
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 148–155
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

148

An Empirical study on Pre-trained Embeddings and Language Models for
Bot Detection

Andres Garcia-Silva
Expert System

Calle Profesor Waksman 10
28036, Madrid, Spain

agarcia@expertsystem.com

Cristian Berrio
Expert System

Calle Profesor Waksman 10
28036, Madrid, Spain

cberrio@expertsystem.com

Jose Manuel Gomez-Perez
Expert System

Calle Profesor Waksman 10
28036, Madrid, Spain

jmgomez@expertsystem.com

Abstract

Fine-tuning pre-trained language models has
significantly advanced the state of art in a wide
range of downstream NLP tasks. Usually,
such language models are learned from large
and well-formed text corpora from e.g. en-
cyclopedic resources, books or news. How-
ever, a significant amount of the text to be
analyzed nowadays is Web data, often from
social media. In this paper we consider
the research question: How do standard pre-
trained language models generalize and cap-
ture the peculiarities of rather short, informal
and frequently automatically generated text
found in social media? To answer this ques-
tion, we focus on bot detection in Twitter as
our evaluation task and test the performance
of fine-tuning approaches based on language
models against popular neural architectures
such as LSTM and CNN combined with pre-
trained and contextualized embeddings. Our
results also show strong performance varia-
tions among the different language model ap-
proaches, which suggest further research.

1 Introduction

Recently, transfer learning techniques (Pan and
Yang, 2010) based on language models have suc-
cessfully delivered breaktrough accuracies in all
kinds of downstream NLP tasks. Approaches like
ULMFiT (Howard and Ruder, 2018), Open AI
GPT (Radford et al., 2018) and BERT (Devlin
et al., 2018) have in common the generation of
pre-trained models learned from very large text
corpora. The resulting language models are then
fine-tuned for the specific domain and task, contin-
uously advancing the state of the art across the dif-
ferent evaluation tasks and benchmarks commonly
used by the NLP community.

Transfer learning approaches based on language
models are therefore the NLP analogue to similar

approaches in other fields of AI like Computer Vi-
sion, where the availability of large datasets like
ImageNet (Deng et al., 2009) enabled the develop-
ment of state of the art pre-trained models. Before
language models, common practice for transfer
learning in NLP was based on pre-trained context-
independent embeddings. These are also learned
from large corpora and encode different types of
syntactic and semantic relations that can be ob-
served when operating on the vector space. How-
ever, their use is limited to the input layer of neu-
ral architectures, and hence the amount of data
and training effort necessary to learn a high per-
formance task-related model is high since it is
still necessary to train the whole network. Pre-
trained language models, on the other hand, at-
tempt to learn in the network structure the word
inter-relations that can be leveraged during the
fine-tuning step, usually by just learning a feed
forward network for the specific task. The network
architecture varies depending on the approach, in-
cluding transformers (Vaswani et al., 2017) based
on decoders, encoders and attention mechanisms,
and bi-directional long-short term memory net-
works (Hochreiter and Schmidhuber, 1997).

Language models are usually learnt from high
quality, grammatically correct and curated text
corpora, such as Wikipedia (ULMFiT), BookCor-
pus (Open AI GPT), a combination of Wikipedia
and BookCorpus (BERT) or News (ELMo). How-
ever, a very significant amount of the text to be
analyzed nowadays is Web data, frequently from
social media. The question that immediately arises
is therefore whether such language models also
capture the nuances of the short and informal lan-
guage often found in social media channels.

In this paper we explore this question and em-
pirically study how pre-trained embeddings and
language models perform when used to analyze
text from social media. To this purpose, we focus



149

on bot detection in Twitter as evaluation task for
two main reasons. First, the intrinsic relevance of
the task for counteracting the automatic spreading
of disinformation and bias on social media. Sec-
ond, because in this context the gap, in terms of the
quality and overall characteristics of the language
used, between the corpora used to learn the lan-
guage models and the task-specific text to be ana-
lyzed (automatically generated in a social media,
micro-blogging context) can be particularly repre-
sentative.

