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1 Background

The concept of ‘markedness’ has been influential
in phonology for almost a century. Theoretical
phonology used it to describe some segments as
more ‘marked’ than others, referring to a cluster
of language-internal and language-external prop-
erties (Jakobson, 1968; Haspelmath, 2006). We
argue, using a simple mathematical model based
on Evolutionary Phonology (EP; Blevins, 2004),
that markedness is an epiphenomenon of phoneti-
cally grounded sound change.

2 Model: random splits and mergers

We propose a simple abstract model of sound
change as a discrete-time stochastic process of
random splitting and merging of phonemic cat-
egories. In the split-and-merger model, sound
change belongs to a class of random fragmentation
and aggregation processes (Banavar et al., 2004),
whose fixed points are power-law frequency distri-
butions over the elements being split and merged.
It has been shown that phoneme type and token
frequencies in natural languages do indeed fol-
low a power-law distribution, specifically a Yule-
Simon distribution (Simon, 1955; Tambovtsev and
Martindale, 2007; Martin, 2007).

Say the phoneme inventory of a language is a
set of segments {xi}, where the ith segment xi
has frequency pti at time step t. At each stage, we
apply either a split or a merger to the language
with equal probability:

• To apply a split, pick a random pair of seg-
ments xi, xj with i 6= j. Take away half of
xi’s probability mass, and add it to the exist-
ing probability mass of xj .

pt+1
i :=

pti
2

pt+1
j :=

pti
2

+ ptj

pt+1
k := ptk

• Mergers follow a similar algorithm, except
that all of xi’s probability mass is transferred
to xj .

pt+1
i := 0

pt+1
j := pti + ptj

pt+1
k := ptk

• Define a function PS(xj) such that PS(xj) ≥
0 and ΣPS(xj) = 1; this is a probability
distribution representing the probability that
the jth segment xj will have its frequency in-
creased when another segment splits. When
the splitting algorithm calls for picking a ran-
dom pair of segments xi, xj , pick xj ran-
domly according to the distribution PS(xj).

• Define a second probability distribution
PM (xi), representing the probability that xi
is lost in a merger. When the merging algo-
rithm calls for picking a random pair of seg-
ments xi, xj , pick xi randomly according to
PM (xi).

Say that segments with low PS(xj) are ‘split-
wise marked’, and segments with high PM (xi)
are ‘mergerwise marked’. In other words, marked
segments are segments that either do not tend to
be created after a split, or do tend to be lost in a
merger.

3 Predictions: within-language and
across-language frequency

Empirically, across-language phoneme frequen-
cies correlate well with within-language frequen-
cies (Gordon, 2016). We show that a split-and-
merger model derives this link from stochastic
sound change.



68

Figure 1: A typical run of our simulation after 500 iter-
ations.

We run a simulation of the split-and-merger pro-
cess for 500 iterations with a set of 20 segments ar-
bitrarily labeled {a, b, c,....t}. We assume that seg-
ment frequencies are uniform as a starting point.
In addition, six segments {u, v,...z} are assigned
an initial value of zero. In the sound change
simulation, either a split or a merger is applied
to the phonemic inventory at each iteration with
equal probability. Simulations of the split-and-
merger model in action show long-tailed distribu-
tions emerging out of an initial flat distribution,
qualitatively in line with the results from random
fragmentation and aggregation models (Figure 1).

3.1 Splitwise markedness

We re-run the simulation first implementing split-
wise markedness. In this simulation, ‘a’ is ‘un-
marked’ with respect to the other segments by hav-
ing a probability of increasing its frequency after
a split which is higher than that of the other seg-
ments, and ‘b’ is ‘marked’ by having a probability
of increasing its frequency after a split which is
lower. The probabilities are determined by a pa-
rameter r, which represents the ratio between the
probability of the ‘unmarked’ and the ‘marked’
segments with respect to the others. This value
quantifies how ‘unmarked’ or ‘marked’ a segment
is with respect to the others.

In a first experiment, we track the average fre-
quencies of ‘a’ and ‘b’ across 1000 parallel runs,
and we also track the number of runs in which
they survive, interpreting each independent run as
a separate language. We then compare these num-
bers with the frequencies exhibited by segments
which are neither ‘unmarked’ nor ‘marked’, for

Figure 2: Summary of the final within-language fre-
quencies of ‘a’, ‘c’ and ‘b, which are modeled in terms
of splitwise markedness, after 1000 parallel runs, with
r=10.

example ‘c’.
Figure 2 shows the average frequencies in the

languages in which ‘a’, ‘b’ and ‘c’ survive, and it
shows that ‘a’ has a higher average than ‘c’ and
’b’, while these latter segments do not exhibit a
clear difference.

