significantly better accuracy on the small
NORB dataset. Zhang et al. [2018] generalized existing rout-
ing methods within the framework of weighted kernel density
estimation. Zhao et al. [2018] investigated the performance
of capsule networks in NLP tasks. In comparison, our work
combines the transformer encoder with a capsule network,
further improves the results of the task of stock movements
prediction.

3 CapTE Model
We predict the movements of stocks on the trading day td.
And we use price data crawled from Yahoo Finance to label
the tweets that where 1 denotes rise and 0 denotes fall,

y = 1(pctd > pctd−1) (1)

where pctd denotes the adjusted closing price which is adjusted
for actions affecting stock movements, e.g. dividends and
splits. Before our work, the adjusted closing price has been
used for predicting stock price movements [Xie et al., 2013]
[Xu and Cohen, 2018].

Generally, tweets of the same stock often contain more
than one item in the same trading day. For learning more valu-
able information from multiple tweets, we adopt the trans-
former to encode the texts and then get the encoded repre-
sentation as the input of the capsule network. By the capsule
network, we capture the relationship between different tweets
appeared on the same trading day that belonging to one stock.
Finally, we obtain the probability of each category as the pre-
diction results. Figure 1 shows the architecture of the pro-
posed model, namely Capsule network based on Transformer
Encoder (CapTE).

We merge all the tweets appeared on one day of the same
stock as one sentence. For each sentence si, we utilize the
pretrained word embeddings (word2vec) to project each word
token onto the dmodel-dimensional space as the input of the
Transformer encoder.

3.1 Transformer Encoder
In order to obtain deep semantic features from complex texts,
we introduce the Transformer encoder. The encoder maps
an input sequence of symbol representations si= (x1,...,xn)
to a sequence of continuous representations (z1,...,zn). And
as the paper [Vaswani et al., 2017] design, the encoder con-
tains a stack of N = 6 identical layers. Each layer has
two sub-layers. A multi-head self-attention mechanism is the

67



Figure 1: Transformer-Based Capsule Network

Figure 2: Scaled Dot-Product Attention.

first, while the second is a simple, position-wise fully con-
nected feed-forward network. Around each of the two sub-
layers exists a residual connection [He et al., 2016], and a
layer normalization follows after the two sub-layers. Hence,
the output of each sub-layer is LayerNorm(x + Sublayer(x)).
Sublayer(x) is the function implemented by the sub-layer it-
self.

Positional Encoding
The order of the words in the tweets is significant for the pre-
diction. A reversal of the order of the words in a sentence
often changes the original meaning. For example, “breakout
and buying” and “buying and breakout”. The former tweet
means after breakout we can buy, but the later means we can
buy immediately and wait for the raising of the stock price.
So we adopt the “positional encodings” and add it to the in-
put embeddings. In the end, we sum the two vectors as the
final input at the bottom of the encoder. It is realized by the
same dimension of the input embeddings and positional en-

codings. In our model, we employ sine and cosine functions
of different frequencies as positional encodings:

PE(pos,2i) = sin(pos/100002i/dmodel) (2)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (3)

where pos is the position and i is the dimension. Each dimen-
sion of the positional encoding corresponds to a sinusoid.

Scaled Dot-Product Attention
After obtaining the representation summed by the word em-
beddings and the positional encoding, we compute the ma-
trixes as the input of Scaled Dot-Product Attention, which
consists of queries and keys of dimension dk, and values of
dimension dv . And then, we get the dot products of the query
with all keys, divide each by

√
dk, and utilize a softmax func-

tion to achieve the weights on the values. The matrix Q can
be packed together into a matrix after computing the attention
function on a set of queries simultaneously. The matrices K
and V also apply the same method, which denotes the keys
and values respectively. And the whole process is depicted in
Figure 2. The matrix of outputs are as follows:

Attention(Q;K;V ) = softmax(
QKT

√
dk

)V (4)

