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Abstract

The correct interpretation of quantifier state-
ments in the context of a visual scene requires
non-trivial inference mechanisms. For the ex-
ample of “most”, we discuss two strategies
which rely on fundamentally different cogni-
tive concepts. Our aim is to identify what strat-
egy deep learning models for visual question
answering learn when trained on such ques-
tions. To this end, we carefully design data
to replicate experiments from psycholinguis-
tics where the same question was investigated
for humans. Focusing on the FiLM visual
question answering model, our experiments
indicate that a form of approximate number
system emerges whose performance declines
with more difficult scenes as predicted by We-
ber’s law. Moreover, we identify confounding
factors, like spatial arrangement of the scene,
which impede the effectiveness of this system.

1 Introduction

Deep learning methods have been very successful
in many natural language processing tasks, rang-
ing from syntactic parsing to machine translation
to image captioning. However, despite signifi-
cantly raised performance scores on benchmark
datasets, researchers increasingly worry about in-
terpretability and indeed quality of model deci-
sions. We see two distinct research endeavors
here, one being more pragmatic, forward-oriented,
and guided by the question “Can a system solve
this task?”, the other being more analytic, reflec-
tive, and motivated by the question “How does
a system solve this task?”. In other words, the
former aspires to improve performance, while the
latter aims to increase our understanding of deep
learning models.

By ‘understanding’ here we mean observing
a reasoning mechanism that, if not human-like,
at least is cognitively plausible. This is by no

paired random partitioned

“More than half the shapes are red shapes?”

Figure 1: Three types of spatial arrangement of ob-
jects which may or may not affect the performance of
a mechanism for verifying “most” statements. Going
from left to right, a strategy based on pairing entities of
each set and identifying the remainder presumably gets
more difficult, while a strategy based on comparing set
cardinalities does not.

means necessary for practically solving a task,
however, we highlight two reasons why being able
to explain model behavior is nonetheless impor-
tant: On the one hand, cognitive plausibility in-
creases confidence in the abilities of a system –
one is generally more willing to rely on a reason-
able than an incomprehensible mechanism. On the
other hand, pointing out systematic shortcomings
inspires systematic improvements and hence can
guide progress. Moreover, particularly in the case
of a human-centered domain like natural language,
ultimately, some degree of comparability to hu-
man performance is indispensable.

In this paper we are inspired by experimen-
tal practice in psycholinguistics to shed light on
the question how deep learning models for visual
question answering (VQA) learn to interpret state-
ments involving the quantifier “most”. We follow
Pietroski et al. (2009) in designing abstract visual
scenes where we control the ratio of the objects
quantified over and their spatial arrangement, to
identify whether VQA models exhibit a preferred
strategy of verifying whether “most” applies. Fig-
ure 1 illustrates how visual scenes can be config-
ured to favor one over another mechanism.
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We want to emphasize the experimental ap-
proach and its difference to mainstream ma-
chine learning practice. For different verification
strategies, conditions are identified that should or
should not affect their performance, and test in-
stances are designed accordingly. By comparing
the accuracy of subjects on various instance pat-
terns, predictions about a subject’s performance
for these mechanisms can be verified and the most
likely explanation identified. Note that our advo-
cated evaluation methodology is entirely extrin-
sic and does not constrain the system in any way
(like requiring attention maps) or require a specific
framework (like being probabilistic).

Psychology as a discipline has focused entirely
on questions around how humans process situa-
tions and arrive at decisions, and consequently has
the potential to inspire a lot of experiments (like
ours) for investigating the same questions in the
context of machine learning. Similar to psychol-
ogy, we advocate the preference of an artificial
experimentation environment which can be con-
trolled in detail, over the importance of data orig-
inating from the real world, to arrive at more con-
vincing and thus meaningful results.

