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Abstract

The objective of this work is to develop an
automated diagnosis system that is able to
predict the probability of appendicitis given
a free-text emergency department (ED) note
and additional structured information (e.g., lab
test results). Our clinical corpus consists of
about 180,000 ED notes based on ten years of
patient visits to the Accident and Emergency
(A&E) Department of the National Univer-
sity Hospital (NUH), Singapore. We propose
a novel neural network approach that learns
to diagnose acute appendicitis based on doc-
tors’ free-text ED notes without any feature
engineering. On a test set of 2,000 ED notes
with equal number of appendicitis (positive)
and non-appendicitis (negative) diagnosis and
in which all the negative ED notes only con-
sist of abdominal-related diagnosis, our model
is able to achieve a promising F0.5-score of
0.895 while ED doctors achieve F0.5-score of
0.900. Visualization shows that our model
is able to learn important features, signs, and
symptoms of patients from unstructured free-
text ED notes, which will help doctors to make
better diagnosis.

1 Introduction

Medical diagnosis is an important task which re-
quires high accuracy and efficiency, especially for
patients admitted to the accident and emergency
(A&E) department of a hospital. These patients
have a wide range of medical conditions. How-
ever, it is highly improbable for a medical doctor
to gain expertise in all medical fields. Therefore,
it is very challenging for the attending doctors to
perform quick and accurate diagnosis in order to
prevent further complications.

Most of the relevant and useful information
(e.g., signs and symptoms) is in the form of
free text notes entered by medical doctors. The
text does not consist of well-formed and well-

structured sentences, but rather sentence frag-
ments containing medical abbreviations and fre-
quent misspelling (due to the time constraints im-
posed on doctors).

The task addressed in this paper is to diagnose
acute appendicitis, a binary classification task.
Appendicitis was chosen because of the fact that
the lifetime risk of having appendicitis is high
(8.6% for males and 6.7% for females (Addiss
et al., 1990)). Furthermore, there would be high
clinical impact if our system is successful. Besides
reducing the number of misdiagnoses, our system
is expected to help reduce cost by minimizing the
number of patients requiring Computed Tomogra-
phy (CT) scans. CT scans are performed by doc-
tors when they are unsure whether a patient suffers
from appendicitis. Although CT scans were found
to be 98% accurate in diagnosing acute appendici-
tis (Rao et al., 1998), they are harmful to our body
– one CT scan emits approximately 4001 times the
radiation of a regular chest X-ray. Moreover, there
is an exponential increase (from 2.9% to 82.4% in
22 years) in CT scan utilization without any im-
provement in outcomes (Repplinger et al., 2016;
Markar et al., 2014).

We propose a neural network model, which is
a combination of a convolutional neural network
(CNN) (LeCun et al., 1989), a recurrent neural
network (RNN) (Elman, 1990), and a residual net-
work (He et al., 2016) inspired by their recent suc-
cesses in multiple tasks. RNN has proven to be
successful in natural language processing (NLP)
tasks such as machine translation (Bahdanau et al.,
2015), automated essay scoring (Taghipour and
Ng, 2016), and question answering (Kundu and

1https://www.fda.gov/
radiation-emittingproducts/
radiationemittingproductsandprocedures/
medicalimaging/medicalx-rays/ucm115329.
htm (Accessed on 7 June, 2019)
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Ng, 2018). CNN has also been successfully used
in NLP (Collobert et al., 2011; Chollampatt and
Ng, 2018). The main strength of neural networks
is that we can train the model without any feature
engineering. Therefore, the model is scalable and
generalizable to learn other diseases.

2 Automated Diagnosis

In this section, we define the diagnosis task and
the evaluation metric used for measuring the per-
formance of the automated diagnosis system.

2.1 Task Description

We formulate the task as a binary classification
problem. Given a free-text ED note, and optional
real-valued features (from the structured fields),
the model is required to classify the ED note as
positive appendicitis (represented by a 1), or neg-
ative appendicitis (represented by a 0). This is ac-
complished by producing a probability score, and
comparing the score against a threshold, such that
the class is positive if the probability score exceeds
the threshold.