Multi-Head Attention
For the complex tweets, a single attention function is difficult
to achieve enough information for improving the result of the
prediction. So we linearly project the queries, keys, and val-
ues h times with different, which learns linear projections to
dk, dk and dv dimensions, respectively. On each of these
queries, keys, and values, we perform the attention function
in parallel and yielding dv-dimensional output values. They
are concatenated and projected, resulting in the final values.
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Multi-head attention allows the model to jointly attend to in-
formation from different representation subspaces at different
positions. The function of Multi-Head Attention as follows:

MultiHead(Q;K;V ) = Concat(head1, ..., headh)W
O

(5)
where WO is the weight matrix used to multiply with the
concatenated result of all the heads to produce the final output
of the encoder. In our work we adopt h = 8 parallel heads. For
each of the heads, we use dk = dv = dmodel/h = 64.

Position-wise Feed-Forward Networks
Each of the layers in the encoder contains a fully connected
feed-forward network. It is applied to each position sepa-
rately and identically and consists of two linear transforma-
tions with a ReLU activation in between.

FFN(x) = max(0;xW1 + b1)W2 + b2 (6)

while the linear transformations are the same across different
positions, they use different parameters from layer to layer,
just as two convolutions with kernel size 1. The dimensional-
ity of input and output is dmodel = 512.

3.2 Capsule Network
Different from the method of CNNs and RNNs, the capsule
network increases the weights of similar information through
its dynamic routing. The dynamic routing is proposed by
Sabour et al. [2017], which displaces the pooling operation
used in conventional convolution neural network. It main-
tains the position information for features, which is benefi-
cial to the text representation. More importantly, this routing-
by-agreement method has the ability to cluster the features
into each class. People often focus on the important event,
hence, the comments based on a hot event look alike. Since
the price of a stock is usually decided by the significant event,
we choose the capsule network to handle the information ob-
tained from the Transformer encoder. After getting the output
from the transformer encoder, we input the new representa-
tion into a capsule network to get the probability of each cat-
egory. The capsule network consists of four layers: n-gram
convolutional layer, primary capsule layer, convolutional cap-
sule layer, and fully connected capsule layer.

N-gram Convolutional Layer
This layer is a standard convolutional layer which extracts n-
gram features at different positions of a sentence according to
various convolutional filters. In this part, the sentence is the
new representation from the Transformer encoder.

Suppose Z ∈ RL×dmodel denotes the input representa-
tion, where L is the length of the emerged tweets of a cer-
tain day. And zi ∈ Rdmodel is the dmodel-dimensional vec-
tor corresponding to the ith word in the new representation.
W a ∈ RK1×dmodel is the filter for the convolution operation,
where K1 is N-gram size. A filter W a convolves with the
word windowZi:i+K1−1 at each possible position (with stride
of 1) to produce a column feature map ma ∈ RL−K1+1, each
element ma

i ∈ R of the feature map is produced by

ma
i = f(Zi:i+K1−1 ◦W a + b0) (7)

where ◦ is element-wise multiplication, b0 is a bias term,
and f is a nonlinear activate function. That is the pro-
cess by which one feature is extracted from one filter. For
a = 1, ..., B, B filters with the same kernel size of the convo-
lution operation. By assembling B feature maps together, we
have a B-channel layer.

M = [m1,m2, ...,mB ] ∈ R(L−K1+1)×B (8)

Primary Capsule Layer
The feature maps generated from the n-gram convolutional
layer are fed into this layer, piecing the instantiated parts to-
gether via another convolution. This is the first capsule layer
in which the capsules replace the scalar-output feature de-
tectors of CNNs with vector-output capsules to preserve the
instantiated parameters of each feature.

By sliding over the feature map M , each filter W b output
a series of capsules pi ∈ Rd, where d is the dimension of the
capsule. These capsules comprise a channel pi of the primary
capsule layer.

pi = g(W bMi + b1) (9)

where g is nonlinear squash function through the entire vec-
tor, b1 is the capsule bias term. For all C filters, the generated
capsule feature maps can be rearranged as

P = [p1, p2, ..., pC ] ∈ R(L−K1+1)×C×d (10)

where totally (L − K1 + 1) × C d-dimensional vectors are
collected as capsules in P .

