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Abstract

Gender bias has been found in existing coref-
erence resolvers. In order to eliminate gender
bias, a gender-balanced dataset Gendered Am-
biguous Pronouns (GAP) has been released
and the best baseline model achieves only
66.9% F1. Bidirectional Encoder Represen-
tations from Transformers (BERT) has bro-
ken several NLP task records and can be used
on GAP dataset. However, fine-tune BERT
on a specific task is computationally expen-
sive. In this paper, we propose an end-to-
end resolver by combining pre-trained BERT
with Relational Graph Convolutional Network
(R-GCN). R-GCN is used for digesting struc-
tural syntactic information and learning bet-
ter task-specific embeddings. Empirical re-
sults demonstrate that, under explicit syntac-
tic supervision and without the need to fine
tune BERT, R-GCN’s embeddings outperform
the original BERT embeddings on the coref-
erence task. Our work significantly improves
the snippet-context baseline F1 score on GAP
dataset from 66.9% to 80.3%. We participated
in the Gender Bias for Natural Language Pro-
cessing 2019 shared task, and our codes are
available online. 1

1 Introduction

Coreference resolution aims to find the linguistic
mentions that refer to the same real-world entity
in natural language (Pradhan et al., 2012). Am-
biguous gendered pronoun resolution is a subtask
of coreference resolution, where we try to resolve
gendered ambiguous pronouns in English such as
”he” and ”she”. This is an important task for nat-
ural language understanding and a longstanding
challenge. According to (Sukthanker et al., 2018),
there are two main approaches: heuristics-based

∗* Equal contribution.
1Our codes and models are available at: https://

github.com/ianycxu/RGCN-with-BERT.

approaches and learning-based approaches, such
as mention-pair models, mention-ranking mod-
els, and clustering models (McCarthy and Lehn-
ert, 1995; Haghighi and Klein, 2010; Fernandes
et al., 2014). Learning-based approaches, espe-
cially deep-learning-based methods, have shown
significant improvement over heuristics-based ap-
proaches.

However, most state-of-art deep-learning-based
resolvers utilize one-directional Transform-
ers (Stojanovski and Fraser, 2018), limiting the
ability to handle long-range inferences and the use
of cataphors. Bidirectional Encoder Representa-
tions from Transformers, or BERT (Devlin et al.,
2018) learns a bidirectional contextual embedding
and has the potential to overcome these prob-
lems using both the previous and next context.
However, fine-tuning BERT for a specific task is
computationally expensive and time-consuming.

Syntax information has always been a strong
tool for semantic tasks. Most heuristics-based
methods use syntax-based rules (Hobbs, 1978;
Lappin and Leass, 1994; Haghighi and Klein,
2009). Many of learning based models also rely
on syntactic parsing for mention or entity extrac-
tion algorithms and compute hand-crafted features
as input (Sukthanker et al., 2018).

Can we learn better word embeddings than
BERT on the coreference task with the help of
syntactic information and without computation-
ally expensive fine-tuning of BERT? Marcheg-
giani and Titov et al. (2017) successfully use
Graph Convolutional Networks (GCNs) (Duve-
naud et al., 2015; Kipf and Welling, 2016) to learn
word embeddings for the semantic role labeling
task and outperform the original LSTM contextual
embeddings.

Inspired by Marcheggiani and Titov (2017), we
create a ’Look-again’ mechanism which combines
BERT with Gated Relational Graph Convolutional

https://github.com/ianycxu/RGCN-with-BERT
https://github.com/ianycxu/RGCN-with-BERT
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Networks (R-GCN) by using BERT embeddings
as initial hidden states of vertices in R-GCN. R-
GCN’s structure is derived from a sentence’s syn-
tactic dependencies graph. This architecture al-
lows contextual embeddings to be further learned
and encoded into better task-specific embeddings
without fine tuning BERT which is computation-
ally expensive.