The corpus of hospital ED notes used in this pa-
per is obtained from the National University Hos-
pital (NUH), Singapore, spanning a period of ten
years. However, the diagnosis stored in each ED
note is not the true diagnosis. The ground truth
is stored in the discharge summary (DS) of a pa-
tient after the patient is discharged from the hos-
pital. Our corpus consists of about 180,000 ED
notes and DS pairs. Each ED note contains 440
words on average.

The ED notes are written in sentence fragments
and point forms, and very often contain abbre-
viations, symbols, and misspelled words. This
adds to the difficulty in diagnosing appendicitis.
Moreover, the free-text ED notes contain patients’
personal health information (PHI) such as name,
identification number, and contact number. The
ED notes need to be anonymized (by removing the
PHI) before they are used for research purposes.
We have developed a simple and efficient algo-
rithm to anonymize the ED notes (Yuwono et al.,
2016) and it is used in this work.

2.2 Evaluation Metric

The standard evaluation metrics of binary classi-
fication are recall, precision, specificity, F1-score,
and F0.5-score. The last two are shown in Equa-

tion 1.

F1 = 2 × precision× recall

precision+ recall

F0.5 = (1 + 0.52) × precision× recall

(0.52 × precision) + recall
(1)

Let TP, FP, FN, and TN denote true positive, false
positive, false negative, and true negative respec-
tively. The positive class refers to class 1 (appen-
dicitis), while the negative class refers to class 0
(not appendicitis). As clinicians favor precision
and specificity over recall, we have adopted F0.5-
score as our main evaluation metric. We aim to
have FP as low as possible to prevent patients from
being operated on when they do not have appen-
dicitis. Clinicians view FN as more tolerable (as
compared to FP), because doctors are still required
to investigate the condition of patients not diag-
nosed as appendicitis until they recover.

3 Neural Networks

3.1 Model Architecture

We have created a novel neural network architec-
ture named convolutional residual recurrent neural
network (CR2). Our architecture is illustrated in
Figure 1.

Lookup Table Layer: The first layer of our
neural network projects each word into a dLT
dimensional space. Given a sequence of words
W represented by their one-hot representations
(w1,w2, ...,wM ), the output of the lookup table
layer (LT ) is given by Equation 2.

LT (W) = (Ew1,Ew2, ...,EwM )

= (x1,x2, ...,xM )
(2)

where E is the word embedding matrix which is
learnt during training and M is the number of
words in an ED note.

Convolution Layer: After the dense represen-
tation of the input sequence is computed from the
lookup table layer, it is fed as the input to a con-
volution layer to extract local features. Given a
window of word representations of length l, (i.e.,
x1,x2, ...,xl), they are first concatenated to form
vector x̄, and then an output convolution vector c
of length dc is computed as shown in Equation 3.

c = Wvx̄ + b (3)
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Figure 1: Our neural network architecture (CR2).

Wv and b are the trainable weight and bias pa-
rameters respectively, and they are shared across
all windows in a sequence.

Residual Layer: We perform the sum op-
eration on the sequence of the word embeddings
(X = x1,x2, ...,xM ) and the output of the con-
volutional layer (C = c1, c2, ..., cM ) as shown in
Equation 4.

Sum(X,C) = X + C (4)

To be able to perform the sum operation as shown
above, the dimension of the word embeddings
(dLT ) and the dimension of the output vectors of
the convolution layer (or the number of filters) (dc)
have to be equal.

Recurrent Layer: After combining local fea-
tures extracted by the convolution layer with the
original dense word representations, the result-
ing vectors are fed as input to a recurrent layer.
The recurrent layer processes the input to gener-
ate a representation of a given ED note. There
are three well-known RNN units: basic recurrent
units (Elman, 1990), gated recurrent units (GRU)
(Cho et al., 2014), and long short-term mem-
ory units (LSTM) (Hochreiter and Schmidhuber,
1997). Based on our experimental results, LSTM
outperforms the other two units and hence we only
use LSTM as our RNN unit.