In our experiments, prior to evaluating the be-
havior of pre-trained language models, we test
pre-trained embeddings as a baseline learned from
general corpora, social media and informal vocab-
ularies. We choose two popular NLP neural ar-
chitectures for our binary classification task: Long
Short Term memory networks (LSTM; Hochre-
iter and Schmidhuber, 1997) and convolutional
networks (CNN; LeCun et al., 1998). We
also pre-processed our Twitter dataset, observing
a positive effect on our CNN and LSTM classi-
fiers while on the other hand such effect was ac-
tually negative on some of the tested pre-trained
language models.

In general, our results indicate that fine-
tuned pre-trained language models outperform
pre-trained and contextualized embeddings used
in conjunction with CNN or LSTM for the task
at hand. This shows evidence that language mod-
els actually capture much of the peculiarities of
social media and bot language or at least are flexi-
ble enough to generalize during fine-tuning in such
context. From the different language models we
evaluated, Open AI GPT beats BERT (base) and
ULMFit in the bot/no bot classification task, sug-
gesting that a forward and unidirectional language
model is more appropriated for social media mes-
sages than other language modeling architectures,
which is relatively surprising. Nevertheless, the
considerable experimentation we carried out has
raised a number of additional questions that will
need further research. During the workshop, we
aim at sharing and discussing these questions with
the participants.

The rest of the paper is structured as follows.
Section 2 describes the state of the art about the
different models and embeddings used in the ex-
periments. Next, the experimental setup is pre-
sented in section 3, where the learning objective
is defined as well as the dataset and the used

pre-trained embeddings. Section 4 and 5 present
the experiments using CNN and LSTM and dif-
ferent combinations of pre-trained, contextualized
and dynamically generated embeddings learnt dur-
ing training of the bot/no bot classification model.
Then, section 6 describes the experiments with
pre-trained language models. Finally, a discussion
about the results is presented in section 7.

2 State of the Art

Mikolov’s word2vec (Mikolov et al., 2013) ap-
proach that proposes an efficient way to learn
embeddings by predicting words based on their
context using negative sampling sparkled a new
generation of embedding learning methods like
GloVe (Pennington et al., 2014), Swivel (Shazeer
et al., 2016) and FastText (Joulin et al., 2016).
These embeddings capture semantic and syntac-
tic relations between words that were mapped to
vector operations in the multidimensional space.
Nevertheless these approaches generate static,
context-independent embeddings for words in the
vocabulary. ELMo (Peters et al., 2018) overcome
this limitation by generating representations for
each word as a function of the input sentence. In
addition, while pre-trained embeddings are used
as input for neural networks, ELMo allows the
end-task model to learn a contextualized linear
combination of its internal representation.

Pre-trained embeddings are used as the first
layer of models or as additional features to neu-
ral architectures. However as the models are ini-
tialized randomly a lot of training data was still
required to get a high performance. To alleviate
this problem ULMFiT (Howard and Ruder, 2018)
proposes a transfer learning method that pre-trains
a language model on a large corpus using 3-layer
LSTM architecture that is then fine-tuned on the
target task. In fact, the fine tuning is done at the
language model level to reflect the target task dis-
tribution and at the task level.

In the same vein the Open AI Generative Pre-
trained Transformer (GPT) (Radford et al., 2018)
learns a language model on a large corpus us-
ing a multi-layer transformer decoder, and super-
vised fine-tuning to adapt the parameters to the tar-
get task. For tasks other than text classification
the input is transformed into an ordered sequence
that the pre-trained model can process. In con-
trast, BERT uses a bidirectional transformer (De-
vlin et al., 2018), also known as a transformer



150

encoder, that learns representations jointly condi-
tioned on left and right context in all layers. Sim-
ilar to ELMo, ULMFiT and Open AI GPT which
pre-train language models, BERT learning objec-
tive is a masked language model and a binarized
next sentence prediction tasks. For a classifica-
tion process all of the parameters of BERT and the
classification layer are fine-tuned jointly to maxi-
mize the log-probability of the correct label.