It is less common recently to evaluate deep
learning models on artificial data tailored to a
specific problem, as opposed to big real-world
datasets. However, artificial data has a history
in deep learning of establishing new techniques
– most prominently, LSTMs were introduced by
showing their ability to handle various formal
grammars (Gers and Schmidhuber, 2001) – and
our higher-level goal with this paper is to demon-
strate the potential for more informative evalua-
tion of machine learning models in general. This is
motivated by our belief that, in the long term, true
progress can only be made if we do not just rely
on the narrative of neural networks “learning to
understand/solve” a task, but can actually confirm
our theories experimentally. Taking inspiration
from psychology seems particularly appropriate
in the context of powerful deep learning models,
which recently are not infrequently described by
anthropomorphizing words like “understanding”,
and compared to “human-level” performance.

2 The meaning of “most”

In this section we will discuss two mechanisms of
interpreting “most” and introduce relevant cogni-
tive concepts.

2.1 Generalized quantifiers and “most”
“Most” has a special status in linguistics due to
the fact that it is the most prominent example of
a quantifier whose semantics cannot be expressed
in first-order logic, while other simple natural lan-
guage quantifiers like “some”, “every” or “no”
directly correspond to the quantifier primitives ∃
and ∀ (plus logical operators ∧, ∨ and ¬). This
situation is not just a matter of introducing further
appropriate primitives, but requires a fundamental
extension of the logic system and its expressivity.

In the following, by x we denote an entity, A
and B denote predicates (“square”, “red”), A(x)
is true if and only if x satisfies A, and SA = {x :
A(x)} is the corresponding set of entities satisfy-
ing this predicate (“squares”). Thus we can define
the semantics of “some” and “every”:

some(A,B)⇔ ∃x : A(x) ∧B(x)

every(A,B)⇔ ∀x : A(x)⇒ B(x)

Importantly, these definitions do not involve the
concept of set cardinality and indeed can be for-
mulated without involving sets. This is not possi-
ble for “most”, which is commonly defined in one
of the following ways:

most(A,B)⇔ |SA∧B| > 1/2 · |A|
⇔ |SA∧B| > |SA∧¬B| (1)

This makes “most” an example of a generalized
quantifier, and in fact all generalized quantifiers
can be defined in terms of cardinalities, indicating
the apparent importance of a cardinality concept
to human cognition.

2.2 Alternative characterization
There is another way to define “most” which uses
the fact that whether two sets are equinumerous
can be determined without a concept of cardinal-
ity, but based on the idea of a bijection:

A↔ B :⇔ ∀x : A(x)⇔ B(x)

⇔ |SA| = |SB|

The definition of equinumerosity can be general-
ized to “more than” (and, correspondingly, “less
than”), which lets us define “most” as follows:

most(A,B)⇔ ∃S ( SA∧B : S ↔ SA∧¬B (2)

Although, at a first glance, this definition looks
similar to the one above, it can be seen as suggest-
ing a different algorithmic approach to verifying
“most”, as we will discuss below.
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2.3 Two interpretation strategies

These two characterizations are of course truth-
conditionally equivalent, that is, every situation
in which one of them holds, the other holds, and
vice versa. In particular, if we are just interested
in solving a task involving “most” statements, we
can be agnostic about which definition our system
prefers. Nevertheless, the subtle differences be-
tween these two characterizations suggest differ-
ent algorithmic mechanisms of verifying or falsi-
fying such statements, meaning that a system pro-
cesses a visual scene differently to come to the
(same) conclusion about a statement’s truth.

Characterization (1) represents the cardinality-
based strategy of interpreting “most”:

1. Estimate the number of entities satisfying
both predicates (“red squares”) and the num-
ber satisfying one predicate but not the other
(“non-red squares”).

2. Compare these number estimates and check
whether the former is greater than the latter.

We want to add that, actually, the two defini-
tions in (1) already suggest a minor variation of
this mechanism – see Hackl (2009) for a discus-
sion on “most” versus “more than half”. How-
ever, we do not focus on this detail here, and as-
sume the second variant in (1) to be ‘strictly’ sim-
pler in the sense that both involve estimating and
comparing cardinalities, but the first variant addi-
tionally involves the rather complex operation of
halving one number estimates.