LSTM is able to learn to preserve or forget in-

formation. To control the flow of information,
LSTM uses three gates to forget or pass informa-
tion to the next time step. The formal definition of
LSTM is described in Equation 5.

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = it ◦ c̃t + ft ◦ ct−1
ot = σ(Woxt + Uoht−1 + bo)

ht = ot ◦ tanh(ct)

(5)

xt is the input vector at time t. LSTM produces
one vector ht at each time step t (h0 is the zero
vector). Wi,Wf ,Wc,Wo,Ui,Uf ,Uc,Uo are
weight matrices and bi,bf ,bc,bo are the bias
vectors. The circle symbol ◦ denotes element-wise
multiplication and σ denotes the sigmoid func-
tion. The output of the recurrent layer is H =
(h1,h2, ...,hM ). Following (Taghipour and Ng,
2016), we use every output of the intermediate
states of the RNN and perform summing (resid-
ual) and then pooling in the next layer to have a
better representation of the entire ED note.

Residual Layer: We perform the sum oper-
ation on the sequence of the output vectors from
the recurrent layer (H = h1,h2, ...,hM ) and
the output vectors of the previous residual layer
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(Sum(X,C)) as shown in Equation 6.

R = Sum(H,X + C) = H + X + C (6)

To be able to perform the sum operation as shown
above, the dimension of the word embedding vec-
tors (dLT ), output vectors of the convolution layer
(dc), and output vectors of the hidden RNN layer
(dr) have to be equal.

Attention layer: Visualizing the learned
model is of high importance in the medical do-
main. By using an attention mechanism, we
can show the degree of importance of words and
phrases. Attention mechanism has been suc-
cessful in many recent studies (Bahdanau et al.,
2015; Hermann et al., 2015; Rush et al., 2015).
The outputs of the previous residual layer R =
(r1, r2, ..., rM ) are used as inputs of the attention
layer. In other words, this layer receives M vec-
tors of size dr, where dr is the output dimension
of the recurrent layer. R is a rich representation
of the words in the ED note using a combina-
tion of word embeddings, CNN outputs, and RNN
outputs. Each vector rt is multiplied by a learn-
able real-valued weight s′t between 0 and 1 before
adding the elements of all M vectors into a single
vector a as a form of weighted average. The func-
tions of the attention layer are defined in Equation
7.

st = v · tanh(Wrrt)

s′t = softmax(s)t

a =
M∑
t=1

s′trt

(7)

Wr is a trainable matrix of size dr × dr and v is a
trainable vector of size dr. To learn more complex
functions, Wr is introduced to increase the num-
ber of parameters and tanh is introduced to add
non-linearity. Wr and v are shared across all time
steps t. To make sure that the weights for all time
steps sum to 1, the softmax function is performed
on all the weights s = (s1, s2, ..., sM ). The atten-
tion layer is able to learn to assign varying weights
to different time steps t depending on the input rt.
The main advantage of having an attention layer
is that we can retrieve the weight s′t for each time
step, and hence we are able to visualize and mea-
sure the importance of each word in the ED note.

Linear Layer with Sigmoid Activation: If
there are no additional real-valued features, the
input of this layer is the vector a. Otherwise, it

will be [a, l], the concatenation of a and l, where l
contains the additional real-valued features which
will be described in the next subsection. The lin-
ear layer maps the input vector into a single scalar
value. This mapping is a simple linear transfor-
mation, therefore the computed scalar value is un-
bounded. Since we are expected to predict either
class 0 or 1, we will use a sigmoid function to en-
sure the scalar value is in the range (0, 1). The
mapping of the linear layer after applying the sig-
moid function is shown in Equation 8.

s(x) = σ(w · x + b) (8)

where x is the input vector a or [a, l], w is the
weight vector, and b is the bias value.