2 Contributions

Our main contributions are: (1) Our work is the
first successful attempt of using R-GCN to boost
the performance of BERT contextual embeddings
without the need to fine tune BERT. (2) Our work
is the first to use R-GCN on the coreference res-
olution task. (3) Our work improves the snippet-
context baseline F1 score on Gendered Ambigu-
ous Pronouns dataset from 66.9% to 80.3%.

3 Methodology

We propose a series connection architecture of
pre-trained BERT with Gated Relational Graph
Convolutional Network (Gated R-GCN). Gated R-
GCN is used for digesting structural syntactic in-
formation. This architecture, which we name as
’Look-again’ mechanism can help us learn embed-
dings which have better performance on corefer-
ence task than original BERT embeddings.

3.1 Syntactic Structure Prior

As mentioned in the Introduction section, syn-
tactic information is beneficial to semantic tasks.
However, how to encode syntactic information di-
rectly into deep learning systems is difficult.

Marcheggiani and Titov (2017) introduces a
way of incorporating syntactic information into
sequential neural networks by using GCN. The
syntax prior is transferred into a syntactic depen-
dency graph, and GCN is used to digest this graph
information. This kind of architecture is utilized
to incorporate syntactic structure prior with BERT
embeddings for coreference task in our work.

3.2 GCN

Graph Convolutional Networks (GCNs) (Duve-
naud et al., 2015; Kipf and Welling, 2016) take
graphs as inputs and conduct convolution on each
node over their local graph neighborhoods. The
convolution process can also be regarded as a sim-
ple differentiable message-passing process. The
message here is the hidden state of each node.

Consider a directed graph G = (V, E) with
nodes vi ∈ V and edges (vi, vj) ∈ E . The orig-
inal work of GCN (Kipf and Welling, 2016) as-
sumes that every node v contains a self-loop edge,
which is (vi, vi) ∈ E . We denote hidden state or
features of each node vi as hi, and neighbors of
each node as N (vi), then for each node vi, the
feed-forward processing or message-passing pro-
cessing then can be written as:

h
(l+1)
i = ReLU

 ∑
u∈N (vi)

1

ci
W (l)h(l)u

 (1)

Note that we ignore the bias term here. l here
denotes the layer number, and ci is a normalization
constant. We use ci = |N (vi)|, which is the in-
degree of the node. Weight W (l) is shared by all
edges in layer l.

3.3 R-GCN
Each sentence is parsed into its syntactic depen-
dencies graph and use GCN to digest this struc-
tural information. Mentioned in (Schlichtkrull
et al., 2018), when we construct the syntactic
graph we also allow the information to flow in the
opposite direction of syntactic dependency arcs,
which is from dependents to heads. Therefore, we
have three types of edges: first, from heads to de-
pendents; second, from dependents to heads and
third, self-loop (see Fig. 1).

Traditional GCN cannot handle this multi-
relation graph. Schlichtkrull (2018) proposed
a Relational Graph Convolutional Networks (R-
GCNs) structure to solve this multi-relation prob-
lem:

h
(l+1)
i = ReLU

∑
r∈R

∑
u∈Nr(vi)

1

ci,r
W (l)

r h(l)
u

 (2)

whereNr(vi) and W
(l)
r denote the set of neigh-

bor of node i and weight under relation r ∈ R
respectively. In our case, we have three relations.

3.4 Gate Mechanism
Because the syntax information is predicted by
some NLP packages, which might have some er-
ror, we need some mechanism to reduce the effect
of erroneous dependency edges.

A gate mechanism is introduced in (Marcheg-
giani and Titov, 2017; Dauphin et al., 2017; Li
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Figure 1: Syntactic dependencies graph with three re-
lations

et al., 2015). The idea is calculating a gate value
ranging from 0 to 1, and multiplying it with the in-
coming message. The gate value is computed by:

g(l)u,v = Sigmoid
(
h(l)u ·Wr,g

)
(3)

The final forward process of Gated R-GCN is:

h
(l+1)
i = ReLU

∑
r∈R

∑
u∈Nr(vi)

g(l)u,vi

1

ci,r
W (l)

r h(l)
u

 (4)

3.5 Connect BERT and R-GCN in Series

We use pre-trained BERT embeddings (Devlin
et al., 2018) as our initial hidden states of ver-
tices in R-GCN. This series connection between
pre-trained BERT and Gated R-GCN forms the
’Look-again’ mechanism. After pre-trained BERT
encodes tokens’ embeddings, Gated R-GCN will
’look again’ at the syntactic information which
is presented as structural information and further
learn semantic task-specific embeddings with the
explicit syntactic supervision by syntactic struc-
ture.

