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Abstract
In research best practices can change over time
as new discoveries are made and novel meth-
ods are implemented. Scientific publications
reporting about the latest facts and current
state-of-the-art can be possibly outdated after
some years or even proved to be false. A pub-
lication usually sheds light only on the knowl-
edge of the period it has been published. Thus,
the aspect of time can play an essential role
in the reliability of the presented information.
In Natural Language Processing many meth-
ods focus on information extraction from text,
such as detecting entities and their relationship
to each other. Those methods mostly focus on
the facts presented in the text itself and not on
the aspects of knowledge which changes over
time.

This work instead examines the evolution in
biomedical knowledge over time using scien-
tific literature in terms of diachronic change.
Mainly the usage of temporal and distribu-
tional concept representations are explored
and evaluated by a proof-of-concept.

1 Introduction

Scientific literature presents knowledge for a par-
ticular time period it has been published. Vari-
ous studies have been performed to explore such
knowledge from scientific literature, where work
by Swanson (1986) led to the discovery of a new
drug to treat Raynaud’s disease. Similarly, a study
by Zhu et al. (2013) has concluded that drug dis-
covery using scientific literature plays a pivotal
role in the treatment of cancer, which can im-
prove the quality of life of patients (Cummings
et al., 2011). Although scientific literature is an
excellent source of information, there has been
an explosion in the number of publications each
year. This poses a challenge for biomedical re-
searchers and practitioners to keep themselves in-
formed of recent developments. The increasing

number at the same time provides an opportunity
to automatically explore the data on how a change
in knowledge has evolved. Some studies have
tried to explore such changed knowledge by inves-
tigating temporal information (Zhou and Hripc-
sak, 2007; He and Chen, 2018), studying the di-
achronic change in the meaning of the word. A
diachronic semantic change in language is associ-
ated with progression in the meaning of the word
which is estimated by exploring its usage over
time.

This work aims to automatically explore the
advances in medical knowledge extracted from
the abstracts of scientific research by using
word/concept embeddings. Especially, we ex-
amine how treatments of pathological conditions
have changed over time. For this reason we fo-
cus on concepts rather than words, as biomedi-
cal concepts can be mentioned in text in different
ways (e.g. ‘headache’, ‘cephalgia’ or ‘pain in the
head’). Moreover, biomedical concepts help to en-
capsulate noun phrases represented by more than
one word, for example, ‘eye lens’ or ‘lung cancer’.
An analysis on word level instead would take all
situations the single words occur into account, and
therefore would be more general. To quantify such
changes we measure how the usage of a biomedi-
cal concept has (semantically) changed over time
by comparing different embedding periods.

The rest of the work is structured as follows:
The next section presents related work in the
context of diachronic changes in and outside the
biomedical domain. Then, in Section 3 we present
how the biomedical concept embeddings are gen-
erated and how the time aspect is taken into ac-
count. Section 4 shows the usage of our embed-
dings to explore diachronic changes as a proof-
of-concept. Then we apply the temporal embed-
dings to explore some exemplary relational data
of UMLS, followed by a conclusion.
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2 Related Work

Human language is a complex system which has
been evolving from the point of its origin whether
it is because of social or cultural (Hamilton et al.,
2016a,b) or technological (Phillips et al., 2017)
reasons. Some words acquire new meaning much
faster than other words (Blank, 1999) for example
words like broadcast, gay, and awful have been
used in a different context in the present time as
compared to an earlier time.

To study the semantic change for words, ini-
tially, co-occurrence matrices (Sagi et al., 2009;
Wijaya and Yeniterzi, 2011; Jatowt and Duh,
2014), K-means clustering (Wijaya and Yeniterzi,
2011), Frequency-based methods (Kulkarni et al.,
2014) were used. Representations using co-
occurrence matrices are based on the notion of
word co-occurring in the same context. The co-
occurrence matrix assumes that words occurring
in same context tend to have the same meaning
(Firth, 1957) and are represented by methods such
pointwise mutual information (Turney and Pan-
tel, 2010), Singular Value Decomposition matri-
ces, and Latent Semantic Analysis.