3.2 Additional Real-valued Features
Before using additional real-valued features such
as lab results in the neural network, the values
need to be normalized. We have adopted normal
sigmoid to normalize the real-valued features
which is shown in Equation 9. x̄ and σ represent
the mean and standard deviation for a particular
feature (e.g., white blood cell count).

normal(x) =
(x− x̄)

σ

normal sigmoid(x) =
1

1 + e−normal(x)

(9)

There are also entries where ED notes are not
accompanied by any lab results. To deal with
missing values, we calculate the mean (x̄) of all
existing entries in the training set of that particular
feature (e.g., white blood cell count) and then use
the average value to fill in the gap.

In order to include the L real-valued normalized
features l = (l1, l2, ..., lL) in the model, we con-
catenate L real numbers (after normalizing them)
to the output of the attention layer, before going
into the next layer. The input of the final layer will
be [a, l], a vector of size dr+L. Figure 2 illustrates
the process above.

3.3 Training
We use the RMSProp optimization algorithm
(Dauphin et al., 2015) to minimize a loss function
over the training data. Given N training ED notes
and their corresponding true class s∗i (either 0 or
1), the model computes the predicted score si in
the range of (0, 1) for all training ED notes and
then updates the network weights such that the loss
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Figure 2: Concatenation of real-valued features before
the final layer.

function is minimized. The loss function we have
adopted in our system is the binary cross-entropy
loss function as shown in Equation 10.

L(s, s∗) = −
N∑
i=1

s∗i log(si) + (1 − s∗i ) log(1 − si)

(10)

In our data set, the distribution of the classes is
highly imbalanced – the proportion of ED notes
in class 0 can be as high as 98.4%, with the re-
maining 1.6% ED notes in class 1. To tackle
this problem, we have adopted a weighted binary
cross-entropy loss function, where each class is
weighted inversely proportional to the class fre-
quency in the training data to allocate more weight
to the less frequent class, similar to the technique
used by (Chollampatt et al., 2016) for rescaling.

To prevent overfitting, we have adopted dropout
(Srivastava et al., 2014) regularization. We also
clip the gradient if the gradient norm is larger than
a certain threshold. We train the neural network
for a specified number of epochs and evaluate the
model on a validation set in every epoch. The
epoch with the highest F0.5-score on the valida-
tion set is then selected as the final model.

3.4 Threshold Adjustment
The output or score of the neural network is a real
number between 0 and 1. However, we need to
transform the score to either 1 (positive) or 0 (neg-
ative) to solve our binary classification problem.
Therefore, there is a need to set a threshold as the
decision boundary. The default threshold used to
split the two classes is 0.5. For example, if the pre-
diction score is greater than 0.5, then the predicted

class is positive (appendicitis); otherwise negative
(not appendicitis).

The aforementioned threshold can be used to
tune the model to have lower FP but higher FN,
and vice versa. In this paper, we would like to
achieve the lowest possible FP, trading for a higher
FN. To achieve this, we use the validation set to
search for a threshold with the best F0.5-score.
First, we use the model in the current epoch to
predict the score of each instance in the validation
set. Second, we sort the validation instances in as-
cending order of the predicted scores. Third, we
perform a linear search to find the cut-off thresh-
old to achieve the best F0.5-score on the validation
set. This is repeated in every epoch, resulting in a
unique threshold for each epoch. The epoch with
the best F0.5-score (using its own unique thresh-
old) on the validation set is used as the final model
to evaluate the test set, using the same threshold
used in the validation set.