A fully-connected layer in parallel with Gated
R-GCN is utilized to learn a compact represen-
tation of BERT embeddings of two mentions (A
and B) and the pronoun. This representation is
then concatenated with Gated R-GCN’s final hid-
den states of those three tokens. The reason of
concatenating R-GCN’s hidden states with BERT
embeddings’ compact representation is that graph
convolution of the GCN model is actually a spe-
cial form of Laplacian smoothing (Li et al., 2018),
which might mix the features of vertices and make
them less distinguishable. By concatenation, we
maintain some original embeddings information.
After concatenation, we use a fully-connect layer
for the final prediction. The visualization of the
final end-to-end model is shown in Fig. 2.

Figure 2: End-to-end coreference resolver

4 Experimental Methodology and
Results

In the experiment, it shows that, with the explicit
syntactic supervision by syntactic structure, Gated
R-GCN structure can learn better embeddings that
improve performance on the coreference resolu-
tion task. Two sets of experiments were designed
and conducted: Stage one experiments and Full
GAP experiments.

Stage one experiments used the same setting
as stage one of shared-task competition, where
we had 4454 data samples in total. ’Gap-
validation.tsv’ and ’gap-test.tsv’ were used as
training dataset, while ’gap-development.tsv’ was
used for testing.2

Full GAP experiments used full 8908 samples
of Gendered Ambiguous Pronouns (GAP) dataset
in order to compare with the baseline result from
the GAP paper (Webster et al., 2018).

4.1 Dataset

The dataset provided by the shared task is Google
AI Language’s Gendered Ambiguous Pronouns
(GAP) dataset (Webster et al., 2018), which
is a gender-balanced dataset containing 8,908
coreference-labeled pairs of (ambiguous pronoun,
antecedent name), sampled from Wikipedia.

In stage one of the shared task, only 2454 sam-
ples were used as the training dataset, and 2000
samples were used as the test dataset.

2https://www.kaggle.com/c/
gendered-pronoun-resolution/data.

https://www.kaggle.com/c/gendered-pronoun-resolution/data
https://www.kaggle.com/c/gendered-pronoun-resolution/data
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4.2 Data Preprocessing
SpaCy was used as our syntactic dependency
parser. Deep Graph Library (DGL)3 was used to
transfer each dependency graph into a DGL graph
object. Several graphs were grouped together as
a larger DGL batch-graph object for batch train-
ing setting. R-GCN model was also implemented
with DGL.

4.3 Training settings
Adam was used (Kingma and Ba, 2014) as our op-
timizer. Learning rate decay was applied. l2 reg-
ularization of both R-GCN’s and fully-connected
layer’s weights was added to the training loss func-
tion. Batch-normalization and drop-out were used
in all fully-connection layers. We used one layer
for R-GCN which captures immediate syntactic
neighbors’ information. BERT in our model was
not fined tuned and was fixed for training. We used
’bert-large-uncased’ version of BERT for generat-
ing original embeddings.

The five-fold ensemble was used to achieve bet-
ter generalization performance and more accurate
estimation of the model’s performance. The train-
ing dataset was divided into 5 folds. Each time of
training we trained our model on 4 folds and chose
the model which had the best validation perfor-
mance on the left fold. This best model then was
used to predict the test dataset. In the end, pre-
dicted results from 5 folds were averaged as the
final result.