Another popular method to represent words
are distributed representations. Words are repre-
sented in a dense and continuous form, that en-
ables us to capture the meaning in a condensed
form. There are various methods such Word2Vec
(Mikolov et al., 2013b,a) and Global Vectors for
Word Representation (Glove) (Pennington et al.,
2014) which create a distributed representation of
words. Distributed methods consume less mem-
ory compared to co-occurrence matrices because
of their compact size and ranges between 100 di-
mensions to 1000. Moreover, the distributed meth-
ods are robust baseline methods with their proven
success in capturing linguistic meaning (Mikolov
et al., 2013b).

Kim et al. (2014) explored the temporal changes
in the meaning of word using Skip-gram nega-
tive sampling (SGNS) method. To generate word
embedding for each time frame the embeddings
from previous time frame was used to initialize
the embedding for the next successive time frame.
Hamilton et al. (2016b) try to answer two ques-
tions, first whether the frequency of a word affects
the change in meaning, which has been long stud-
ied (Bybee et al., 2007; Pagel et al., 2007; Lieber-
man et al., 2007). Second, whether there is a
relationship between a polysemous and semantic

change of a word.
Also in the biomedical domain semantic

changes in scientific abstracts have been explored
(Yan and Zhu, 2018). In the study, the authors
explored semantic changes for a set of words us-
ing their occurrence frequency and their distribu-
tion across different topics. Scientific literature
has also motivated studies using biomedical con-
cepts instead of free text; however, they only mea-
sure the similarity and relatedness between differ-
ent concepts using different embedding methods
(De Vine et al., 2014; Choi et al., 2016; Liu et al.,
2018; Beam et al., 2018).

Our study draws motivation from previous stud-
ies. However, different to other work we try to
explore diachronic change using biomedical con-
cepts. Particularly we would like to use diachronic
change to assist the exploration of knowledge
changes in the biomedical domain.

3 Temporal Concept Embeddings

In the following the generation of the biomedical
temporal concept embeddings used to identify se-
mantic changes is introduced.

3.1 Data Resources
The MEDLINE repository1 is a bibliographic
database from life sciences containing around 26
millions articles dating back to 1809. MEDLINE
is quickly growing as the number of publications
added to the repository each year are increasing
(see Figure 1). Title and abstracts within the
MEDLINE repository define the source to gener-
ate the embeddings in this work.

Figure 1: Number of MEDLINE abstracts published
each year on PUBMED between 1950 and 2014.

Another relevant resource is the Unified Med-
ical Language System (UMLS) (Bodenreider,

1https://mbr.nlm.nih.gov/
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2004), a biomedical knowledge base which de-
fines a large number of biomedical concepts and
their relations to each other. Each concept is rep-
resented by a unique concept identifier known as
CUI and includes word variations and synonyms.
As we focus on the generation of concept em-
beddings, we normalize text mentions from MED-
LINE abstracts to UMLS.

The concept normalization is carried out using
MetaMap (Aronson, 2001), a popular named en-
tity recognition system for biomedical text. How-
ever, to avoid processing millions of sentences
with MetaMap, we use the MetaMapped 2015
MEDLINE Baseline Results, a MEDLINE sub-
set already enriched by MetaMap Machine Out-
put (MMO). In addition to that, we also use an-
nual baseline files from the MEDLINE/PUBMED
Baseline Repository (MBR) which contain meta-
information about each publication such as publi-
cation ID, publication year and author name(s).

3.2 Data Preprocessing

First, publications from MMO are enriched with
publication year (PubYear) by using the publica-
tion ID and the information from the MBR files.
Then, the text occurrence of each medical abstract
and its title are mapped and replaced with their
concept ID, using the offset information provided
in MMO (Figure 2). In this way, we create a text
to train our embeddings. Since we do not consider
character embeddings, we can treat concept IDs as
words without any disadvantage.

Figure 2: Shows mapping of medical text to their cor-
responding concept ID for Publication ID:20895112.

