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Abstract

The goal of this work is to utilize Electronic
Medical Record (EMR) data for real-time
Clinical Decision Support (CDS). We present
a deep learning approach to combining in real
time available diagnosis codes (ICD codes)
and free-text notes: Patient Context Vectors.
Patient Context Vectors are created by averag-
ing ICD code embeddings, and by predicting
the same from free-text notes via a Convolu-
tional Neural Network. The Patient Context
Vectors were then simply appended to avail-
able structured data (vital signs and lab results)
to build prediction models for a specific condi-
tion. Experiments on predicting ARDS, a rare
and complex condition, demonstrate the utility
of Patient Context Vectors as a means of sum-
marizing the patient history and overall condi-
tion, and improve significantly the prediction
model results.

1 Introduction
A key goal in critical care medicine is the early

identification and timely treatment of rapidly pro-
gressive, life-threatening conditions, such as Sep-
sis, Septic Shock, and Acute Respiratory Distress
Syndrome (ARDS). Such life-threatening condi-
tions, are both rare, and at the same time, com-
plex and heterogeneous, involving the interaction
of multiple risk factors, comorbidities, and current
symptoms. Hospital alert systems typically rely
on screening of structured data such as vital signs
and lab results, and, in the case of such rare condi-
tions, are often associated with “alert fatigue” and
require manually entered clinical judgement.

The information needed for a reliable risk eval-
uation of such rare and complex conditions is typi-
cally dispersed across the patient EMR, and avail-
able at different times throughout the patient stay.
The patient demographics, past medical and visit
history, chronic conditions, risk factors, current
signs and symptoms can be found in the form of

clinical notes (e.g. nursing notes, radiology re-
ports, etc.), diagnosis and procedure codes, vital
signs, lab orders and results. The challenge of
real-time CDS systems is the variability and the
availability of real-time EMR data, resulting from
different charting behaviors, health care delivery
models, hospital settings, etc.

The goal of this work is to utilize all available
EMR patient information for real-time predictive
modelling. While our experiments are focused on
identifying ARDS cases, the described method is
applicable to a variety of use cases needing infor-
mation dispersed across the EMR patient record.
The primary contribution of this work is the use
of low-dimensional representation of the patient’s
history, current symptoms and conditions, which
we refer to as Patient Context Vector. At pre-
diction time, Patient Context Vectors are gener-
ated from the combination of available up-to-date
ICD codes (if any) and available nursing notes.
Patient Context Vectors (vectors of real numbers)
are then simply added to the list of existing struc-
tured data variables (vital signs and lab results)
and used to identify patients at risk of developing
life-threatening conditions that require rapid inter-
vention.

2 Method
In this work, we combine ICD codes, clinical

notes, vital signs, lab results, and demographic in-
formation to build a real-time ARDS prediction
model. Low-dimensional representation of ICD
codes (ICD embeddings) is generated from a large
corpus of patient ICD records. Patient visit EMR
data is used to look up recorded up-to-date ICD
codes, clinical notes, vital signs, and lab results.
The visit ICD codes are converted to embeddings
and averaged to produce Patient Context Vectors.

Pertinent patient information might not be nec-
essarily ”ICD-coded” during prediction time, but
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can be available in the form of nursing notes. A
deep learning model was trained to predict the pa-
tient’s Patient Context Vector from nursing notes.
The Patient Context Vectors obtained from avail-
able in the system ICD codes, and from free-text
notes are then used in conjunction with vital signs,
and lab results to predict the patient’s outcome.
Details for each step of the approach are provided
in subsequent sections.
2.1 Dataset

We utilized the freely available database com-
prising deidentified health-related data associated
with over 40,000 patients who stayed in critical
care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012: the MIMIC3 In-
tensive Care Unit (ICU) database (Johnson et al.,
2016). The dataset contains over 2 million free-
text clinical notes and over 650,000 diagnosis
codes for over 58,000 visits. Included ICUs are
medical, surgical, trauma-surgical, coronary, and
cardiac surgery recovery units. EMR data includes
vital signs, laboratory results, diagnosis codes,
free text nursing notes, radiology reports, medi-
cations, discharge summaries, treatments, etc.
2.2 ICD Embeddings and Patient Context

Vectors
Clinicians viewing properly coded patient di-

agnosis codes (ICD9 and ICD10 codes1) are typ-
ically capable of deducing the overall condition,
history, and risk factors associated with a patient.
Intuitively, the totality of patient’s diagnosis codes
represent a meaningful medical summary of the
patient. Diagnosis codes are used to describe
both current diagnoses (e.g. Community-acquired
Pneumonia ), but also a variety of additional facts.
For example, ICD codes can describe patient’s his-
tory and chronic conditions (e.g. Chronic kid-
ney disease; Personal history of traumatic frac-
ture; etc.); information regarding past and current
treatments and procedures (e.g. Infection due to
other bariatric procedure). In some cases, ICD
codes contain information such as the patient age
group (e.g. Sepsis of newborn; Elderly multi-
gravida); expected outcome (Encounter for pal-
liative care); patient’s social history (e.g. Adult
emotional/psychological abuse); the reason for the
visit, (e.g. Railway accidents; Motor Vehicle acci-
dents, etc).