Our contribution is an empirical study on the
fitness of the fine-tuning of pre-trained language
models when tested against text from social media
and the target task is classification. We also show
how pre-processing of the target task corpus can
affect the performance of the pre-trained models,
and compare them with the use of pre-trained and
contextualized embeddings as inputs of CNN and
BiLSTM for the classification task.

3 Experiments

To evaluate pre-trained language models with
Twitter data we focus on the relevant problem of
detecting bots in social media. Bots are automatic
agents that publish information for a variety of
purposes such as weather and natural hazards up-
dates, and news, but also for spreading misinfor-
mation and fake news. In fact, as of 2017 it has
been estimated that as 9% to 15% of twitter ac-
counts are bots (Varol et al., 2017) which means
that out of the 321 million active user accounts1

the number of automatic agents range from 28 to
48 million.

Detecting bots can be addressed as a binary
classification problem focusing only in the tweet
textual content since our main target are language
models, regardless of the other features that might
be drawn from the social network, such user meta-
data, network features based on the follower and
followee relations, and tweet and retweet activity.

3.1 Dataset

To generate a dataset of tweets generated by bots
or humans we rely on an existing dataset of bot and
human accounts published by Gilani et al. (2017).
We create a balanced dataset containing tweets la-
belled as bot or human according to the account la-
bel. In total our dataset comprises 500,000 tweets

1Twitter 4th quarter and fiscal year 2018 results:
https://www.prnewswire.com/news-releases/twitter-
announces-fourth-quarter-and-fiscal-year-2018-results-
300791624.html

where 279,495 tweets were created by 1,208 hu-
man accounts, and 220,505 tweets were tweeted
from 722 bot accounts.

In this sample, bots tend to be more prolific than
humans since they average 305 tweets per account
which contrasts with the human average of 231.
In addition, bots tend to use more URL (0.8313
URL per tweet) and hash tags (0.4745 hashtags
per tweets) in their tweets than humans (0.5781
URL and 0.2887 hashtags per tweet). This shows
that bots aim at maximizing visibility (hashtags)
and to redirect traffic to other sources (URL). Fi-
nally, we found that bots display more egoistic
behaviour than humans since they mention other
users in their tweets (0.4371 user mentions per
tweet) less frequently than humans (0.5781 user
mentions per tweet).

3.2 Pre-trained embeddings

We use pre-trained embeddings to train the clas-
sifiers rather than doing it from scratch. We use
pre-trained embeddings learned from Twitter it-
self, urban dictionary definitions to accommodate
the informal vocabulary often used in the social
network, and common crawl as a general source
of information:

• glove.twitter2: 200 dimension embeddings
generated from Twitter (27B tokens, 1.2M
vocabulary) using GloVe (Pennington et al.,
2014).

• word2vec.urban3: 100 dimension em-
beddings generated from Urban Dictio-
nary definitions (568K vocabulary) using
Word2Vec (Mikolov et al., 2013).

• fastText.crawl4: 300 dimension embed-
dings generated from Common Crawl
(600B tokens, 1.9M vocabulary) using
fastText (Mikolov et al., 2018)

4 CNN for text classification

We use convolutional neural networks (CNN; Le-
Cun et al., 1998) for the bot detection task inspired
by Kim’s work (Kim, 2014) that showed how this
architecture achieved good performance in sev-
eral sentence classification tasks, and other reports
like (Yin et al., 2017) that show good results in
NLP tasks. The neural network architecture uses

2https://nlp.stanford.edu/projects/glove/
3https://data.world/jaredfern/urban-dictionary-

embedding
4https://fasttext.cc/docs/en/english-vectors.html



151

3 convolutional layers and a fully connected layer.
Each convolutional layer has 128 filters of size 5,
relu was used as activation function and max pool-
ing was applied in each layer. The fully connected
layer uses softmax as activation function to pre-
dict the probability of each message being written
by a bot or a human. All the experiments reported
hereinafter use a vocabulary size of 20k tokens,
sequence size 200, learning rate 0.001, 5 epochs,
128 batch size, static embeddings unless otherwise
stated, and 10-fold cross validation.

