
Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 294–300
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

294

The University of Helsinki Submission to the WMT19
Parallel Corpus Filtering Task

Raúl Vázquez, Umut Sulubacak and Jörg Tiedemann

University of Helsinki
{name.surname}@helsinki.fi

Abstract
This paper describes the University of Helsinki
Language Technology group’s participation in
the WMT 2019 parallel corpus filtering task.
Our scores were produced using a two-step
strategy. First, we individually applied a series
of filters to remove the ‘bad’ quality sentences.
Then, we produced scores for each sentence
by weighting these features with a classifica-
tion model. This methodology allowed us to
build a simple and reliable system that is eas-
ily adaptable to other language pairs.

1 Introduction

Data-driven methodologies define the state of the
art in a wide variety of language processing tasks.
The availability of well-formed, clean data varies
from language to language, and finding such
data in sufficient amounts can prove challenging
for some of the lower-resourced languages. In
particular, the increasingly common neural ma-
chine translation systems are highly sensitive to
the quality as well as the quantity of training
data (Khayrallah and Koehn, 2018), which creates
an impediment to achieving good-quality transla-
tions in a low-resource scenario.

The web is a massive resource for text data in
a wide array of languages. However, it is costly
to manually extract high-quality parallel samples
from the web, and automatically-crawled datasets
such as the ParaCrawl Corpus1 are typically quite
noisy. Designing automatic methods to select
high-quality aligned samples from noisy parallel
corpora can therefore make crawling the web a
more viable option for compiling useful training
data.

To emphasize this untapped potential, Koehn
et al. (2018) proposed the Shared Task on Paral-
lel Corpus Filtering as part of WMT in 2018. We

1ParaCrawl can be downloaded from https:
//paracrawl.eu/

participated in this year’s task with three sets of
quality scores. Each score is a different aggrega-
tion of a shared set of features, with each feature
representing a local quality estimate focusing on
a different aspect. Section 2 contains a brief dis-
cussion of this year’s shared task. We present our
scoring system in Section 3, discussing the filters
we used for feature extraction in Section 3.2, and
the aggregate scorers in Section 3.3. Finally, we
report our contrastive results in Section 4.

2 Task Description

This year, the corpus filtering task organizers de-
cided to pose the problem under more challeng-
ing conditions by focusing on low-resource sce-
narios, as opposed to previous year German–
English (Koehn et al., 2018). In particular, two
parallel corpora are to be scored for filtering:
Nepali–English and Sinhala–English. The task
for each participating team is to provide a quality
score for each sentence pair in either or both of the
corpora. The scores do not have to be meaning-
ful, except that higher scores indicate better qual-
ity. The computed scores are then evaluated un-
der four scenarios: training SMT and NMT sys-
tems, on samples of 5 million and 1 million words
each, where the samples are obtained from the cor-
responding corpus using the quality scores.

Participants are provided with raw corpora to
score, which were crawled using the ParaCrawl
pipeline, and consist of 40.6 million (English)
words for Nepali–English, and 59.6 million for
Sinhala–English. Additionally, some parallel and
monolingual corpora were provided for each lan-
guage pair. We used the parallel datasets to train
some of our scoring systems2. Some descriptive

2En–Si: OpenSubtitles and GNOME/KDE/Ubuntu; En–
Ne: Bible (two translations), Global Voices, Penn Treebank,
GNOME/KDE/Ubuntu, and Nepali Dictionary.

https://paracrawl.eu/
https://paracrawl.eu/

295

corpus lang. pair sent. pairs en words
ParaCrawl en–ne 2.2M 40.6M
additional en–ne 543K 2.9M
ParaCrawl en–si 3.4M 45.5M
additional en–si 647K 3.7M

Table 1: Statistics on the ParaCrawl data and the used
parallel data. Only English word counts reported.

statistics of the data we have used can be found in
Table 1.