Characterization (2) utilizes the concept of a bi-
jection, which is a comparatively simple pairing
mechanism and as such could be imagined to be
a primitive cognitive operation. This gives us the
pairing-based strategy of verifying “most”:

1. Successively match entities satisfying both
predicates (“red squares”) uniquely with en-
tities satisfying one predicate but not the
other (“non-red squares”).

2. The remaining entities are all of one type, so
pick one and check whether it is of the first
type (“red square”).

2.4 Cognitive implications

Finding evidence for one strategy over the other
has substantial implications with respect to the
‘cognitive abilities’ of a neural network model. In

particular, evidence for a cardinality-based pro-
cessing of “most” suggests the existence of an
approximate number system (ANS), which is
able to simultaneously estimate the number of ob-
jects in two sets, and perform higher-level op-
erations on the resulting number representations
themselves, like the comparison operation here.
Explicit counting would be an even more accurate
mechanism here, but neither available to the sub-
jects in the experiments of Pietroski et al. (2009)
due to very short scene display time, nor likely to
be learned by the ‘one-glance’ feed-forward-style
neural network we evaluate in this work1.

The ANS (see appendix in Lidz et al. (2011)
for a summary) is an evolutionary comparatively
old mechanism which is shared between many dif-
ferent species throughout the animal world. It
emerges without explicit training and produces ap-
proximate representations of the number of ob-
jects of some type. They are approximate in the
sense that their number judgment is not ‘sharp’,
but resulting behavior exhibits variance – like in-
terpreting “most” statements with a cardinality-
based strategy, as described above. This vari-
ance follows Weber’s law which states that the
discriminability of two quantities is a function of
their ratio2. The precision of the ANS is thus usu-
ally indicated by a characteristic value called We-
ber fraction which relates quantity and variance.
The ANS of a typical adult human is often re-
ported to have a Weber fraction of 1.14 or, more
tangibly, it can distinguish a ratio of 7:8 with 75%
accuracy. Finding evidence for the emergence of
a similar system in deep neural networks indicates
that these models can indeed learn more abstract
concepts (approximate numbers) than mere super-
ficial pattern matching (“red squares” etc).

1By “one-glance feed-forward-style networks” we refer
to the predominant type of network architecture which, by de-
sign, consists of a fixed sequence of computation steps before
arriving at a decision. In particular, such models do not have
the ability to interact with their input dynamically depending
on the complexity of an instance, or perform more general
recursive computations beyond the fixed recurrent modules
built into their design. Important for the discussion here is
the fact that precise – in contrast to approximate or subitizing-
style – counting is by definition a recursive ability, thus im-
possible to learn for such models.

2We want to emphasize that there is evidence for Weber’s
Law in a range of other approximate systems, some of them
non-discrete and thus rendering a pairing-based strategy im-
possible. While this does not rule out such a strategy when
observing performance decline as predicted by Weber’s Law
(which is probably not possible based on extrinsic evaluation
alone), it strongly suggests that similar and thus non-pairing-
based mechanisms are at work in all of these situations.
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Both mechanisms to interpret “most” suggest
conditions in which they should perform well or
badly. For the cardinality-based one, the dif-
ference in numbers of the two sets in question
is expected to be essential: smaller differences,
or greater numbers for the same absolute differ-
ence, require more accurate number estimations
and hence make this comparison harder, accord-
ing to Weber’s law. The pairing-based mecha-
nism, on the other hand, is likely affected by the
spatial arrangement of the objects in question: if
the objects are more clustered within one set, pair-
ing them with objects from the other set becomes
harder. Importantly, these conditions are orthogo-
nal, so each mechanism should not substantially
be affected by the other condition, respectively.
By constructing (artificial) scenes where one of the
conditions dominates the configuration, and mea-
suring the accuracy of being able to correctly inter-
pret propositions involving “most”, the expected
difficulties can be confirmed (or refuted) and thus
indicate which mechanism is actually at work.