4.4 Stage One Experiments
There are 4 different settings for Stage One exper-
iments for comparisons (see Fig. 3):

1. Only BERT embeddings are fed into an ad-
ditional MLP for prediction.

2. Connect BERT with Gated R-GCN, but only
feed Gated R-GCN’s hidden states into MLP for
prediction.

3. Connect BERT with R-GCN, and the con-
catenation is fed into MLP for prediction. The gate
mechanism is not applied to R-GCN

4. Connect BERT with Gated R-GCN, and the
concatenation is fed into MLP for prediction. The
gate mechanism is applied.

4.4.1 Evaluation Metrics
The competition used multi-class log-loss as eval-
uation metrics.

3DGL official website: https://www.dgl.ai/
pages/about.html.

Figure 3: Stage one experiments

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij),

where N is the number of samples in the test
set, M is 3, log is the natural logarithm.

4.4.2 Results
Table 1 presents the results of four different set-
tings. it demonstrates that R-GCN structure does
learn better embeddings and improve the perfor-
mance. Setting three and setting four show the ef-
fectiveness of the Gate Mechanism.

BERT R-GCN Concatenation Gate Test Log-loss
Yes No No No 0.5301
Yes Yes No Yes 0.5142
Yes Yes Yes No 0.5045
Yes Yes Yes Yes 0.4936

Table 1: Stage one results

By comparing setting two and setting four, we
can see that because graph convolution of the R-
GCN model brings the potential problem of over-
smoothing the information (Li et al., 2018), model
without concatenation might lose some perfor-
mance.

4.5 Full GAP Experiments and Results
We also tested our model on the full GAP dataset
which contains 8,908 samples. 4908 samples were
used as training data, and 4000 samples were used
as test data. We used micro F1 score as our metric.

https://www.dgl.ai/pages/about.html
https://www.dgl.ai/pages/about.html
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The GAP paper (Webster et al., 2018) intro-
duced several baseline methods: (1) Off-the-shelf
resolvers including a rule-based system of Lee et
al. (2013) and three neural resolvers from Clark
and Manning (2015), Wiseman et al. (2016), and
Lee et al. (2017); (2) Baselines based on tradi-
tional cues for coreference; (3)Baselines based on
structural cues: syntactic distance and Parallelism;
(4) Baselines based on Wikipedia cues; (5) Trans-
former models (Vaswani et al., 2017).

Model F1 Score
Lee et al. (2017) 64.0%
Parallelism 66.9%
Parallelism+URL 70.6%
BERT only 78.5%
Ours 80.3%

Table 2: GAP experiments results

Three best models (Lee et al. (2017), Paral-
lelism, and Parallelism+URL) from above base-
lines were chosen for comparison. We first
used pre-trained BERT embeddings and fully-
connected layers for prediction (see Fig. 3 (1)).
Not surprising, BERT embeddings outperformed
all of the previous work.

We then tested our Gated R-GCN model. The
model further improved the F1 score by us-
ing explicitly syntactic information and learn-
ing coreference-task-specific word representa-
tions. The final model largely increased the base-
line F1 score from 70.6 % to 80.3 % and the BERT
embeddings’ result from 78.5 % to 80.3 %.

4.6 Final Submission and Shared-Task Score
For the final submission for stage 2 of the shared
task, we averaged our result with a BERT-score-
layer (Zhang et al., 2018; Clark and Manning,
2016) result. In stage two, our work reaches log-
loss of 0.394 on the private leaderboard showing
that our model is quite effective and robust. This
result is obtained without any data augmentation
prepossessing.

5 Discussion and Conclusion

The Gender Bias for Natural Language Processing
(GeBNLP) 2019 shared-task is a competition for
building a coreference resolution system on GAP
dataset. We participate in this shared-task by using
a novel approach which combines Gated R-GCN
with BERT. R-GCN is used for digesting syntactic

dependency graph and leveraging this syntactic in-
formation to help our semantic task. Experiments
with four settings were conducted on the shared
task’s stage one data. We also tested our model
on the full GAP dataset where our model im-
proved the best snippet-context baseline F1 score
from 66.9 % to 80.3 % (by 20 %). The results
showed that, under explicit syntactic supervision
and without the need to fine tune BERT, our gated
R-GCN model can incorporate syntactic structure
prior with BERT embeddings to improve the per-
formance on the coreference task.
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