3 Scoring system

We first independently applied a series of filters
to the data and computed relevant numerical fea-
tures with them. We have previously corroborated
the filters’ effectiveness, since we have used them
to clean the noisy datasets provided for this year’s
news translation task at WMT with satisfactory re-
sults. Then, we selected a cut-off value for each fil-
ter and trained a classifier over the features to com-
pute a global score for each sentence pair, which
we used to rank them.

3.1 Cleaning up the clean training data
Some of our filters require clean data for training.
We observed that the provided parallel data still
contained quite a lot of noise, and therefore, we
applied some additional heuristic filters to clean
it further. In particular, we used the following
heuristics to remove pairs with characteristics that
indicate likely problems in the data:

• Removing all sentence pairs with a length ra-
tio above 3 between the source and the target.

• Removing pairs with very long sentences
containing more than 100 words.

• Removing sentences with extremely long
words, i.e. excluding all sentence pairs with
words of 40 or more characters.

• Removing sentence pairs that include HTML
or XML tags.

• Removing sentence pairs that include charac-
ters outside of the decoding table of Devana-
gari (for Nepalese) and Sinhala characters be-
sides punctuation and whitespace.

• Removing sentence pairs that include De-
vanagari or Sinhala characters in English.

The procedure above discarded around 23% of
the data for Nepali–English, and we kept around
440k parallel sentences from the original data. For
Sinhala–English, we removed about 19% of the
data and kept 522k sentence pairs for training.

3.2 Filters

Word alignment. Our first filter applies statisti-
cal word alignment models to rank sentence pairs.
Word alignment models implement a straightfor-
ward way of estimating the likelihood of paral-
lel sentences. In particular, IBM-style alignment
models estimate the probability p(f |a, e) of a for-
eign sentence f given an ”emitted” sentence e and
an alignment a between them.

We used eflomal 3 (Östling and Tiedemann,
2016) for word-level alignment, as it provides sig-
nificant benefits. First, it is an efficient algo-
rithm based on Gibbs sampling, as opposed to the
slower expectation maximization methods com-
monly used for training. This method is thus able
to train and align large quantities of data in a small
amount of time. Second, this software allows us to
load model priors, a feature we use to initialize the
aligner with previously stored model parameters.
This is handy for our filtering needs, as we can
now train a model on clean parallel data and apply
that model to estimate alignment probabilities of
noisy data sets.

For obtaining model priors, we use the cleaned
training data described above, tokenized with the
generic tokenizer from the Moses toolkit (Koehn
et al., 2007). We cut all words at 10 characters
to improve statistics and training efficiency. With
this, we train for both language pairs a Bayesian
HMM alignment model with fertilities in both di-
rections, and estimate the model priors from the
symmetrized alignment. We then use those pri-
ors to run the alignment of the noisy datasets us-
ing only a single iteration of the final model to
avoid a strong influence of the noisy data on align-
ment parameters. As it is intractable to estimate a
fully normalized conditional probability of a sen-
tence pair under the given higher-level word align-
ment model, eflomal estimates a score based on the
maximum unnormalized log-probability of links
in the last sampling iteration. In practice, this
seems to work well, and we take that value to rank
sentence pairs by their alignment quality.

3Software available from https://github.com/
robertostling/eflomal

https://github.com/robertostling/eflomal
https://github.com/robertostling/eflomal

296

Language model filter. The second filter ap-
plies language models for source and target lan-
guages. In our approach, we opt for a combination
of source and target language models, and focus
on the comparison between scores coming from
both models. The idea with this filter is to pre-
fer sentence pairs for which the cross-entropy with
the clean monolingual language models is low for
both languages, and that the absolute difference
between the cross-entropy of aligned sentences
is low as well. The intuition is that both mod-
els should be roughly similarly surprised when
observing sentences that are translations of each
other. In order to make the values comparable, we
trained our language models on parallel data sets.