Using this methodology, Pietroski et al. (2009)
show that humans exhibit a default strategy of in-
terpreting “most”, at least when only given 200ms
to look at the scene and hence having to rely on an
immediate subconscious judgment. This strategy
is based on the approximate number system and
the cardinality-based mechanism. Moreover, the
behavior is shown to be sub-optimal in some situa-
tions where humans would, in principle, be able to
perform better if deviating from their default strat-
egy. Since machine learning models are trained
by optimizing parameters for the task at hand, it
is far from obvious whether they learn a similarly
stable default mechanism, or instead follow a po-
tentially superior adaptive strategy depending on
the situation. While the latter is likely more effi-
cient in solving at least a narrowly defined task,
the former would instead suggest that the system
is able to acquire and utilize core concepts like an
approximate number system.

We may speculate about the innate preference
of modern network architectures for either of the
strategies: Most of the visual processing is based
on convolutions which, being an inherently local
computation, we assume would favor the pairing-
based strategy via locally matching and ‘can-
celling out’ entities of the two predicates. On the
other hand, the tensors resulting from the sequence
of convolution operations are globally fused into

a final embedding vector, which in turn would
support the more globally aggregating cardinality-
based strategy. However, the type of computa-
tions and representations learned by deep neu-
ral networks are poorly understood, making such
speculations fallacious. We thus emphasize again
that the higher-level motivation for this paper is to
demonstrate how we need not rely on such specu-
lative ‘narratives’, but can experimentally substan-
tiate our claims.

3 Experimental setup

The setup in this paper closely resembles the
psychological experiments conducted by Pietroski
et al. (2009), but aimed at a state-of-the-art VQA
model and its interpretation of “most”.

3.1 Training and evaluation data

We use the ShapeWorld framework (Kuhnle and
Copestake, 2017) as starting point to generate ap-
propriate data. ShapeWorld is a configurable gen-
eration system for abstract, visually grounded lan-
guage data. A data point consists of an image, an
accompanying caption, and an agreement value in-
dicating whether the caption is true given the im-
age. The underlying task, image caption agree-
ment, essentially corresponds to yes/no questions
and as such is a type of visual question answering.
Internally, the system samples an abstract world
description from which a semantic caption repre-
sentation is extracted. Both are then turned into
‘natural’ (but still abstract) representations as im-
age and natural language statement, respectively.
The latter transformation is based on a semantic
grammar formalism (see the paper for details).

We use the pre-implemented quantifier cap-
tioner component, both in its unrestricted ver-
sion and one with available quantifiers restricted
to “more than half” and “less than half”3.
The former contains various additional (gener-
alized) quantifiers (“no”, “a/three quarter(s)”,
“a/two third(s)”, “all”) and numbers (ranging
from “zero” to “five”), each in combination with a
comparing modifier (“less than”, “at most”, “ex-
actly”, “at least”, “more than”, “not”). We refer
to the unrestricted version as Q-full, the other one

3We use these two instead of “most” since ShapeWorld
generates them by default. The VQA model is trained from
scratch on this data, so we do not expect any of the differ-
ences between “most” and “more than half” one observes
with humans (Hackl, 2009) to matter.
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• Exactly two squares are yellow.
• Exactly no square is red.
• More than half the red shapes are

squares.
• More than a third of the shapes are cyan.

• Less than half the shapes are green.

• Exactly all magenta shapes are squares.

• At most five shapes are magenta.

• At least one triangle is gray.

Figure 2: Two example images with in-/correct captions, taken from the Q-full dataset (all quantifiers/numbers).

as Q-half. Figure 2 shows two images together
with potential Q-full captions.

We also use the default world generator to pro-
duce training data (up to 15 randomly positioned
objects, as seen in figure 2). However, all of
the pre-implemented generator modules are too
generic for our evaluation purposes, since they
do not allow to control attributes and positioning
of objects to the desired degree. We thus imple-
mented our own custom generator module with the
following functionality to produce test data.

Attribute contrast: For each instance, either the
attribute ‘shape’ or ‘color’ is picked4, and
subsequently two values for this attribute and
one value for the other is randomly chosen.
This means that the only relevant difference
between objects in every image is either one
of two shape or color values (for instance, red
vs blue squares, or red squares vs circles).