4 Experiments

4.1 Setup

Our network has several hyper-parameters which
need to be set. We use the RMSProp optimizer
with decay rate of 0.9 and learning rate of 0.001.
Mini-batch2 size is 32 and the model is trained
for 25 epochs. The vocabulary is created using
all words in the training set. Out-of-vocabulary
words are replaced by a special <unknown> to-
ken. Words that contain any digits are replaced
by a special <num> token. The network is regu-
larized by using dropout (Srivastava et al., 2014)
with probability 0.5. During training, if the norm
of the gradient exceeds 10, it will be clipped to a
maximum value of 10. Word embedding dimen-
sion (dLT ), output dimension of the hidden layer
for the RNN (dr), and the number of filters for the
CNN (dc) are set to 300. The convolution win-
dow size (l) is set to 3. We initialize the lookup
table layer with our custom pre-trained word em-
beddings which are trained using our entire cor-
pus of 180,000 ED notes excluding the notes used
as validation and test set. We use the word2vec
skip-gram model (Mikolov et al., 2013) to train
our word embeddings. Although the lookup table

2To create mini-batches for training, all the ED notes in
a mini-batch are padded using a dummy token to have the
same length. To remove the effect of padding tokens during
training, they are masked to prevent the network from mis-
calculating the gradients.
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layer is initialized with pre-trained word embed-
dings, the lookup table layer is trainable and not
fixed. We utilize 4 additional features from the
structured patient data, namely age, gender, and
two lab test results (white blood cell count and
neutrophils), and incorporate them into the net-
work as described in Section 3.2.

4.2 Dataset

We have about 180,000 ED notes and DS pairs in
total. The class distribution of the ED notes in the
entire corpus is shown in Table 1 (second and third
column). The first class listed in the first column is
the class predicted by ED doctors in the ED notes,
while the second class listed in the first column is
the true diagnosis class obtained from the DS.

4.2.1 Dataset 1: Natural Distribution
(Original Dataset)

Using the corpus shown in Table 1, we randomly
sample 10% for training, 10% for validation, and
10% for test. The number of ED notes is 18,111,
18,108, and 18,107 respectively following its nat-
ural class distribution (about 1.6% positive ED
notes). To speed up training, we only use ED notes
with 750 words or less in the training set, resulting
in 16,854 instead of 18,111 ED notes for training.
We do not impose any length limit for both the
validation and test set.

Class Number of ED notes Percentage
+ + (TP) 2,194 1.2 %
+ – (FP) 1,071 0.6%
– + (FN) 796 0.4 %
– – (TN) 177,210 97.8 %

Total 181,271 100 %

Table 1: Class distribution of ED notes.

4.2.2 Dataset 2: Equal Class Distribution
with Random Negative ED Notes

In our second dataset, we obtain a subset of the
181,271 ED notes (from Table 1) to create a
dataset with 50% positive and 50% negative ED
notes. There are 2,980, 1,000, and 2,000 ED notes
for training, validation, and test respectively with
equal distribution of positive and negative classes
in each set. The negative ED notes consist of ran-
domly sampled ED notes of all diagnosis classes
that are not appendicitis.

4.2.3 Dataset 3: Equal Class Distribution
with Abdominal-related Negative ED
Notes

Our third dataset is very similar to our second
dataset (in Section 4.2.2) with the same class dis-
tribution. The only difference is that the negative
ED notes in this dataset only consist of abdominal-
related diagnosis instead of any random diagnosis
that is not appendicitis. The number of ED notes
in the training, validation, and test set are the same
as those in dataset 2. The 1,000 positive ED notes
in this test set are identical to the 1,000 positive ED
notes in the test set in dataset 2. Dataset 3 is more
challenging than dataset 2 because the signs and
symptoms of appendicitis are very similar to those
of other abdominal conditions. The class distribu-
tion of all three test sets is shown in Table 2.

4.3 Results and Discussions

The experimental results of the best model (CR2,
described in Sections 3 and 4.1) on the three
datasets are summarized in Table 3.

We train the neural network model (end to end)
on a single GPU (Nvidia TITAN X Pascal), and
the training time is 3.2 hours for dataset 1, and 35
minutes for each of the datasets 2 and 3. After the
model is trained, it is able to perform acute appen-
dicitis diagnosis rapidly, at 400 ED notes per sec-
ond. The best single CR2 model is chosen based
on the highest F0.5-score on the validation set over
50 runs with different seeds. The average score for
the CR2 model in each column is calculated over
50 runs with different seeds. The ± sign repre-
sents the standard deviation over the 50 runs.