As both training data sets are rather small,
and as we aim for an efficient and cheap filter,
we chose a traditional n-gram language model.
To further avoid data sparseness and to improve
comparability between source and target lan-
guages, we also base our language models on
BPE-segmented texts (Sennrich et al., 2016) us-
ing a BPE model trained on the cleaned paral-
lel data set with 37k merge operations per lan-
guage. VariKN 4 (Siivola et al., 2007b,a) is the per-
fect toolkit for the purpose of estimating n-gram
language models with subword units. It imple-
ments Kneser-Ney growing and revised Kneser-
Ney pruning methods with the support of n-grams
of varying size and the estimation of word like-
lihoods from text segmented into subword units.
In our case, we set the maximum n-gram size
to 20, and a pruning threshold of 0.002. Fi-
nally, we compute cross-entropies for each sen-
tence in the noisy parallel training data, and
store five values as potential features for filter-
ing: the source and target language cross-entropy,
H(S , qs) and H(T, qt), as well ad the average,
max and absolute difference between them, i.e.,
avg(H(S , qs),H(T, qt)), abs(H(S , qs)−(T, qt)) and
max(H(S , qs),H(T, qt)).

Language identifiers. A third filter applies off-
the-shelf language identifiers. In particular, we use
the Python interface of the Compact Language De-
tector5 version 2 (CLD2) from the Google Chrome
project, and the widely used langid.py pack-
age (Lui and Baldwin, 2012), to classify each sen-

4VariKN is available from https://vsiivola.
github.io/variKN/

5The Python implementation of CLD2 is available at
https://github.com/aboSamoor/pycld2

tence in the datasets.
We generate 4 features from these classifiers.

For each language, we use the reliability score by
CLD2 only if the predicted language was correct,
and zero otherwise; and we use the detection prob-
ability of langid.py only if the language was
classified correctly, and zero otherwise.

Character scores. Another simple filter com-
putes the proportion of Devanagari, Sinhala and
Latin–1 characters in Nepali, Sinhala and English
sentences, respectively. For this computation, we
ignore all whitespace and punctuation characters
using common Unicode character classes.

Terminal punctuation. This heuristic filter gen-
erates a penalty score with respect to the co-
occurrence of terminal punctuation marks (‘.’,
‘. . . ’, ‘?’, ‘!’) in a pair of sentences. In order
to have a finer granularity than {0, 1}, we penal-
ize both asymmetry (to catch many-to-one align-
ments) and large numbers of terminal punctua-
tion (to cover very long sentences, URLs and
code). For a given source and target sentence
pair, we initialize a score as the absolute differ-
ence between source and target terminal punctua-
tion counts. Then, we increment this score by the
number of terminal punctuation beyond the first
occurrence in both source and target sentences.

The intended effect is for the ideal sentence pair
to contain either no terminal punctuation or a sin-
gle terminal punctuation on either side (score =

0). In practice, many sentences are very far from
the ideal (score � 100), and it is counter-intuitive
to use a larger positive value to represent a higher
penalty. To address both problems, we finally
make the following update:

score = −log(score + 1)

Non-zero numerals. This filter assumes that nu-
merals used to represent quantities and dates will
be typically translated in the same format, and pe-
nalizes sentence pairs where numerals do not have
a one-to-one correspondence or do not occur in the
same sequence.

Sinhala uses the same Western Arabic numerals
used in the Latin alphabet. Nepali uses Devana-
gari numerals, following the same decimal sys-
tem as Western Arabic numerals. This filter takes
that into account, and first converts those to dig-
its between [0, 9]. After numeric normalization,
the filter extracts sequences of numerals from each

https://vsiivola.github.io/variKN/
https://vsiivola.github.io/variKN/
https://github.com/aboSamoor/pycld2

297

pair of sentences, preserving their relative order.
Considering that a leading zero can be omitted
in some numeric sequences such as in dates and
numbered lists, the digit ‘0’ is ignored. Finally, the
score is calculated as a similarity measure between
the extracted sequences in the range [0, 1] us-
ing SequenceMatcher.ratio() from Python’s
difflib.

Clean-corpus filter Finally, we use the well-
proven clean-corpus-n script from Moses to pro-
duce a binary feature augmented by a feature that
marks sentences including HTML or XML tags.