Contrast ratios: A list of valid ratios between the
contrasted attributes can be specified, from
which one will randomly be chosen per in-
stance. For instance, a ratio of 2:3 means
that there are 50% more objects with the sec-
ond than the first attribute. We look at values
close to 1:1, that is, 1:2, 2:3, 3:4, 4:5, etc.
The increasing difficulty (for humans) result-
ing from closer ratios is illustrated in figure
3. Multiples of the smaller-valued ratios are
also generated (e.g., 2:4 or 6:9), within the
limit of up to 15 objects overall.

Area-controlled (vs size-controlled): If this op-
tion is set, object sizes are not chosen uni-
formly across the entire valid range, but size
ranges for the two contrasting object types
are adapted to the given contrast ratio and
size of the chosen shape(s), so that both at-
tributes cover the same image area on av-
erage. This means that the more numer-
ous attribute will generally be represented by

4Note that we chose the examples in figures to always
vary in color only, for clarity.

smaller objects, and the difference in covered
area between, for instance, squares and trian-
gles is taken into account.

While objects are still positioned randomly in
the basic version of this new generator module,
we define two modes which control this aspect as
well. Figure 1 in the introduction illustrates the
different modes.

Partitioned positioning: An angle is randomly
chosen for each image, and objects of the
contrasting attributes are consistently placed
either on one side or the other.

Paired positioning: If there are objects of the
contrasted attribute which are not yet paired,
one of them is randomly chosen and the new
object is placed next to it.

The captions of these evaluation instances are
always of the form “More/less than half the
shapes are X”. with “X” being the attribute in
question, for instance, “squares” or “red shapes”.
Note that this is an even more constrained cap-
tioner than the one used for Q-half. We also em-
phasize that, in contrast to this new evaluation
generator module, the default generator configu-
ration of the ‘quantification’ dataset pre-specified
in ShapeWorld is used to generate the training in-
stances in Q-half and Q-full. So these images gen-
erally contain many more than just two contrasted
attributes, and ratios between attributes tend to be
accordingly smaller. The examples in figure 2 are
chosen to illustrate this fact: the second example
contains a “half” statement with ratio 7:8, and the
first contains one about a 0:4 ratio, while the im-
age would also allow for a more ‘interesting’ 3:4
ratio (color of semicircles).

While we generally try to stay close to the ex-
perimental setup of Pietroski et al. (2009), in the
following we point out some differences. Most
importantly, instead of just using yellow and blue
dots, we use all eight shapes and seven colors that
ShapeWorld provides. This increases the visual
variety of the instances and thus encourages the
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Figure 3: From left to right, the ratio between the two attributes is increasingly balanced.

system to actually learn the fact that shape and
color are attributes that can be combined in any
way, instead of just straightforward binary pattern
matching. Note that the humans in the psycho-
logical experiments have learned language in even
more complex situations, which we cannot hope
to approximate here. Moreover, our data does not
contain yes/no questions but true/false captions,
and “most”-equivalent variations “more/less than
half”. Since the model is trained from scratch on
such data, this should not affect results.

We do not implement the ‘column pairs
mixed/sorted’ modes since they would require
comparatively big and mostly empty images,
hence require bigger networks and might cause
practical learning problems due to sparseness,
which we do not want to address here. In con-
trast, our ‘partitioned’ mode is more difficult than
the ones investigated by Pietroski et al. (2009), at
least for a pairing-based mechanism.

3.2 Model

We focus on the FiLM model (Perez et al., 2018)
here since it showed close-to-perfect accuracy on
the CLEVR dataset (Johnson et al., 2017a). We
interpret the ShapeWorld captions and agreement
values as questions and answer, respectively. The
image is processed using either a pre-trained CNN
or a four-layer CNN trained from scratch on the
task. The question is processed by a GRU. In a
sequence of four residual blocks, the image infor-
mation is processed with its features linearly mod-
ulated (scale, offset) conditioned on the processed
question embedding. Finally, the classifier module
produces the answer, true or false. We use the code
made available by the authors of the FiLM model,
without changing any parameters. The only aspect
we adapt is the trainable four-layer CNN, which
uses a kernel size of 3, batch normalization and a
stride of 2 in the second and fourth layer.