First we train the CNN classifier on our dataset
using pre-trained embeddings and compare them
with randomly generated embeddings. In addition,
we pre-process our dataset using the same pre-
processing script5 that was applied when learn-
ing the GloVe Twitter embeddings. This pre-
processing replaces, for example, URL, numbers,
user mentions, hashtags and some ascii emoticons
with the corresponding tags. Evaluation results are
presented in table 1.

Embeddings Dim. Pre-proc. Precision Recall F-Measure

random 300 No 0.7567 0.7551 0.7517

glove.twitter 200
No 0.7641 0.7618 0.7587
Yes 0.7834 0.7790 0.7750

word2vec.urban 100
No 0.7122 0.7119 0.7075
Yes 0.7601 0.7565 0.7522

fastText.crawl 300
No 0.7679 0.7659 0.7627
Yes 0.7858 0.7849 0.7829

Table 1: Evaluation of CNN classifiers using random
and pre-trained embeddings. Bold and italics are used
for best classifiers using pre-processing or not pre-
processing respectively.

In this setting, the best classifiers, according to
the f-measure, is learned using fastText common
crawl embeddings and the pre-processed dataset,
followed by the classifier that uses GloVe Twit-
ter embeddings also with pre-processing. In gen-
eral pre-processing improves all the classifiers and
evaluation metrics. Also notice that the CNN with
word2vec urban dictionary embeddings without
pre-processing underperformed the classifier that
uses random embeddings, however when using
pre-processing the metrics are better for the for-
mer.

4.1 Contextualized embeddings

In addition to static pre-trained embeddings we
train CNN classifiers with dinamically-generated

5https://nlp.stanford.edu/projects/glove/pre-process-
twitter.rb

embeddings using ELMo. ELMo embeddings
were generated from our dataset, however none of
the trainable parameters (i.e., linear combination
weights) were modified in the process. Due to the
high dimension of these embeddings (dim=1024)
we reduced the sequence size to 50 to avoid mem-
ory errors. Evaluation results, reported in table 2,
shows that when the corpus was not pre-processed
ELMo embeddings produced the best classifier, in
terms of f-measure, when compared with classi-
fiers learned from pre-trained embedddings and a
dataset without pre-processing (see results in table
1 for comparison).

Embeddings Dim Preproc. Precision Recall F-Measure

ELMo 1024
No 0.7766 0.7719 0.7675
Yes 0.7859 0.7827 0.7798

Table 2: Evaluation of CNN classifiers using contextu-
alized embeddings.

However, when the corpus was pre-processed
the classifier learned from ELMo embeddings un-
derperforms with respect to the best classifier
learned from fastText common crawl embeddings,
while outperforms the classifiers learned from
GloVe and Urban dictionary. Nevertheless, in this
setting ELMo embeddings produces the classifier
with highest precision. Another important find-
ing is that ELMo embeddings always generates the
classifier with highest precision, regardless of data
pre-processings.

4.2 Combining embeddings

We experiment by concatenating different pre-
trained embeddings in the input layer of the CNN.
Since fastText embeddings learned the best clas-
sifiers we pivot around them. Results in table 3
show that the best classifier is learned using fast-
Text common crawl and GloVe Twitter embed-
dings with data pre-processing, and this classifier
is better than any of the previous classifiers re-
ported in tables 1 and 2.

Nevertheless, if we consider the results with-
out pre-processing the combination of these em-
beddings with ELMo generates the best classifier,
which is compatible with what we found above
when ELMo embeddings help to learn the best
classifier when the dataset was not pre-processed
(see table 2). Similarly, this combination of em-
beddings helps to learn the classifier with highest
precision regardless data pre-proccessing.