To create temporal embeddings, the prepro-
cessed MEDLINE abstracts are split into differ-
ent time depended subsets using PubYear. Em-
beddings are then trained on those splits. Ide-
ally, we would like to train models using equally
sized time ranges, such as embeddings per year or
decade. However, this is not easily possible for
various reasons: Firstly, as seen in Figure 1 the
number of publications is constantly increasing.
A consistent split into equal time frames would
result in highly unbalanced splits regarding the

number of included abstracts. In addition to that
PUBMED includes mainly titles and no abstracts
before 1975, which further reduces the number of
text for the lower represented period.

Period # Publications

1809-1970 3,374,099
1971-1975 1,162,030
1976-1980 1,346,833
1981-1985 1,528,475
1986-1990 1,863,659
1991-1995 2,065,386
1996-2000 2,297,006
2001-2005 2,938,855
2006-2010 3,721,166
2011-2012 1,762,603
2013-2015 1,283,218

Table 1: Distribution of publications in each period

Conversely, the generation of equally
sized splits (according to the number of ab-
stracts/sentences) has the disadvantage that it
will be more challenging to differentiate between
particular years. Rounding up or down the
number of included publications might also be
not a satisfying solution, as the time ranges
might differ too much. For this reason, we
mainly focus on time range splits including 5
years of MEDLINE abstracts. As the number of
publications is lower at the beginning of the 20th
century and publications often do not contain
any abstract, we combine the ‘early’ MEDLINE
data into one big split (1809-1970). Moreover, as
the number of publications steadily increase we
create smaller splits from 2011. The final split
into periods is presented in Table 1, including
their corresponding number of abstracts.

3.3 Temporal Embeddings

To generate temporal embeddings, we use Fast-
Text (Bojanowski et al., 2016) in Skip-gram nega-
tive sampling (SGNS) mode, which predicts con-
text words corresponding to a given target word
occurring in its neighborhood. The values of the
hyperparameters base on the recommendation of
Levy et al. (2015). The authors did an extensive
set of experiments using different representation
methods and analyzed the effect of hyperparam-
eters on the embeddings generated by them. We
chose negative samples as 10, the minimum occur-
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rence of concepts is 5, learning rate as .05, sam-
pling threshold as .0001, dimension to 300 and
context window to 10.

The different temporal embeddings were
trained sequentially, starting from the first period
(1809-1970) and ending with (2013-2015). We
started the training of the first period with ran-
dom initialization of the embeddings. All other
embeddings were then initialized by the values
of the former time embedding. This incremental
training process has been applied as the training
of a particular time period can build on the
knowledge seen in earlier periods. Incremental
training can be seen as an analogy of how human
knowledge evolves over time. The temporal
concept embeddings used in this work can be
downloaded here2.

3.4 Measuring Semantic Changes

To measure the semantic change between a con-
cept pair we use cosine distance (similarity) at dif-
ferent periods as also described in Hamilton et al.
(2016b). A cosine distance closer to 1 shows a
stronger similarity/relation between the two con-
cepts than a distance closer to 0. In this work,
however, we are particularly interested in exam-
ining whether the semantic shift can be used to
explore how treatments (of particular diseases)
evolved. Therefore, we selected particular con-
cept pairs and explore how their similarity score
evolves.

In addition to cosine similarity we use Posi-
tive Pointwise Mutual Information (PPMI) ma-
trix (Levy and Goldberg, 2014), as reference mea-
sure. A PPMI matrix is a variant of Pointwise
Mutual Information (PMI) and provides an asso-
ciation between two words occurring together in a
corpus and how strongly they are related to each
other (Church and Hanks, 1990). When a specific
word pair co-occurs more frequently they have a
higher PPMI score and vice-versa. PPMI is still
widely used co-occurrence matrix method and in
this work we have used a normalized PPMI score
which ranges between 0 to 1, whereas 1 indicates
more frequent pairs.

4 Exploring Biomedical Knowledge
Changes

In this section, we examine the usage of temporal
concept embeddings to detect diachronic changes

2http://biomedical.dfki.de/

in the context of altering knowledge in biomedi-
cal literature. Particularly, we explore whether the
embeddings reveal known changes in treatments
in biomedical history, as a proof-of-concept. For
instance, we would like to know whether it is pos-
sible to see a relative change in terms of cosine
similarity, i.e., if a preferred treatment for some
Disease X changes at time t from one medication
to a new one (see example in Figure 3). Our as-
sumption is that the usage of temporal concept em-
beddings reveal a similar pattern. Before time t
we assume, that the old treatment has got a higher
cosine similarity compared to the new treatment.
And then after some decrease the new medication
outperforms the other one. In the following, we
will explore this phenomenon based on various ex-
amples.