We considered investigating other models as
well: The PG+EE model (Johnson et al., 2017b)
is openly available and achieved very good per-
formance on CLEVR, however, it relies on the

‘program tree’ provided by CLEVR, and while
there exists a basic conversion of ShapeWorld cap-
tion models to CLEVR program trees, first, the
CLEVR-specific modules do not cover quantifiers
like “most” and, second, these program trees en-
code the interpretation strategy, which would de-
feat the purpose of our investigation to analyze
precisely this mechanism as learned from data.
The RelationNet architecture (Santoro et al., 2017)
explicitly implements a pairing-based mechanism
and hence we considered its evaluation less inter-
esting than FiLM. For similar reasons, we did not
focus on the VQA model of Zhang et al. (2018),
whose architecture includes an explicit counting
component. While our aim is to investigate the
strategy for understanding “most” learned from
data, it would be interesting to examine in both
cases whether their architectural prior does in-
deed have the expected effect. Finally, we only
learned about the MAC model (Hudson and Man-
ning, 2018) after we started this project and so de-
cided to leave it for future work, but we definitely
consider it one of the most interesting candidate
models to evaluate, since its architecture does not
suggest an obvious preference for either strategy.

3.3 Training details

The training set for both Q-full and Q-half consists
of around 100k (25x 4096) images with 5 captions
per image, so overall around 500k instances. The
model is trained for 100k iterations with a batch
size of 64. Training performance is measured
on an additional validation set of 20k instances.
Moreover, we produced 1024 instances for each
of the overall 48 evaluation configurations, to in-
vestigate the trained model in more detail.

4 Results

Training. We train two versions of the FiLM
model, with CNN trained from scratch on the task:
one on the Q-full dataset which contains all avail-
able quantifier and number caption types, the other
on the Q-half dataset which is restricted to cap-
tions involving the quantifier “half” only. Perfor-
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mance of the system over the course of the 100k
training iterations is shown in figure 4. The two
models, referred to by Q-full and Q-half below,
learn to solve the task quasi-perfectly, with a final
accuracy of 98.9% and 99.4% respectively. Not
surprisingly, the system trained on the more di-
verse Q-full training set takes longer to reach this
level of performance, but nevertheless plateaus af-
ter around 70k iterations.

For the sake of completeness, we also include
the performance of other models in this figure,
which failed to show clear improvement over the
first 50k iterations. This includes the FiLM model
with pre-trained instead of trainable CNN module
(Q-full-pre, Q-half-pre), and an earlier trial on Q-
half (Q-half-coll) where we did not constrain the
data generation to not produce object collisions
(the default in ShapeWorld is to allow up to 25%
area overlap). We note, however, that we have not
done any hyperparameter search which might al-
leviate these learning problems.

Evaluation. Table 5 presents a detailed break-
down of system performance on the evaluation set-
tings. Before discussing the results in detail, we
want to reiterate three key differences between the
evaluation data and the training data:

• The visual scenes here do all exhibit close-to-
balanced contrast ratios, while this is not the
case for the training instances.

• The evaluation scenes only contain objects
of two different attribute pairs, and conse-
quently the numbers to compare are generally
greater than in the training instances, where
more attributes are likely present in a scene.

• Q-full contains not just statements involving
“half” – in fact, a random sample of 100 im-
ages / 500 captions suggests that they consti-
tute only around 8% of the dataset (and this
includes combinations with modifiers beyond
“more/less than”).

Considering that, the relatively high accuracy on
test instances throughout indicates a remarkable
degree of generalization.

More balanced ratios. The most consistent ef-
fect is that more balanced ratios of contrasted at-
tributes cause performance to decrease. This is
certainly affected by the tendency of the training
data to not include many examples of almost bal-
anced ratios. However, if this were the only rea-
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Figure 4: Training performance (iterations in 1000). Q-
full: unconstrained dataset; Q-half : dataset restricted
to “less/more than half”; -pre: using pre-trained CNN
module; -coll: allowing object overlap.

son, one would expect a much more sudden and
less uniformly linear decrease. More importantly,
since Q-full generally contains fewer “half” state-
ments, the decline should be more pronounced
here. We do not observe either of these effects, and
thus conclude that both models may actually have
developed an approximate number system. This is
further discussed at the end of this section.