152

Embeddings Pre-proc. Precision Recall F-Measure

fastText.crawl+glove.twitter
No 0.7724 0.7704 0.7672
Yes 0.7906 0.7887 0.7862

fastText.crawl+word2vec.urban
No 0.7598 0.7566 0.7526
Yes 0.7826 0.7798 0.7767

fastText.crawl + glove.twitter
+ word2vec urban

No 0.7675 0.7644 0.7606
Yes 0.7806 0.7782 0.775

fastText.crawl + glove.twitter
+ ELMo

No 0.7787 0.7771 0.7744
Yes 0.7925 0.7861 0.7816

Table 3: Evaluation of CNN classifiers using concate-
nations of pre-trained and contextualized embeddings.
Bold and italics are used for best classifiers using pre-
processing or not pre-processing respectively.

4.3 Dynamic and pre-trained embeddings
Another option to improve these classifiers is to
allow the CNN to adjust dynamically the embed-
dings or part of them in the learning process. To
do so, we generate 300 dimension embeddings
initialized randomly and configure the CNN to
make them trainable. In addition, we concatenate
these random and trainable embeddings to the pre-
trained and ELMo embeddings, which were not
modified in the learning process. In this round of
experiments we always use pre-processing since in
the previous sections this option always improved
the classifiers.

Table 4 shows that dynamic embeddings by
themselves help to learn a classifier better than
all the previous reported. Nevertheless, there ex-
ists the risk of over-fitting since the embeddings
are tailored to the classification task, and that is
why it makes sense to combine them with embed-
dings learned from other corpora. In this case, the
combination of dynamic and ELMo embeddings
generates the best classifier. Another interesting
finding is that for the first time a classifier using
word2vec urban dictionary is better than the others
using GloVe twitter and fastText common crawl.
We think that the reduced dimensionality of ur-
ban dictionary embeddings (100 dim) compared to
Twitter and common crawl embeddings (200 dim
and 300dim) allows the dynamic embeddings (300
dim) to influence more the learning process, and
achieve better results.

Embeddings Precision Recall F-Measure

dynamic 0.7956 0.7957 0.7950
dynamic + glove.twitter 0.8051 0.8042 0.8027
dynamic + fastText.crawl 0.8013 0.8016 0.8009
dynamic + word2vec.urban 0.8066 0.8053 0.8034
dynamic + ELMo 0.8125 0.8097 0.8073

Table 4: Evaluation of CNN classifiers using dynamic
embeddings and pre-trained and contextualized embed-
dings using a pre-processed dataset

In addition, as shown in table 5 we evaluate
different combination of the dynamic embeddings
and concatenations of the pre-trained and contex-
tualized embeddings. None of these attempts gen-
erate a better classifier than the one using the com-
bination of dynamic embeddings and ELMo. Nev-
ertheless, concatenating more embeddings never
worsens the evaluation results, and most of the
time improves them, with the exception of ELMo
embeddings.

Embeddings Precision Recall F-Measure

dynamic + glove.twitter
+ word2vec.urban

0.8067 0.8056 0.8041

dynamic + fastText.crawl
+glove.twitter

0.8057 0.8045 0.8027

dynamic + fastText.crawl + glove
.twitter + word2vec.urban

0.8092 0.8078 0.8060

dynamic + fastText.crawl + ELMo 0.8118 0.8093 0.8070
dynamic + fastText.crawl + glove
.twitter+ELMo

0.8105 0.8088 0.8070

dynamic + fastText.crawl + glove
.twitter+word2vec.urban+ELMo

0.8131 0.8096 0.8069

Table 5: Evaluation of CNN classifiers using dynamic
embeddings and concatenations of to pre-trained and
contextualized embeddings.

Figure 1 presents an overview of all the CNN
classifiers evaluated so far using pre-processing
sorted in descending order by f-measure. This fig-
ure shows how different classifiers were generated
by using initially single pre-trained embeddings
and combinations of them. The upper part of the
figure is dominated by classifiers that use dynamic
and pre-trained embeddings where ELMo embed-
dings are always involved.