Child-Parent Relationships
Capsule network generates the capsules in the next layer us-
ing “routing-by-agreement”. This process takes the place of
pooling operation and usually discards the location informa-
tion, which helps augment the robust of the network and clus-
ter features for prediction. It allows the networks to automat-
ically learn child-parent relationships. In the stock prediction
task, different tweets with the same category are supposed to
share a similar topic but with different viewpoints. For exam-
ple, “4 Major Stocks That Analysts Want You to Buy Now
$GE” and “$GE technical alerts: Non-ADX 1,2,3,4 Bearish,
MACD Bullish Signal Line Cross, 1,2,3 Retracement Be”.
For the two comments, they talk about the same topic of tech-
nical analysis but get different views.

Between capsules i and j, a prediction vector ˆuj|i ∈ Rd

is first calculated from the child capsule i, by multiplying a
weight matrix W t1 ∈ RN×d×d, where N is the number of
parent capsules in the layer above. Each corresponding vote
is computed by:

ˆuj|i =W t1
j ui +

ˆbj|i ∈ Rd (11)

where ui is a child-capsule in the layer below and ˆbj|i is the
capsule bias term.

The length of the capsule represents the probability that the
input sample has the object capsule describes, and it is limited
in range from 0 to 1 by a non-linear squashing function. The
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function pushes the short vectors to shrink to zero length and
the long ones to one.

vj =
‖gj‖2

1 + ‖gj‖2
gj

‖gj‖2
(12)

A capsule gj is generated by the linear combination of all the
prediction vectors with weights.

Dynamic Routing
The basic idea of dynamic routing is to construct a non-linear
map in an iterative manner ensuring. It shows that the out-
put of each capsule gets sent to an appropriate parent in the
subsequent layer [Sabour et al., 2017]:

{ ˆuj|i ∈ Rd}i=1,...H,j=1,...,N 7−→ {vj ∈ Rd}Nj=1 (13)
where vj denotes each parent-capsule in the layer above. The
parent capsules and their probabilities in the layer above are
denoted as

v, a = Routing(û) (14)
where û denotes all of the child capsules in the layer below, v
denotes all of the parent-capsules and their probabilities a =
|v|.
Convolutional Capsule Layer
In this layer, each capsule is connected with a local region
K2 × C spatially in the layer below. Those capsules in the
region multiple transformation matrices are to learn child-
parent relationships followed by routing by agreement to pro-
duce parent capsules in the layer above. K2×C is the number
of child capsules in a local region in the layer above. When
the transformation matrices are shared across the child cap-
sules, we get each potential parent capsule. And then, we
use routing-by-agreement to produce parent capsules feature
maps totally (n−K1−K2+2)×D d-dimensional capsules
in this layer. D is the number of parent capsules which the
child capsules are sent to.

Fully Connected Capsule Layer
The capsules in the layer below are flattened into a list of
capsules and fed into fully connected capsule layer in which
capsules are multiplied by transformation matrix W d1 ∈
RG×d×d or W d2 ∈ RH×G×d×d followed by routing-by-
agreement to produce final capsule vj and its probability aj
for each category. And H is the number of child capsules in
the layer below, G = 3 is the number of categories plus an
extra orphan category in this task. The orphan category helps
us collect the less contributive capsules that contain too much
background information. This method reduces the interfer-
ence for normal categories.

Inspired by Zhao et al. [2018], we attempt to use the proba-
bility of the existence of parent capsules to iteratively amend
the connection strength. The length of the vector vj repre-
sents the probability of each relation. To increase the differ-
ence between the lengths of categories, we adopt a separate
margin loss Lossk for each relation capsule k:

Lossk = Ykmax(0,m
+ − ||vk||)2

+λ(1− Yk)max(0, ||vk|| −m−)2
(15)

Data Stocks Days Tweets Words

Tweet 47 231 746,287 137,052

Table 1: Basic statistics of the dataset.

where vk is the capsule for class k, m+ and m− is the top
and bottom margins respectively. Yk = 1 if the relation k is
present. λ is the weight for the absent classes. In our model,
m+ = 0.9, m− = 0.1 and λ = 0.5.