Table 1 shows both within- and across-language
frequencies for different values of r. Interestingly,
increasing the value for r has the effect of increas-
ing the difference between ‘a’ and the other sym-
bols, but it does not have any effect on ‘b’. On
the other hand, across-language frequencies are
clearly distinct, and ‘a’ and ‘b’ display frequen-
cies different from the neutral segment ‘c’. These
differences become more salient as r increases.

This experiment shows that when we add a
diachronic bias, ‘unmarked’ segments display
higher frequencies both within- and across-
languages, while the effect for ‘marked’ segments
appears to be limited to across-language frequen-
cies. This might follow from the fact that while
splitwise marked segments tend to appear less
in languages, their within-language frequencies
are dependent on other factors, for instance the
frequency of the segments from which they
split or their likelihood of merging with other
segments. In the next subsection, we investigate
mergerwise markedness.

3.2 Mergerwise markedness

We repeat the simulation modeling mergerwise
markedness. This time, ‘a’ is ‘unmarked’ with re-
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Markedness Within-language Across-language
r=2
‘a’ Unmarked 0.063 (±0.006) 0.572 (±0.003)
‘c’ Neutral 0.057 (±0.007) 0.475 (±0.003)
‘b’ Marked 0.056 (±0.008) 0.410 (±0.003)
r=5
‘a’ Unmarked 0.081 (±0.006) 0.702 (±0.003)
‘c’ Neutral 0.058 (±0.007) 0.452 (±0.003)
‘b’ Marked 0.052 (±0.008) 0.348 (±0.003)
r=10
‘a’ Unmarked 0.099 (±0.008) 0.773 (±0.002)
‘c’ Neutral 0.052 (±0.007) 0.423 (±0.003)
‘b’ Marked 0.058 (±0.008) 0.311 (±0.003)

Table 1: Average within- and across-language frequen-
cies for three segments which differ in terms of split-
wise markedness, with different values of r. Confi-
dence intervals at 95% are reported for within-language
frequencies. We also report confidence intervals at 95%
for across-language frequencies, which we obtained by
repeating the whole experiment 100 times.

spect to the other segments by having a probabil-
ity of being lost after a merger which is lower than
that of the other segments, and ‘b’ is ‘marked’ by
having a probability of being lost after a merger
which is instead higher. The probabilities are de-
termined by the same parameter r.

As previously done, we track the average fre-
quencies of ‘a’ and ‘b’ across 1000 parallel runs
and the number of runs in which they survive,
along with those of a neutral segment ‘c’.

Figure 3 shows the average frequencies in the
languages in which ‘a’, ‘b’ and ‘c’ survive, and it
shows that this time the three segments have dif-
ferent distributions. From Table 2, we see that
within- and across-language frequencies line up,
exhibiting a correlation. In this case, ‘marked’
segments exhibit a lower within-language fre-
quency with respect to neutral segments.

4 Conclusions

Both the power-law frequency distribution of
phonemes in a language and the cluster of proper-
ties associated with ‘markedness’ can be thought
of as epiphenomena of phonetically grounded
sound change. A stochastic split-and-merger
model predicts the attested language-internal and
typological correlations. In particular, merger-
wise markedness appears to be responsible for
higher within- and across-language frequencies
for ‘unmarked’ segments and lower frequencies
for ‘marked’ segments, while splitwise marked-
ness mainly affects ‘unmarked’ segments.

Figure 3: Summary of the final within-language fre-
quencies for ‘a’, ‘c’ and ‘b’, which are modeled in
terms of mergerwise markedness, after 1000 parallel
runs, with r=10.

Markedness Within-language Across-language
r=2
‘a’ Unmarked 0.065 (±0.006) 0.652 (±0.003)
‘c’ Neutral 0.056 (±0.007) 0.485 (±0.003)
‘b’ Marked 0.052 (±0.008) 0.320 (±0.003)
r=5
‘a’ Unmarked 0.071 (±0.006) 0.836 (±0.002)
‘c’ Neutral 0.051 (±0.005) 0.509 (±0.003)
‘b’ Marked 0.045 (±0.008) 0.173 (±0.002)
r=10
‘a’ Unmarked 0.072 (±0.005) 0.924 (±0.002)
‘c’ Neutral 0.050 (±0.005) 0.548 (±0.003)
‘b’ Marked 0.032 (±0.007) 0.109 (±0.002)

Table 2: Average within- and across-language frequen-
cies for three segments which differ in terms of merg-
erwise markedness, with different values of r. Confi-
dence intervals at 95% are reported for within-language
frequencies. We also report confidence intervals at 95%
for across-language frequencies, which we obtained by
repeating the whole experiment 100 times.
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