Figure 3: Shows a treatment change of some Disease X
from Medication-old to Medication-new at time t.

4.1 Proof-of-Concept

In this section, different examples are presented
to explore the usage of temporal concept embed-
dings to detect knowledge changes. We use those
examples as a proof-of-concept. Each example in-
cludes a high-level introduction, followed by an
investigation of the similarity scores over time and
an explanation of the presented results.

In order to provide reliable insights, presented
results are supported through a significance test
(Welch’s T-test) using a confidence interval of
99% (p value < 0.01). The significance test re-
lies on 15 different complete sets of temporal em-
beddings (all periods) which were trained from
scratch.

http://biomedical.dfki.de/
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4.1.1 Minoxidil
Minoxidil (CUI=C0026196) is a medication, ini-
tially used for treating high blood pressure (Hy-
pertension) (Stoehr et al., 2019) . Nowadays Mi-
noxidil is still used as a drug of last resort for
treatment of resistant hypertension (remains above
a target level, in spite of being prescribed three
or more anti-hypertensive drugs simultaneously
with different mechanisms of action). However, in
1988 FDA approved the medication also for treat-
ing hair loss problems. Presently, Minoxidil is
used mainly to treat early baldness pattern such as
Androgenic Alopecia (C0162311) and Scalp Hair
Loss (C0574769).

Figure 4: The similarity score of minoxidil with med-
ical conditions from 1809 to 2015. Change in usage
ocurs in 1986. Where Old Usage was High Blood Pres-
sure and New Usage is hair fall

The exploration of the cosine similarity for mi-
noxidil and its change in treatment is presented
in Figure 4. The figure depicts a high similarity
to hypertension in the ’70s, which is significantly
higher than the high blood pressure. However, af-
ter 1980 the similarity slowly decreases in the next
following years. Around 1985 we can see a big
drop. At the same time the similarity of alope-
cia and scalp hair loss strongly increase around
1985. From the following period, the similarity
score of both concepts outperforms hypertension
and are significantly higher than hypertension.

4.1.2 Microprolactinoma
Microprolactinoma (Prolactinoma)3 is a type of
benign tumor that occurs in the pituitary gland
of the brain (Casanueva et al., 2006; Glezer and
Bronstein, 2015). Its treatment has changed no-
tably over time. Until the 1970’s this tumor was
removed by a surgical method known as Transeth-
moidal Hypophysectomy (C0405509) (Richards
et al., 1974). Beginning from the late 1970’s

3Microadenoma of a pituitary gland

a new class of medical therapy with Dopamine
Agonists was introduced to treat Microprolacti-
noma (C0344452) without having to undergo a
surgery. Dopamine Agonists is a class of drugs
that activate dopamine receptors. The treatment
using Dopamine Agonists has a cure rate of more
than 80%. The most effective Dopamine Ago-
nists used as a main treatment drugs are Cabergo-
line (C0107994) and bromocriptine (C0006230)
(Tirosh and Shimon, 2016; Glezer and Bronstein,
2015) which are D2 dopamine agonists that in-
hibit prolactin secretion. Only if patients do
not respond to medications, a surgical method
called Transsphenoidal surgery4 (C2985562) is
used (Tirosh and Shimon, 2016).

Figure 5: Similarity Score of Microprolactinoma
with different treatment methods from 1809 until
2015. Change in the medication occurs after 1976.
Where Old Method was Transethmoidal hypophysec-
tomy and New Methods are Transsphenoidal surgery,
Bromocriptine, dopamine agonists cabergoline.