The Architectures of Capsule Network
The capsule network starts with a 1-gram (K1 = 1) convo-
lutional layer with 32 filters (B = 32) and a stride of 1 with
ReLU non-linearity. All the other layers are capsule layers
starting with a B × d primary capsule layer with 32 filters (C
= 32), followed by a 1× C × d× d (K2 = 1 ) convolutional
capsule layer with 16 filters (D = 16) and a fully connected
capsule layer in sequence.

Each capsule has 16-dimensional (d = 16) instantiated pa-
rameters and their length (norm) describe the probability of
the existence of capsules. The capsule layers are connected
by the transformation matrices, and each connection is also
multiplied by a routing coefficient. It is dynamically com-
puted by the routing of agreement mechanism. The final out-
put with three classes (G = 3) in the fully connected capsule
layer is obtained from the probability of each category. In
this way, the capsule network learns more valuable informa-
tion for the stock prediction.

4 Experiment
4.1 Datasets
We test our model on the open dataset 1. It ranges from Jan-
uary 2017 to November 2017 and contains 47 stocks which
have sufficient tweets from the Standard Poor’s 500 list. The
basic statistics of the dataset are shown in Table 1. The ex-
perimental dataset is still available until June 2019. Totally in
our model and other baselines, we split the dataset with the
ratio of approximately 5: 1: 1 in chronological order, which
is the same as Wu et al. [2018].

4.2 Experimental Setups
In our experiment, the initial word embedding is obtained by
word2vec. The dimension of word embedding is 512. We use
the rise (1) and fall (0) of the stock price as the final output.
The internal weights in our model are initialized by sampling
from the uniform distribution and tuned in the training pro-
cess. We adopt mini-batch in the training process, and the
batch size is 128.

4.3 Evaluation Metrics
Following previous work for stock prediction [Xie et al.,
2013; Ding et al., 2015; Xu and Cohen, 2018], we adopt the
standard measure of accuracy and Matthews Correlation Co-
efficient (MCC) as evaluation metrics. With the confusion
matrix which contains the number of samples classified as

1https://github.com/wuhuizhe/CHRNN

70

https://github.com/wuhuizhe/CHRNN


Model Acc. MCC

TSLDA 53.92 0.0561
HAN 57.14 0.0723

HCAN 58.72 0.0876
CH-RNN 59.15 0.0945
CapTE-nT 59.64 0.1073
CapTE-nC 60.12 0.1258

CapTE 64.22 0.3481

Table 2: Performance of baselines and CapTE variations in accuracy
and MCC.

true positive, false positive, true negative and false negative,
MCC is calculated as follows:

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(16)

4.4 Comparison Methods
We conduct extensive experiments to compare our model
with several baselines:

• TSLDA: A generative topic model jointly learning top-
ics and sentiments [Nguyen and Shirai, 2015].

• HAN: A state-of-the-art discriminative deep neural net-
work with hierarchical attention [Hu et al., 2018]. In our
experiment, we adopt their open source code 2 to get the
results.

• HCAN: A novel deep generative model jointly exploit-
ing text and price signals [Xu and Cohen, 2018].

• CH-RNN: A novel Cross-model attention based Hybrid
Recurrent Neural Network (CH-RNN) [Wu et al., 2018].
And the dataset is the same as our model.

• CapTE-nT: In order to verify the effectiveness of the
Transformer, we conduct experiments by utilizing our
model without the Transformer Encoder.

• CapTE-nC: In order to verify the effectiveness of the
Capsule network, we conduct experiments by utilizing
our model without the Capsule Network.

4.5 Experimental Analysis
We test our model from two aspects. One is to predict the rise
and fall based on the dataset. The results are shown in table
2. The other is a simulation test based on the transaction.
The results are shown in table 3. In the end, we analyze the
reasons for error based on the different model.