Random vs paired vs partitioned. There is a
clear negative effect of the partitioned configura-
tion on performance for the model trained on Q-
full, which suggests that the learned mechanism is
not robust to a high degree of per-attribute cluster-
ing. This indicates at most a weak preference to-
wards a pairing-based strategy for Q-full, though,
since otherwise the model would not be expected
to perform best on the random configuration. In-
terestingly, the results for Q-half even suggest
slightly better performance on the area-controlled
partitioned configuration. Overall, no clear prefer-
ence for either the perfectly clustered partitioned
or the perfectly mixed paired arrangement is ap-
parent. We note, however, that the random mode
instances are most similar to the random place-
ment of objects in the training data, which might
cause this effect.

Size- vs area-controlled. The performance in
both cases is comparable, showing that the mod-
els do not (solely) learn to rely on comparing the
overall covered area, which would only work well
in the size-controlled mode. Nevertheless, we
note a tendency for area-controlled instances to
be somewhat more difficult in random and paired
mode, more so for Q-half, which suggests that the
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train mode
size-controlled area-controlled

all 1:2 2:3 3:4 4:5 5:6 6:7 7:8 all 1:2 2:3 3:4 4:5 5:6 6:7 7:8

Q-full
random 92 100 99 97 94 91 88 85 93 100 99 97 93 91 86 82
paired 93 99 99 96 93 90 88 82 93 99 99 96 91 87 84 80
part. 89 100 99 92 90 81 77 72 89 99 98 92 88 82 78 72

Q-half
random 92 100 100 98 93 88 88 87 93 100 100 97 92 86 85 82
paired 92 100 100 96 90 86 84 79 92 100 99 96 87 84 79 76
part. 91 100 99 96 86 83 83 80 91 100 99 94 89 83 83 80

Figure 5: Accuracy in percent of the models trained on Q-full and Q-half for the various evaluation configurations.

model(s) learn to use covered area as a feature to
inform a correct decision in some cases.

Q-full vs Q-half. There seems to be a ten-
dency of the system trained on Q-full to perform
marginally better, except for the partitioned mode
discussed before. The fact that this model per-
forms at least on a par with the one trained on
Q-half, while only seeing a fraction of directly rel-
evant training captions, indicates that the learning
process is not ‘distracted’ by the variety of cap-
tions, and indeed might profit from it.

Ratios and Weber fraction. We generated eval-
uation sets of even more balanced ratios (8:9, 9:10,
10:11, increasing the overall number of objects
accordingly to 17/19/21), and in figure 6 plotted
the accuracy of the Q-full model on increasingly
balanced sets for all three spatial configuration
modes, not controlling for area (which for greater
numbers only has a negligible effect anyway). The
figure also contains a diagram with accuracy plot-
ted against ratio fraction, which is more common
in the context of Weber’s law. The characteristic
Weber fraction can be read off directly as the ratio
at which a subject is able to distinguish two val-
ues with 75% accuracy. We observe around 1.11
for random/paired and 1.16 for partitioned, which
corresponds to 9:10 and 6:7 as closest integer ra-
tios. These values are in the same region as the
average human Weber fraction, which is often re-
ported as being 1.14, or 7:8.

We emphasize that these curves align well with
the trend predicted by Weber’s law, even for the
ratios with more than 15 objects overall, where
such situations have never been encountered dur-
ing training. All this strongly suggests that the
model learns a mechanism similar to an ANS,
which is able to produce representations that can
(at least) be utilized for identifying the more nu-
merous set. It can in particular be concluded that
the system does not actually learn to explicitly

count, since we would then not expect to observe
such fuzziness characteristic to an ANS.