5 Bidirectional long short term memory
networks

In addition to CNN we test Long Short
Term Memory networks LSTM (Hochreiter and
Schmidhuber, 1997), a neural architecture that is
also often used in NLP tasks (Yin et al., 2017).
LSTM are sequential networks that are able to
learn long-term dependencies. In our experiments
we use a bidirectional LSTM that processes the se-
quence of text forward and backward to learn the
model. The architecture of the BiLSTM comprises
an embedding layer, the BiLSTM layer with 50
processing cells, and a fully connected layer that
uses softmax as activation function to predict the
probability of each message being written by a bot
or a human. The rest of hyperparameters are set
with the same values that we use for the CNN ex-
periments.



153

Figure 1: Evaluation of CNN classifiers learned from the single and concatenated pre-trained, contextualized and
dynamic embeddings. The results are sorted in descending order by f-measure

In our experiments we test the embeddings
combination that generates the best CNN classi-
fiers: dynamic and ELMo embeddings, and also
this combination enriched with fastText common
crawl embeddings. Evaluation presented in table
6 shows that the best BiLSTM classifier learned
from dynamic and ELMo emdeddings performs is
very similar to the corresponding CNN. In fact, de-
spite a slightly higher f-measure the individual val-
ues of precision and recall reported for the CNN
are higher. In this experiment we do not find rel-
evant differences between the CNN classifiers and
their BiLSTM counterparts.

Embeddings Precision Recall F-Measure

dynamic + ELMo 0.8095 0.8088 0.8074
dynamic+fastText.crawl
+ ELMo

0.8093 0.8087 0.8073

Table 6: Evaluation of BiLSTM classifiers using dy-
namic and pre-trained embeddings and a pre-processed
corpus.

6 Pre-trained languages models and
fine-tuning

In this section we present the evaluation results for
the bot detection task using pre-trained language
models and fine-tuning approaches. We follow the
fine-tune procedures available for ULMFit6, Open

6https://docs.fast.ai/text.html#Fine-tuning-a-language-
model

AI GPT7, and BERT8. In all cases we use the de-
fault hyper-parameters:

• BERT base: 3 epochs, batch size of 32, and a
learning rate of 2e-5

• Open AI GPT: 3 epochs, batch size of 8, and
a learning rate of 6.25e-5

• ULMFiT: 2 epochs for the language model
fine-tuning and 3 epochs for the classifier,
batch size of 32, and a variable learning rate.

The classifiers evaluation results are presented in
table 7. Considering f-measure the best clas-
sifier is learned by Open AI GPT, followed by
BERT base model classifier. Transformer based
approaches are more up to deal with social media
messages. While Open AI GPT learns a classi-
fier with highest recall, BERT base model does it
with the highest precision. ULMFiT, on the other
hand, achieves a high precision, although lower
than the rest, and a low recall hence the low f-
measure. Both, Open AI GPT and BERT base im-
prove f-measure with respect to the best classifier
learned previously by a BiLSTM using dynamic
and ELMo embeddings (see table 6).

In addition, we evaluate how data pre-
processing affects the pre-trained language mod-
els and fine-tuning approaches. Evaluation results
presented in table 8 shows that while ULMFiT
performance improves, Open AI GPT and BERT
base worsen. Nevertheless, ULMFiT classifier is

7https://github.com/tingkai-zhang/pytorch-openai-
transformer clas

8https://github.com/google-research/bert#fine-tuning-
with-bert



154

Pre-trained Language
model Precision Recall F-Measure

BERT base 0.8572 0.8213 0.8388
ULMFiT 0.8471 0.6902 0.7606

Open AI GPT 0.8567 0.8546 0.8533

Table 7: Pre-trained language models and fine-tuning
without data pre-processing

still worse than Open AI and BERT base classi-
fiers. Similarly to what we found above BERT
base has the highest precisions while Open AI
GPT the highest recall. Note that none of these
classifiers beats the Open AI GPT learned from a
non pre-processed dataset (see table 7).