We have two baseline methods, namely a max-
ent (maximum entropy, also known as logistic
regression) classifier and an Alvarado rule-based
scoring system. This is inspired by prior work
(Deleger et al., 2013) which performs appendici-
tis risk stratification using an Alvarado rule-based
scoring system with features obtained from free
text. Before using the aforementioned two meth-
ods, the texts are first tokenized, and negation are
detected through Negex (Chapman et al., 2001),
a simple regular expression rule-based algorithm
which has been modified to suit our needs. For
maxent, a list of words is built from the training
ED notes and we obtain the bag-of-words repre-
sentation for each ED note, add the lab results and
other structured fields, and then use them as fea-
tures to train a maxent classifier.
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Class Dataset 1 Dataset 2 Dataset 3
# ED notes % # ED notes % # ED notes %

+ + (TP) 216 1.2 % 734 36.7 % 734 36.7 %
+ – (FP) 104 0.6 % 6 0.3 % 36 1.8 %
– + (FN) 78 0.4 % 266 13.3 % 266 13.3 %
– – (TN) 17,709 97.8 % 994 49.7 % 964 48.2 %

Total 18,107 100 % 2,000 100 % 2,000 100 %

Table 2: Class distribution of ED notes in test sets.

model TP FP FN TN Rec Prec Spec F1 F0.5 Acc
Dataset 1

ED 216 104 78 17,709 0.735 0.675 0.994 0.704 0.686 0.990
ME 138 126 156 17,687 0.469 0.523 0.993 0.495 0.511 0.984
Alv 124 90 170 17,723 0.422 0.579 0.995 0.488 0.539 0.986
Best 141 90 153 17,723 0.480 0.610 0.995 0.537 0.579* 0.987
Avg 154.8 109.2 139.2 17,703.8 0.527 0.588 0.994 0.553 0.573 0.986

±16.9 ±18.8 ±16.9 ±18.8 ±0.058 ±0.021 ±0.0011 ±0.030 ±0.016 ±0.00046
Dataset 2

ED 734 6 266 994 0.734 0.992 0.994 0.844 0.927 0.864
ME 952 62 48 938 0.952 0.939 0.938 0.945 0.941 0.945
Alv 617 12 383 988 0.617 0.981 0.988 0.758 0.877 0.803
Best 912 27 88 973 0.912 0.971 0.973 0.941 0.959* 0.943
Avg 912.1 28.6 87.9 971.4 0.912 0.970 0.971 0.940 0.958 0.942

±17.1 ±6.1 ±17.1 ±6.1 ±0.017 ±0.0058 ±0.0061 ±0.0076 ±0.0037 ±0.0069
Dataset 3

ED 734 36 266 964 0.734 0.953 0.964 0.829 0.900 0.849
ME 880 125 120 875 0.880 0.876 0.875 0.878 0.876 0.878
Alv 617 72 383 928 0.617 0.896 0.928 0.731 0.821 0.773
Best 831 79 169 921 0.831 0.913 0.921 0.870 0.895* 0.876
Avg 832.1 84.2 167.9 915.8 0.832 0.908 0.916 0.868 0.892 0.874

±28.8 ±12.2 ±28.8 ±12.2 ±0.029 ±0.0096 ±0.0122 ±0.0125 ±0.0045 ±0.0095

Table 3: Summary of the best model against ED doctors and the baselines on three datasets. The baseline for the
statistical significance tests is underlined and statistically significant improvements (p < 0.05) are marked with
’*’. ME stands for Maxent, Alv stands for Alvarado, Best stands for Best CR2, and Avg stands for Avg CR2.