All in all, we obtain 15 potential features from
these filters. However, some of them are to be con-
sidered redundant and the information they pro-
vide is already encoded in some other variable.
For instance, using the reliability score produced
by CLD2 together with the prediction probability
from langid.py would not provide crucial addi-
tional information to a model. Table 2 summarizes
the filters we used to train our scoring models.

№ Feature Definition

1 word-align ∼ p(f |a, e)

2
lang-model

H(S , qs)
3 H(T, qt)

4
lang-id

src reliability score
5 tgt reliability score

6
char-score

English chars %
7 Ne/Si chars %

8 term-punct
penalty for asymmetric

& excessive term. punct.

9 non-zero
similarity between
non-zero digit seq.

10 clean-corpus
1, if kept
0, otherwise

Table 2: List of features extracted from the filters.

3.3 Scorers
We trained a logistic regression classifier and a
random forest classifier to score each sentence pair
using the features presented in Section 3.2. We
trained three independent binary classifiers under
the following settings:

10 0 10 20 30 40
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

EN-NE
 feature1: word-align-stem10

Figure 1: Distribution and cutoff value of feature 1
(word alignment) in the English–Nepali ParaCrawl cor-
pus.

1. Applying all filters to the additional parallel
corpora, and using filtered data as positive
examples, and filtered-out data as negative
examples.

2. Applying all filters to the corresponding
ParaCrawl corpus, and using filtered data
as positive examples, and a sample of 600k
filtered-out examples as negative examples.

3. Applying all filters to both the ParaCrawl
and the additional parallel corpora, and us-
ing these as positive examples, and a sample
of 1M filtered-out examples as negative ex-
amples.

lang. RF LR
pair AIC BIC AIC BIC

PC en-ne 17.8 -1.0e+7 -1.3 -2.5e+6
PC+BIC en-ne 16.8 -1.1e+7 -0.9 -2.9e+6

PC en-si 15.4 -9.4e+6 -1.5 -2.3e+6
PC+BIC en-si 15.6 -1.1e+7 -1.4 -2.9e+6

Table 3: AIC and BIC obtained with random forest
(RF) and logistic regression (LR) models. Compari-
son between the first chosen thresholds for ParaCrawl
(PC) data and the model that optimizes the information
criteria (PC+BIC).

For each filter under the first two scenarios,
we adjusted thresholds based on score distribu-
tions, attempting to keep a balance between hav-
ing restrictive thresholds that limited the amount
of positive examples, and having lax thresholds

298

data langpair word
-al

ign

lan
g-m

od
el

(sr
c)

lan
g-m

od
el

(tg
t)

lan
g-i

d (sr
c)

lan
g-i

d (tg
t)

ch
ar-

sco
re

(%
En)

ch
ar-

sco
re

(%
Ne/S

i)

ter
m-pu

nc
t

no
n-z

ero

cle
an

-co
rpu

s

additional clean ne-en 1 5 0 — 0 0 0 –2 0.5 0
ParaCrawl ne-en 4 10 9 0 0 0 0 –2 0.5 0
ParaCrawl bestBIC ne-en — — — 0 0 0 0 –2 0.5 0

additional clean ne-si 2 6 5 0 0 0 0 –1.5 0.5 0
ParaCrawl ne-si 3 10 10 0 0 0 0 –1 0.5 0
ParaCrawl bestBIC ne-si — 10 10 0 0 0 0 –2 0.5 0

Table 4: Selected threshold value for each feature.

that classified many low-quality examples as pos-
itive. In some cases the score distributions were
clearly bi-modal, making it easy to determine cut-
off values (e.g. see Figure 1); while in other
cases, we had to opt for a more empirical ap-
proach. For this reason, we have a second model
that optimizes the Akaike Information Criterion
(AIC) (Akaike, 1974) and the Bayes Information
Criterion (BIC) (Schwarz et al., 1978) under sce-
nario 2. This model was chosen from among 7
models trained with different reasonable combina-
tions of the features. In Table 3, we compare the
information criteria for both models. Finally, un-
der the third scenario we chose to combine the data
using the defined cutoff values from the previous
two to include a significant amount of examples
from both data sets.