Pre-trained Language
model Precision Recall F-Measure

BERT base 0.8481 0.7948 0.8206
ULMFiT 0.8096 0.7510 0.8123

Open AI GPT 0.8257 0.8243 0.8229

Table 8: Pre-trained Language models and fine tuning
with data pre-processing

7 Discussion

In this paper we use a classification task to vali-
date whether the improvement that transfer learn-
ing approaches based on fine-tuning pre-trained
language models have brought to NLP tasks can
be also achieved with social media text. The
challenge for these models is that they have been
learned from corpora like Wikipedia, News, or
Books, where text is well written, grammati-
cally correct and contextualized. On the other
hand, social media messages are short and full of
acronyms, hashtags, user mentions, urls, and mis-
pellings. Our learning objective is detecting bots
in Twitter messages since as automated agents the
generated text is potentially different than the text
sources used to pre-trained the language models.

We first present experimental results using clas-
sifiers trained with CNN and BiLSTM neural ar-
chitectures along pre-trained, contextualized and
dynamic embeddings. From the experiment re-
sults we conclude that using a concatenation of
dynamically adjusted embeddings in the training
process plus contextualized embeddings generated
by ELMo helps to learn the best classifiers. Nev-
ertheless, the models using ELMo embeddings ex-
clusively were penalized when the training data
was pre-processed. This was an unexpected result
since ELMo works at the character level allowing

it to work with unseen tokens like the tags that we
use to replace the actual tokens in the messages.

Next, we fine-tune pre-trained language models
generated with ULMFit, BERT base and Open AI
GPT, showing that the last two approaches gener-
ate classifiers that outperform the best classifiers
generated by the CNN and BiLSTM respectively,
while ULMFit performance only improves over
these classifiers when the data was pre-processed.
In addition, BERT always learns the classifier with
the highest precision while Open AI GPT learns
the classifier with highest recall.

These results open many questions that need
more research such as:

• Are unidirectional language models such as
Open AI GPT more fitted for short and infor-
mal text?

• Is the bidirectional approach used in BERT
contributing to the highest precision, while
the masked tokens are decreasing its recall?

• Why does the BiLSTM approach used in
UMLFiT perform better with pre-processed
data in contrast to the other approaches or is
this a result of the techniques used in the fine-
tuning steps (gradual unfreezing, discrimina-
tive fine-tuning, and slanted triangular learn-
ing rates) ?

We expect to discuss these questions within the
workshop to get more insights about the presented
experimental work.

Acknowledgments

This work has been partially supported by
LETSCROWD and The European Language Grid
projects funded by the European Unions Horizon
2020 research and innovation programme under
grant agreements No 740466 and No 825627,
respectively. Special thanks to Ronald Denaux for
discussion and technical support.

References

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.



155

Zafar Gilani, Ekaterina Kochmar, and Jon Crowcroft.
2017. Classification of twitter accounts into auto-
mated agents and human users. In Proceedings of
the 2017 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining
2017, ASONAM ’17, pages 489–496, New York,
NY, USA. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. CoRR, abs/1607.01759.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Trans. on Knowl. and Data
Eng., 22(10):1345–1359.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Noam Shazeer, Ryan Doherty, Colin Evans, and Chris
Waterson. 2016. Swivel: Improving Embeddings by
Noticing What’s Missing. arXiv preprint.

Onur Varol, Emilio Ferrara, Clayton A. Davis, Filippo
Menczer, and Alessandro Flammini. 2017. Online
human-bot interactions: Detection, estimation, and
characterization. In ICWSM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schtze. 2017. Comparative study of cnn and rnn for
natural language processing.

https://doi.org/10.1145/3110025.3110091
https://doi.org/10.1145/3110025.3110091
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1602.02215
http://arxiv.org/abs/1602.02215
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1702.01923