Figure 5 presents the semantic shift in the use
of different treatment methods for Microprolacti-
noma. The first embedding point is seen from the
period 1976-1980. Before that period none of the
concepts occurred frequently enough to be con-
sidered in the embedding. Within the first period
of occurrence (1976-1980) we have a significantly
higher similarity score of Microprolactinoma with
Transethmoidal Hypophysectomy in comparison
to Bromocriptine concepts and Transsphenoidal
surgery which starts decreasing in the next follow-
ing years. After 1980, we see an increase in the
similarity for all the bromocriptine concepts along
with Transsphenoidal surgery, which shows a
change in the treatment method for Microprolacti-
noma. The similarity score of both the Bromocrip-
tine and Transsphenoidal surgery concepts have
significantly higher similarity score than Transeth-
moidal Hypophysectomy from 1981. Whereas

4A surgical method used to remove tumors of pituitary
glands.
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from 1986, after the induction of cabergoline,
both of the dopamine agonists and Transsphe-
noidal surgery have a higher similarity score than
Transethmoidal Hypophysectomy. Also Cabergo-
line is getting more popular after 2006 and is then
significantly higher than other treatments.

4.1.3 White Blood Cell Cancer

A subtype of cancer of white blood cells known
as chronic myeloid leukemia (CML) or Chronic
Myelosis (C0023473) is a medical condition. In
this condition there is an abnormal increase in the
number of white blood cells (WBC) compared to
red blood cells (RBC). WBC are responsible for
protecting the body against infections, but when
produced in large numbers, they start accumulat-
ing in blood and bone marrow. This prohibits the
growth of RBC and causes weight loss, spleen en-
largement and bone pain (Radich et al., 2018).

Before 2001, Chronic Myelosis was treated
predominantly by chemotherapy using alkylat-
ing antineoplastic agents, such as Mitobronitol
(C0026236) and Myelobromol (C0700014). The
introduction of targeted therapy led to the im-
proved survival rate of patients compared to the
earlier generation of medication. The new targeted
therapy method includes a class of drugs called
Tyrosine Kinase Inhibitors (TKI) (C1268567),
whereas Imatinib (C0935989) is one of the most
important representatives of this class. Tyrosine
Kinase Inhibitors were first synthesized in 1998
(Yaish et al., 1988), and Imatinib was first ap-
proved in 2001 to treat this type of blood cancer.

Figure 6: Similarity Score of White blood cell cancer
with different treatment methods from 1809 until 2015.
Change in the medication occurs in 2001. Old Meth-
ods were Mitobronitol, Myelobromoland New Meth-
ods are Tyrosine Kinase Inhibitor and Imatinib.

Figure 6 depicts different treatments used for
white blood cell cancer. The similarity score for
both Mitobronitol and Myelobromol is high in

’70s. However, after ’70s their score starts de-
creasing but are still significantly higher than Tyro-
sine Kinase Inhibitor from 1990’s to 2000. From
2001 there is a significantly higher similarity for
both Tyrosine Kinase Inhibitor and Imatinib as
compared to both Mitobronitol and Myelobromol.

4.1.4 Hepatitis-C
Hepatitis-C (C0220847) is an infectious blood-
borne disease which is caused by the hepatitis C
virus (HCV). Hepatitis-C mainly affects the liver
which can cause liver diseases and eventually lead
to liver failure. HCV spreads mostly through in-
fected blood transfusions or poorly sterilized in-
jection needles, also during intravenous injection
of drugs. (Maheshwari and Thuluvath, 2010).

Presently there is no vaccine to prevent HCV
virus, however chronic infections are treated by
antiviral medications (Webster and Klenerman,
2015). Until 2011, Polyethylene Interferon Alpha-
2a (C0391001), Polyethylene Interferon Alpha-
2b (C0796545) in combination with Ribavirin5

(C0035525) were used to treat hepatitis-C and had
a cure rate of less than 50%. From 2011, the sec-
ond generation of antiviral medication known as
Direct Antiviral Agents (DAA) was approved by
the FDA. DAA directly interfere with the machin-
ery of Hepatitis-C virus, thus inhibiting its growth
and transmission. There are several classes of
DAA that are used at different stages in the treat-
ment of Hepatitis-C such as Telaprevir, Bocepre-
vir, Daclatasvir. However, for current work we
just show Telaprevir (C1876229). This DAA is
used in combination with Ribavirin which have a
cure rate of more than 90% (Rivett and Alexander,
2019).