Table 4 summarizes the threshold values used
for each feature. After applying the filters, we
kept 240k sentences (≈ 11% of the total) from
the ParaCrawl en–ne, 230k sentences (≈ 7%) from
ParaCrawl en–si; 239k (≈ 44%) from the addi-
tional clean en–ne data, and 231k (≈ 36%) from
the additional clean en–si data. This means that,
when combining them for scenario 3, we get 419k
sentences (≈ 15%) for en–ne, and 537k for en–
si (≈ 14%). In order to avoid overfitting to the
negative examples in scenarios 2 and 3, which
vastly outnumber the positive ones, we performed
stratified sampling of the negative examples where
we selected 600K and 1M negative examples, re-
spectively. We then randomly split the data into
train (70%) and test (30%) sets.

4 Results

We report the accuracy on the test set achieved by
the aforementioned models in Table 5. We do not

report the accuracy of the random forest classifiers
since they are all ≈ 99.99%. This is likely be-
cause the algorithm “cuts” through the variables
in a similar way to how we chose the threshold
values. For the same reason, they are unsuitable
for the scoring task at hand. The output produced
is a sharp classification that does not help rank the
sentences. In contrast, the logarithmic regression
model softens the output probabilities, emulating
the creation of a composite index when used in
combination without the threshold selection pro-
cedure.

lang. pair accuracy

additional en-ne 78.21%
ParaCrawl en-ne 96.09%
ParaCrawl+BIC en-ne 96.46%
All data en-ne 86.55%

additional en-si 78.82%
ParaCrawl en-si 95.26%
ParaCrawl+BIC en-si 95.26%
All data en-si 91.14%

Table 5: Accuracy values on the test data for the trained
logistic regression models. Additional refers to the ad-
ditional parallel clean data provided, ParaCrawl+BIC
to the model that optimized the BIC, and All data to
scenario 3.

In a final step, we also combined the score given
by the regression model with two heuristic fea-
tures that we deemed to be important for the rank-
ing. One of them is the character score that we in-
troduced earlier, which computes the proportion of
language-specific characters in the string ignoring
punctuation and whitespace. With this factor, we
heavily penalize sentence pairs that contain large

299

portions of foreign text. The second factor is based
on the heuristics that translated sentences should
exhibit similar lengths in terms of characters. This
feature is proven to be efficient for common sen-
tence alignment algorithms, and hence, we add the
character length ratio as another factor in the final
score. For simplicity, we just multiply the three
values without any extra weights to obtain the fi-
nal ranking score. The system that applies those
additional factors is marked with char-length in
Table 6 with the SMT results on the development
test set.

model ne–en si–en

baseline 4.22 4.77
logreg 4.91 5.06
+char-length 4.82 5.32
bestBIC 4.63 4.91

Table 6: BLEU scores using SMT on 5 million sampled
training examples. The baseline refers to the Zipporah
model reported by the organizers of the shared task.

We only ran experiments with the provided
SMT model. We do not present results from the
NMT model, since we encountered complications
while running the pre-processing script in the pro-
vided development pack for the task. We believe
it might be due to character encoding and noise in
the data. However, we did not further investigate
the source of said problem. The SMT scores are
listed in Table 6. We can see that we indeed out-
perform the baseline model, but the scores are still
so low that we deem the resulting models to be es-
sentially useless. The performance for our three
attempts are rather similar, with the plain logistic
regression model having a slight advantage, and
a small improvement provided by the char-length
filter for the case of Sinhala–English. For that rea-
son, we selected that model as our final submis-
sion, with the plain logreg model as a contrastive
run to be evaluated.