Moreover, since performance is affected some-
what by the partitioned and the area-controlled
modes, the interpretation of “most” seems to be
informed by other features as well. As we noted
earlier, since the model is trained to optimize this
task, an adaptive strategy is not unexpected. On
the contrary, more surprising is the fact that an
ANS-like system emerges as a dominating ‘back-
bone’ mechanism, with additional factors acting
as less influential ‘secondary’ features.

5 Related work

Visual question answering (VQA) is the general
task of answering questions about visual scenes.
Since the introduction of the VQA Dataset (Antol
et al., 2015), this dataset was widely used as evalu-
ation benchmark for multimodal deep learning. It
provides a shallow categorization of questions, in-
cluding basic count questions, however, these cat-
egories are far too coarse for our purposes.

Motivated by various problems with the VQA
Dataset (Goyal et al., 2017; Agrawal et al., 2016),
a range of artificial abstract datasets have been in-
troduced recently. CLEVR (Johnson et al., 2017a)
consists of rendered images of geometric objects
and questions generated based on templates, cov-
ering some abilities like number or attribute com-
parison in more detail, but still in a fixed catego-
rization. NLVR (Suhr et al., 2017) contains crowd-
sourced statements about abstract images, but does
not sort them according to some criteria. Recently,
the COG dataset (Yang et al., 2018) was intro-
duced, which most explicitly focuses on replicat-
ing psychological experiments for deep learning
models, hence most related to our work. However,
their dataset does not contain any number or quan-
tifier statements.

There is some work on investigating deep neural
networks which look at numerosity from a more
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Figure 6: Left: Q-full model performance for increasingly balanced ratios (x-axis indicates ratio via n:n+1).
Right: Performance as a function of the actual ratio fraction (n+1)/n, with Weber fraction (75%) highlighted.

psychologically inspired viewpoint. Stoianov and
Zorzi (2012) find that visual numerosity emerges
from unsupervised learning on abstract image
data. Zhang et al. (2015) look at salient object
subitizing in real-world images, formulated as a
classification task over five classes ranging from
“0” to “4 or more”. In a more general number-
per-category classification setup, Chattopadhyay
et al. (2017) investigate different methods of ob-
taining counts per object category, including one
which is inspired by subitizing. Moving beyond
explicit number classification, (Zhang et al., 2018)
recently introduced a dedicated counting module
for visual question answering.

Other work looks at a similar classification task,
but for proper quantifiers like “no”, “few”, “most”,
“all”, first on abstract images of circles (Sorodoc
et al., 2016), then on natural scenes (Sorodoc
et al., 2018). Recently, Pezzelle et al. (2018) in-
vestigated a hierarchy of quantifier-related clas-
sification abilities, from comparatives via quan-
tifiers like the ones above to fine-grained pro-
portions. Wu et al. (2018), besides investigat-
ing precise numerosity via number classification
as above, also look at approximate numerosity as
binary greater/smaller decision, which closely cor-
responds to our experiments. However, on the one
hand, their focus is on the subitizing ability, not the
approximate number system. On the other hand,
their experiments follow a different methodology
in that they already train models on specifically
designed datasets, while we deliberately leverage
such targeted data only for evaluation.

On a methodological level, our proposal of in-
spiring experimental setup and evaluation practice
for deep learning by cognitive psychology is in
line with that of Ritter et al. (2017) and their shape
bias investigation for modern vision architectures.

6 Conclusion

We identify two strategies of algorithmically in-
terpreting “most” in a visual context, with dif-
ferent implications on cognitive concepts. Fol-
lowing experimental practice of similar investiga-
tions with humans in psycholinguistics, we de-
sign experiments and data to shed light on the
question whether the state-of-the-art FiLM VQA
model shows preference for one strategy over the
other. Performance on various specifically de-
signed instances does indeed indicate that a form
of approximate number system is learned, which
generalizes to more difficult scenes as predicted by
Weber’s law. The results further suggest that ad-
ditional features influence the interpretation pro-
cess, which are affected by the spatial arrange-
ment and relative size of objects in a scene. There
are many opportunities for future work from here,
from strengthening the finding of an approximate
number system and further analyzing confound-
ing factors to investigating the relation to more ex-
plicit counting tasks.
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