Figure 7: Similarity Score of Hepatitis-C with dif-
ferent treatment methods from 1809 to 2015, change
in the medication occurs in 2011.Old Methods were
Polyethylene interferon alpha-(2a and 2b) and New
Methods is Telaprevir.

5First generation of antivirals.
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Figure 7 shows a rise in the similarity of second
generation of antivirals ( Telaprevir ) from 2011
as compared with first generations ( Polyethylene
Interferon Alpha-(2a,2b)) where there is a de-
crease in the similarity. From 2011 the similar-
ity score of Telaprevir is significantly higher than
the both Polyethylene interferon alpha-(2a,2b), re-
spectively. We can also notice, that the similarity
score Ribavirin is high this is because it is still
used in combination with the new generation of
antiviral medications as well. Before 1976 the oc-
currence of any antivirals medication concepts that
appears close to Hepatitis-C is not high enough as
such concepts are not present.

4.2 Concept Embeddings vs. Co-occurrence

As seen in the examples above, temporal concept
embeddings can be used to identify diachronic
changes. In comparison to that, those changes
can be also identified using a simple co-occurence
metrics, such as PPMI. Figure 8 shows an example
for White Blood Cell Cancer. However, in com-
parison to the example in Section 4.1.3, changes
can be much stronger and values can quickly de-
crease to zero, if the co-occurrence of two con-
cepts suddenly decreases.

Figure 8: Similarity Score using PPMI matrix for WBC
with different treatment methods from 1809 to 2015.

The score of Mitobronitol for instance suddenly
drops to 0 in 1976-1980 and then increases in
1981. Conversely, the concept embeddings show a
slow decrease in similarity for same pair at 1976-
1980. This is can have several reasons: Firstly,
even if concepts do not occur together within the
same context window, they might occur within the
same context which is considered by concept em-
bedding. Moreover, the initialization of embed-
dings for 1976-1980 build on top of the previ-
ous period (1970-1975). The incremental learn-
ing mechanism helps concept embeddings to over-
come the drawback of sudden drop in the similar-

ity of a concept-pair if they do not co-occur in a
specific period.

4.3 Discussion

The previous examples showed that we can use
diachronic semantic changes to identify medical
knowledge change. To measure the change in
treatment of some disease from an old medica-
tion to a new medication was not as simple as
our initial assumption was. Originally, examples
were provided by a medical student on a rather
high level. Given these examples the correspond-
ing concepts and concept IDs had to be identi-
fied within UMLS. In various cases those concepts
were ambiguous and the most appropriate concept
had to be selected, e.g. Hepatitis-C in UMLS is
represented as Hepatitis C virus (C0220847) as
well as Hepatitis C (C0019196).

It also happened that a concept mention did
not show the effect we were interested in
(no occurrence, low similarity scores, no in-
crease/decrease). This caused a more detailed
manual analysis to find out why. In some cases,
if a concept did not show the effect we were
searching for, it turned out that a more spe-
cific concept instead showed the expected ef-
fect. For instance we found that particular deriva-
tives of dopamine agonists such Cabergoline and
Bromocriptine were more talked about in the con-
text of Microprolactinoma than dopamine ago-
nists. This is an interesting aspect of how infor-
mation are connected and which are actually men-
tioned in the scientific text. Unfortunately this is
difficult to solve given our high level examples and
a method solely based on general literature.

However, even though the examples above were
manually selected with a lot of domain knowledge,
we can clearly show that knowledge changes are
present in our temporal concept embeddings. In
order to address possible concerns, the next sec-
tion explores knowledge changes of known UMLS
pairs.