While there are a large number of ICD codes
(around 15,000 ICD9 codes and around 68,000

1The International Classification of Diseases, c©The World Health Orga-
nization.

ICD10 codes), they tend to be interdependent,
and to co-occur. For example, Pneumonia ICD
codes are often accompanied with ICD codes
describing Cough, Fever, Pleural effusion, etc.
Inspired by word embeddings (Mikolov et al.,
2013), it has been suggested that this medical code
co-occurence can be exploited to generate low-
dimensional representations of ICD codes: ICD
Embeddings (Choi et al., 2016b,a; Kartchner et al.,
2017).

All available MIMIC3 patient data was used to
generate the ICD embeddings following the ap-
proach of (Choi et al., 2016b). In our approach, we
attempted to generate a low-dimensional represen-
tation of the patient history, symptoms, risk fac-
tors, diagnosis, etc, by averaging the patient ICD
code embeddings (creating Patient Context Vec-
tors). The optimum size of the vectors was deter-
mined to be 50.
2.3 Predicting Patient Context Vectors from

Clinical Texts
While averaged ICD embeddings appear to be a

useful summary of the overall patient history, con-
dition, symptoms, and risk factors, ICD code data
is not necessarily available for real-time CDS sys-
tems. Some ICD codes associated with patients’
history and symptoms might be entered early on
in the EMR system. However, diagnosis ICD
codes are typically obtained after tests and lab re-
sults and might not be available during prediction
time. Similarly, not all relevant patient history and
symptoms are necessarily ICD-coded.

At the same time, nursing notes typically con-
tain all currently available information, even if not
present in the form of ICD codes. Nursing notes
include information such as past medical history,
reason for visit, current symptoms, summary of
test outcomes, etc.

In order to capture information present in free-
text notes, we also built a word-level CNN model
that predicts the patient Patient Context Vector
from the note text. The model was trained
on available nursing and discharge notes and
achieved a mean squared error of 0.179 on the val-
idation set. The network was trained on 1,081,176
free-text notes, with pre-trained word-embeddings
of size 100. The texts were truncated/padded to
the 90th percentile length (785 tokens). The net-
work consists of a Convolutional, Max Pooling
layers, followed by 2 hidden layers of size 500.
The last layer uses linear activation with loss func-
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tion of mean squared error to predict the Patient
Context Vector2.
2.4 Patient Context Vectors in Prediction

Models
In order to test the utility of the Patient Con-

text Vectors for predicting patient outcomes, we
focused on building a real-time ARDS prediction
model. ARDS is a rare and life-threatening condi-
tion that require an early intervention (Fan et al.,
2017).

ARDS patients were limited to adult patients
only (age 18 or older). The patients inclusion cri-
teria consist of the presence of acute respiratory
failure and continuous mechanical ventilation, ex-
cluding patients with acute exacerbation of asthma
or chronic obstructive pulmonary disease (Bime
et al., 2016) 3. This resulted in 4,624 ARDS ad-
missions from a total of 48,399 admissions.

An ARDS prediction model was built utilizing a
combination of vital signs, lab results, ICD codes
and free-text notes. Features considered in the
baseline predictive model building include: 1) vi-
tal signs: heart rate, respiratory rate, body tem-
perature, systolic blood pressure, diastolic blood
pressure, mean arterial pressure, oxygen satu-
ration, tidal volume, BMI; 2) laboratory tests:
white blood cell count, bands, hemoglobin, hema-
tocrit, lactate, creatinine, bicarbonate, pH, PT,
INR, BUN, blood gas measurements (partial pres-
sure of arterial oxygen, fraction of inspired oxy-
gen, and partial pressure of arterial carbon diox-
ide); 4) motor, verbal, and eye sub-score of Glas-
gow Coma Scale ; and 5) demographics: gender
and age.

In addition to the baseline features (available in
structured format in MIMIC), we also included as
features the patient’s Patient Context Vectors com-
puted from ICD codes and from notes. In real-time
CDS systems, it is likely that not all ICD or nurs-
ing notes will be available at prediction times. To
test this most realistic scenario, we also built a Pa-
tient Context Vector by averaging the first half of
the patient’s ICD codes, and the first half of the
patient’s nursing notes CNN model predictions.