Comparison Methods
From table 2, we can see that on the 47 stocks CH-RNN gets
the highest score in the baselines. However, on the same
dataset that using the same way to split, our model obtains
higher accuracy than CH-RNN, more than 5%, that shows
our model capture deep semantic features more effectively.

2https://github.com/yumoxu/stocknet-code

Stock CH-RNN CapTE

AAPL 884$ 901$
BAC 872$ 996$
DIS 659$ 869$
IBM 1092$ 1768$
PFE 1025$ 853$

WMT 1127$ 1489$

Table 3: Profit comparison between CH-RNN and CapTE.

The CapTE-nC model gets a higher score by using the only
Transformer than CH-RNN in both accuracy and MCC. It fur-
ther illustrates that the Transformer captures deep semantic
features compared to RNNs. At the same time, the perfor-
mance of CapTE-nT is higher than the scores of CH-RNN
in both the accuracy and the MCC. It further demonstrates
that the capsule network obtains valuable relationship infor-
mation. On the other hand, the score of CapTE-nC is higher
than CapTE-nT which indicates that the capture of deep se-
mantic features is more important for complex data such as
tweets.

Especially, the results of CapTE-nT and CapTE-nC with
the only partial model are quite different from those of the
complete model. We believe that it is because the transformer
encoder and capsule network complement each other in the
extraction of deep semantic features. They constitute a com-
plete system. And the function of the system performs more
effectively than a single model.

Stock Trading Simulation
We simulate real stock trading by following the strategy pro-
posed by Lavrenko et al. [2000]. If the model predicts that a
stock price will raise the next day, we spend $10,000 to buy
it at the opening price. And then, we hold the stock for one
day. During this time, if the stock price increase 2% or more,
we sell it immediately. If not, we sell the stock at the closing
price. On the other hand, if the model predicts that a stock
price will fall, when we can buy the stock at a price 1% lower
than shorted, we buy the stock. Otherwise, we buy the stock
at the closing price.

In table 3, we show the returns of six randomly selected
stocks through CH-RNN and CapTE with $10,000 in 20 trad-
ing day. And the maximum return of IBM is over 17%. The
results demonstrate consistently better performance, which
indicates the robustness of our model.

Error Analysis

Figure 3: Examples for Error Analysis.

However, comparing with the PFE’s return between the
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selected model, we find that CapTE is bad than CH-RNN.
Hence, we compare the prediction results of CapTE with CH-
RNN and analyze the cases which are wrongly predicted by
CapTE but well predicted by CH-RNN.

Finally, we summarize two situations: a tweet is written to
confuse the traders by the market makers. For example in Fig-
ure 3, “PFIZER...waiting for breakout and buying”, after this
message, the stock price fell in the next few days. Instigat-
ing people to buy when they prepare to short and instigating
people to sell when they want to bull is the main method to
obtain profit by the market makers. Second, the event is just
a fictive fact. For example, “Significant Insider Trades: Oct
30 - Nov 3”, and this message is apparently important to the
stock trend. But it is well-known that the “Insider Trades”
is unlikely to be made public. Most of the time, such news
is just a rumor. For our model, it is hard to achieve the cor-
rect prediction without introducing the relevant knowledge in
these conditions.

5 Conclusion

To capture the deep semantic information and structural rela-
tion for stock movements prediction task, we introduce the
CapTE (Capsule network based on Transformer Encoder)
model and demonstrate the reliability of our model. As shown
in the results, we have no reason to doubt the importance of
valuable information obtained through the Transformer. At
the same time, with the aid of transformer encoder, the cap-
sule network obtains the specific relationship between tweets
that can improve the prediction accuracy of stock movements.
Our model combines the advantages of the Transformer en-
coder and capsule network. In addition, because we intro-
duce no financial data except texts in our model, our method
has a generalization ability to the text classification tasks in
the NLP field. However, our experimental dataset is only the
day-level, the impact of tweets might be limited to the day
when the event happens. Especially on the U.S. stock mar-
ket, it allows people to trade many times on one trading day.
For the task, this condition means the tweets have lost their
impacts on the next day. Hence, how to predict the move-
ments in a smaller period of time with information is the next
topic we need to research.
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