5 Exploring Existing Medical Knowledge

In the previous section, we showed that changes in
biomedical knowledge and particularly changes of
treatments could be reflected within temporal con-
cept embeddings. However, those examples were
manually selected by a medical expert. In this
section instead we apply the technique to explore
known drug-disease pair relations of the UMLS
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Concept Embeddings Co-occurrence

Period # POS (MAX) # NEG (MAX) # POS (MAX) # NEG (MAX)

1809-1970 7 0.330 (0.754) 56 0.208 (0.588) 225 0.026 (0.286) 573 0.003 (0.171)
1971-1975 2 0.318 (0.721) 52 0.197 (0.596) 644 0.022 (0.354) 984 0.003 (0.086)
1976-1980 11 0.307 (0.742) 106 0.168 (0.564) 360 0.026 (0.325) 680 0.003 (0.134)
1981-1985 10 0.310 (0.711) 137 0.157 (0.530) 355 0.029 (0.330) 663 0.003 (0.150)
1986-1990 12 0.304 (0.681) 135 0.155 (0.553) 388 0.028 (0.310) 729 0.002 (0.139)
1991-1995 16 0.301 (0.672) 150 0.149 (0.505) 527 0.026 (0.266) 761 0.002 (0.073)
1996-2000 12 0.297 (0.680) 157 0.149 (0.510) 566 0.025 (0.337) 780 0.002 (0.149)
2001-2005 7 0.287 (0.689) 147 0.146 (0.499) 536 0.024 (0.309) 767 0.002 (0.121)
2006-2010 10 0.271 (0.695) 177 0.144 (0.476) 655 0.021 (0.300) 832 0.002 (0.077)
2011-2012 13 0.272 (0.730) 146 0.153 (0.467) 957 0.017 (0.355) 1178 0.002 (0.088)
2013-2015 15 0.265 (0.696) 136 0.152 (0.425) 1158 0.015 (0.246) 1264 0.002 (0.077)

Table 2: Exploration of known (positive) and unknown (negative) drug-disease concept pairs of UMLS across
different time periods. The table shows the mean and its maximum scores below POS and NEG in terms of cosine
similarity and PPMI. In addition to that, that table shows the number of concept pairs (#) which do not occur
together within the set of 3,000 drug-disease pairs.

Metathesaurus. First we explore known concept
pairs with cosine similarity for concept embed-
dings in comparison to PPMI. After that we ex-
amine selected relations of UMLS and track their
similarity across different periods.

5.1 Exploring known Drug-Disease Pairs:
Concept Embeddings vs. Co-occurrence

In the following we examine concept embeddings
using cosine similarity in comparison to the co-
occurrence metric PPMI on known drug-disease
relations of UMLS. To do so, we use may-treat
and may-prevent relations of UMLS and selected
randomly for each time period a set of 3,000 con-
cept pairs. We made sure, that both concepts oc-
curred within that time slice. Then we randomly
generated a set of negative concept pairs (un-
known according to UMLS) with the same size.
Next we use both sets (positive and negative) to
calculate cosine similarity using concept embed-
ding and PPMI matrix .

The results are presented in Table 2 and show,
that the average score is higher for the known re-
lations pairs (positive) in comparison to the ran-
domly generated negative pairs. This is valid for
cosine similarity and PPMI. Moreover we can see,
that the average cosine score for concept embed-
ding is above the PPMI, as well as for the corre-
sponding MAX scores. However, both scores can
not be directly compared.

Interestingly, the table shows a varying number
of concept pairs which are not covered by a metric
(lower than .05 for concept embedding and zero
for PPMI). Particularly the co-occurrence metric
PPMI has fewer information about various con-

cept pairs in comparison to concept embedding.
For instance, in period 2013-2015 while the cosine
similarity for concept embedding score for only
15 positive concept pairs is below .05, 1158 con-
cept pairs are not considered by co-occurrence, as
concepts do not occur together frequent enough.
Note, the low PPMI scores might be related to the
sparseness of the PPMI matrix.

Overall, the results show, that the incremental
temporal concept embeddings have got an advan-
tage over the co-occurrence metric PPMI. As the
concept embedding uses knowledge from previous
time slices and considers contextual information it
is able to better cope with the situation if concept
pairs do not frequently together.

5.2 Exploring Drug-Disease Pairs across
different Time Periods

In the following we use temporal concept embed-
dings to explore changes in biomedical knowl-
edge. We apply the technique to explore
known drug-disease pair relations may treat and
may prevent of the UMLS Metathesaurus. An in-
crease over time might indicate6 a higher use of
drug against the corresponding disease in present
time as compared to previous periods; whereas a
decrease can indicate new treatment therapy for
the disease from disease-drug pair. This might be
interesting as often various treatments exist for a
disease. In this way, it might be possible to iden-
tify a more popular treatment (according to sim-
ilarity score) which is at the same time also en-
coded within the embeddings.