A Gradient Boosting Machine (GBM) model
(Friedman, 2001) and a Distributed Random For-
rest Model (DRF) (Geurts et al., 2006) were used
to predict ARDS patients from the total popula-

2https://github.com/ema-/patient-context-vectors
3Inclusion ICD9 Codes: 51881, 51882, 51884, 51851, 51852, 51853,

5184, 5187, 78552, 99592, 9670, 9671, 9672; Exclusion ICD9 Codes: 49391,
49392, 49322, 4280

GBM
Features AUC P R F1
Baseline 90.42 41.76 67.80 51.68
Baseline + ICD 93.30 53.02 68.44 59.75
Patient Context Vector
Baseline + Notes 91.88 48.25 64.25 55.11
Patient Context Vector
Baseline + first 93.59 56.35 66.52 61.01
half of notes/ICD
DRF
Features AUC P R F1
Baseline 89.14 38.58 66.43 48.81
Baseline + ICD 92.08 51.87 63.75 57.20
Patient Context Vector
Baseline + Notes 91.18 47.89 62.11 54.08
Patient Context Vector
Baseline + first 92.61 57.02 61.08 58.98
half of notes/ICD

Table 1: 10-fold cross-validation GBM and DRF results of
predicting ARDS patients. P=Precision, R=Recall, F1= F1-
score for the positive (ARDS) class. The Baseline set of fea-
tures consists of vital signs, lab results, Glasgow Coma Scale
score, gender and age, in the form of structured data. ”Base-
line + ICD Patient Context Vector” includes all baseline fea-
tures, plus the Patient Context Vector (of size 50). ”Baseline
+ Notes” includes all baseline features, plus Patient Context
Vectors predicted from all visit nursing notes. ”Baseline +
first half of notes/ICD” includes the average of the first half
of entered visit ICD codes embeddings, and Patient Context
Vectors predicted from the first half of the visit nursing notes.

tion of adult patients. In all cases default model
parameters were used (h2o). All results were pro-
duced via 10-fold cross evaluation. Table 1 shows
the result from the experiments.

Introducing information from both ICD codes
and nursing notes data significantly increased the
overall performance. Most importantly, the com-
bination of the use of half of the visit notes (used to
predict Patient Context Vectors) and the first half
of the patient ICD codes produced the best results
in both models (GBM and DRF), and proves the
utility of the method for combining structured and
free-text data for prediction models.

The benefit of averaged ICD-code embeddings,
and using notes to predict the same embedding
vectors is also illustrated by the model variable im-
portances shown in Figures 1 - 4. As shown, the
predictive value of certain embedding dimensions
is on a par with important vital signs, such as Tidal
Volume, Glasgow Coma Scale, and Mean Respi-
ratory Rate. Intuitively, clinicians’ experience uti-
lizes all information present in nursing notes (also
coded as ICD codes) to evaluate a patient’s condi-
tion. Our approach demonstrates that it is possible
to summarize that knowledge by combining nurs-
ing and ICD codes in the form of predicted and
averaged ICD embeddings.
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Figure 1: GBM scaled variable importance of Baseline
model features.

Figure 2: DRF scaled variable importance of Baseline
model features.

Figure 3: GBM scaled variable importance of Baseline
model features plus Patient Context Vectors from first half
of ICD codes/notes.

Figure 4: DRF scaled variable importance of Baseline
model features plus Patient Context Vectors from first half
of ICD codes/notes.

3 Related Work
A large volume of literature on combining

structured and free-text EMR data pre-processes
the free-text data by applying some information
extraction (IE) technique (most frequently, Med-
ical Concept detection). For example, DeLisle et
al.(2010) and Zheng et al. (2014) apply free-text
search on the notes to find a set of hand-crafted
non-negated symptoms, later used as variables in
their ML models. Ford et al. (2016) present
a review of various approaches to IE from free-
text notes for the purpose of detecting cases of a
clinical condition, often in conjunction with struc-
tured data. The majority of approaches extract
UMLS4 or SNOMED-CT5 concepts from free-
text with their negation status with various off-the-
shelf tools (Gundlapalli et al., 2008; Carroll et al.,
2011; Karnik et al., 2012; Ananthakrishnan et al.,
2013; Zheng et al., 2014).

More recently, deep learning has been used to
combine free-text and structured EMR data. Rele-
vant ICD embeddings work was mentioned in Sec-
tion 2.2. Shickel et al. (2018) present a survey of
various deep learning techniques. Most notably,
Miotto et al. (2016) convert notes to concepts,
which are then used in conjunction with structured
data to build a Deep Patient representation in an
unsupervised manner via denoising autoencoders.

4 Conclusion
Intuitively, the information available in notes

and ICD codes, enhances the knowledge of the
overall patient condition, which is indicative of the
patient outcome. Results show that Patient Con-
text Vectors can be easily combined with struc-
tured data in the form of vital signs an lab results
and improve significantly the prediction model re-
sults. Results also indicate that Patient Context
Vectors are suitable for real-time CDS as they per-
form equally well when only the first half of avail-
able ICD codes and notes is used.
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