In acute appendicitis diagnosis, there is an ex-
isting well-known scoring system, namely Al-
varado score (Alvarado, 1986). It is also known as
MANTRELS score, which is a mnemonic to re-
member the score factors (signs, symptoms, and
lab readings) – Migration of pain to the right
lower quadrant, Anorexia, Nausea or vomiting,
Tenderness in the right lower quadrant, Rebound
pain, Elevated temperature (fever), Leukocytosis
(high white blood cell count), and Shift of neu-
trophils to the left. The score for each factor is
1(M), 1(A), 1(N), 2(T), 1(R), 1(E), 2(L), and 1(S)
respectively. The score for each factor present in
a patient will be added together to obtain the fi-
nal score. A higher score indicates that a patient
is more likely to have appendicitis. The aforemen-
tioned 8 factors are detected through a regular ex-
pression (with negation) on the ED notes that have
been preprocessed with Negex. Different thresh-
old values (scores strictly greater than the thresh-
old will be classified as positive, and negative oth-
erwise) are explored and the threshold with the

best F0.5-score is chosen. The thresholds for Al-
varado scoring in datasets 1, 2, and 3 are 6, 5, and
5 respectively.

Our neural network model (CR2) outperforms
the two baselines in F0.5-score on all three
datasets. We also perform a statistical signifi-
cance test (p < 0.05) to determine whether the
obtained improvement is statistically significant.
We found that our neural network improvements
against maxent on all datasets are statistically sig-
nificant. This shows that our neural network
model is superior to the maxent classifier and Al-
varado scoring system.

Based on the first row in Table 3, we can see that
ED doctors’ performance is better compared to our
model. This is mainly caused by class imbalance
(1.6% positive and 98.4% negative). Learning
and predicting on a dataset with extremely skewed
class distribution is challenging. However, as we
can see from the results, the performance of our
best model is close to that of ED doctors, with 14
fewer FP instances and 75 more FN instances out
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of 18,107 ED notes in the test set.
Based on the results of dataset 2 and 3, our

model achieved lower FP+FN (in other words,
higher accuracy) when compared to ED doctors.
With equal distribution of positive and negative
ED notes, our model performs better than ED doc-
tors with much lower FN in exchange for slightly
higher FP. Our model’s F0.5-score exceeds that of
ED doctor on dataset 2 and is very close to that of
ED doctor on dataset 3. Our model also consis-
tently achieves better sensitivity (recall) than the
ED doctor.

Figure 3: Visualization of how our model interprets a
positive ED note.

Figure 4: Visualization of how our model interprets a
negative ED note.

To visualize the model and gain insights into
how the model assigns importance to words and
phrases, we retrieve the weights of the attention
layer. The weights can be used to show the de-
gree of importance of words and phrases in an ED
note. From our observation, the model is able to
pick up meaningful signs and symptoms of ap-
pendicitis most of the time. Figure 3 shows the
visualization of our model, with appendicitis fea-
tures highlighted, such as rif pain, and tenderness
with rebound. In Figure 3, darker shade of red
color indicates a higher weight assigned to a word.
These signs and symptoms have been validated
and used in practice as features of the Alvarado
scoring scheme (Alvarado, 1986). On the other

hand, the model is also able to pick up the features
of non-appendicitis. In Figure 4, the model is able
to pick up diarrhea and a few other features sug-
gesting non-appendicitis.

We will explore other neural network architec-
tures and more (deeper) layers in the future. We
will also design our experiments to be able to fully
utilize the entire 180,000 ED notes to train and val-
idate our model.

5 Conclusion

In this paper, we tackle the task of automated diag-
nosis using free-text ED notes. We present a ma-
chine learning model which is able to learn from
free text and optional additional features without
any feature engineering. We show that the per-
formance of our novel neural network architecture
is promising and close to the performance of ED
doctors. Analysis of the visualization shows that
the attention layer is able to meaningfully learn
the importance of words and phrases in ED notes
and to change its emphasis depending on the con-
text of the words. This is helpful in highlighting
certain key description (i.e., signs and symptoms)
that might have been missed otherwise by medical
doctors in a real-life setting.
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