6Of course it could also mean something different.
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Drug Disease 1809-
1970

1971-
1975

1991-
1995

1996-
2000

2011-
2012

2013-
2015

Oxymetholone Anemias 0.36 0.43 0.23 0.18 0.23 0.23
Epoetin Alfa Recombinant 0.00 0.00 0.43 0.37 0.35 0.42

Sodium Cromoglycate Bronchitic Asthma 0.58 0.60 0.51 0.45 0.45 0.29
Aalmeterol 0.00 0.00 0.56 0.55 0.50 0.56

Tolazamide Type 2 Diabetes Mellitus 0.63 0.46 0.48 0.45 0.28 0.27
Sitagliptin 0.00 0.00 0.00 0.00 0.54 0.62

Pramipexole Syndrome Parkinson’s 0.00 0.00 0.39 0.48 0.46 0.46
Amantadine Hydrochloride 0.41 0.51 0.41 0.36 0.17 0.20

Risperidone Type Schizophrenia 0.00 0.00 0.53 0.60 0.58 0.59
Acetophenazine Maleate 0.46 0.41 0.35 0.32 0.20 0.20

Tamoxifen Tumor of Breast 0.00 0.28 0.51 0.48 0.49 0.49
Testolactone 0.43 0.38 0.25 0.22 0.12 0.10

Table 3: Decrease (upper part) and increase (lower part) in similarity for may-treat and may-prevent drug-disease
pairs across different time periods

Table 3 presents results for particular diseases
in terms of increasing and decreasing similarity
scores for known may-treat and may-prevent drug-
disease pairs. The similarity scores shown here are
for the first two periods (1809-1970, 1971-1975),
two periods from the middle (1991-1995, 1996-
2000) and the last two ones (2011-2012, 2013-
2015). Each row contains a two different known
drugs related to a disease. The upper part presents
a scenario with a decreasing similarity score (rel-
ative to the disease) and the lower part an increas-
ing score. For example, the table shows that the
similarity between Tolazamide and Type 2 Dia-
betes Mellitus is .63 in 1809-1970. With each suc-
ceeding period the value decreases and eventually
reaches .27 in 2013-2015. On the other hand, the
similarity between the Sitagliptin with Type 2 Di-
abetes Mellitus is 0 until 1996-2000 due to its ab-
sence in this period. However, from 2011 we see
a sudden and strong increase.

The table shows that we can detect changes of
known relational facts. The results are also in line
with our original hypothesis that scientific jour-
nals reflect the change in medical knowledge since
each journal provide current medical facts. As
scientific research around these fact evolves, we
witness a change in medical knowledge which is
present in the scientific journals.

6 Conclusion

In the present work, we have successfully shown
that it is possible to explore the diachronic seman-
tic change on a biomedical concept level. The au-
tomatic exploration of knowledge changes might
be particularly useful to extend structured knowl-
edge, such as UMLS potentially. For instance,
UMLS often includes an extensive range of differ-

ent treatments or preventions for a disease. How-
ever, all relations have the same importance and
the same weighting. Thus it is not necessar-
ily obvious which one is the treatment of choice
(also depending on time, but also co-morbidities
or other symptoms). Our proposed method could
be a first (and simplistic) step to highlight partic-
ular concept pairs. For instance, temporal concept
embeddings could be used to support (distantly su-
pervised) relation extraction (Roller and Steven-
son, 2014) or to spot particular trends automati-
cally (Chen et al., 2007).

However, our current approach has got some
limitations as it is unable to detect the negative
polarity between the pairs. In terms of this we as-
sume that a higher similarity is correlated with a
stronger use, which is not necessarily correct. Fu-
ture work could take this into account.

Finally, as mentioned in Section 4.3, it would be
interesting to address the problem that sometimes
only particular child concepts show an effect we
are interested in. It might be possible to overcome
this by including graph embeddings in addition to
the text based temporal ones.
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