By inspecting the provided data we draw the
conclusion that the low quality of the final MT
models is mainly due to the overall poor quality
of the data, rather than solely an issue of the scor-
ing algorithms. The final results of the shared task
suggest that it has not been possible to squeeze
much more out of the data. As seen in Table 7,
submissions for this year demonstrate a narrow
range of scores, and our primary submissions rank
above average despite their poor performance.

model 1M 5M 10M

e
n
–n
e

best 4.21 4.62 4.74
UHel (1) 3.19 3.87 4.31

average 3.03 ± 1.22 3.60 ± 1.12 3.96 ± 0.89
UHel (2) 1.29 2.05 3.83

e
n
–s
i

best 4.27 4.76 4.94
UHel (1) 3.26 3.84 4.12

average 3.00 ± 1.13 3.43 ± 1.09 3.92 ± 0.87
UHel (2) 2.28 3.24 3.96

Table 7: An overview of the relative performance (in
BLEU scores) of our (1) primary and (2) contrastive
SMT models trained on 1, 5, and 10 million samples.
The best and average rows represent the highest score
and the mean ± standard deviation among this year’s
submissions, respectively.

5 Conclusions

In this paper, we presented our rescoring system
for the WMT 2019 Shared Task on Parallel Cor-
pus Filtering. Our system is based on contrastive
scoring models using features extracted from dif-
ferent kinds of data-driven and heuristic filters.
We used these models to assign quality scores to
each sentence pair. This methodology allowed
us to build a simple and reliable system that is
easily adapted to other language pairs. The ma-
chine translation quality indeed improves, how-
ever, BLEU scores remain particularly low. This
raises questions about the general quality of the
data. More detailed analyses of the data sets seem
to be necessary to draw further conclusions.

Acknowledgments

This work is part of the FoTran project,
funded by the European Research Council
(ERC) under the European Union’s Hori-
zon 2020 research and innovation pro-
gramme (grant agreement№ 771113).

,

as well as the MeMAD project, funded by the Eu-
ropean Union’s Horizon 2020 Research and Inno-
vation Programme (grant№ 780069).

References
Hirotugu Akaike. 1974. A new look at the statistical

model identification. In Selected Papers of Hirotugu
Akaike, pages 215–222. Springer.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages

https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_16
https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_16
https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W18-2709

300

74–83, Melbourne, Australia. Association for Com-
putational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Philipp Koehn, Huda Khayrallah, Kenneth Heafield,
and Mikel L. Forcada. 2018. Findings of the WMT
2018 shared task on parallel corpus filtering. In Pro-
ceedings of the Third Conference on Machine Trans-
lation: Shared Task Papers, pages 726–739, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
pages 25–30, Jeju Island, Korea. Association for
Computational Linguistics.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Gideon Schwarz et al. 1978. Estimating the dimension
of a model. The annals of statistics, 6(2):461–464.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Vesa Siivola, Mathias Creutz, and Mikko Kurimo.
2007a. Morfessor and VariKN machine learn-
ing tools for speech and language technology. In
8th Annual Conference of the International Speech
Communication Association (Interspeech 2007),
Antwerp, Belgium, August 27-31, 2007, pages 1549–
1552. ISCA.

Vesa Siivola, Teemu Hirsimäki, and Sami Virpioja.
2007b. On growing and pruning Kneser-Ney
smoothed n-gram models. IEEE Trans. Audio,
Speech & Language Processing, 15(5):1617–1624.

http://dl.acm.org/citation.cfm?id=1557769.1557821
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://www.aclweb.org/anthology/W18-6453
https://www.aclweb.org/anthology/W18-6453
https://www.aclweb.org/anthology/P12-3005
https://www.aclweb.org/anthology/P12-3005
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://xyala2.bio.ed.ac.uk/teaching/tutorials/phylogenetics/Bayesian_Workshop/PDFs/Schwartz%20Ann%20Stat%201978.pdf
http://xyala2.bio.ed.ac.uk/teaching/tutorials/phylogenetics/Bayesian_Workshop/PDFs/Schwartz%20Ann%20Stat%201978.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://users.ics.aalto.fi/vsiivola/papers/is2007less.pdf
http://users.ics.aalto.fi/vsiivola/papers/is2007less.pdf
http://dblp.uni-trier.de/db/journals/taslp/taslp15.html#SiivolaHV07
http://dblp.uni-trier.de/db/journals/taslp/taslp15.html#SiivolaHV07

