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Abstract

The paper describes the submission of the
team ”We used bert!” to the shared task Gen-
dered Pronoun Resolution (Pair pronouns to
their correct entities). Our final submis-
sion model based on the fine-tuned BERT
(Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2018) ranks 14th
among 838 teams with a multi-class logarith-
mic loss of 0.208. In this work, contribution
of transfer learning technique to pronoun res-
olution systems is investigated and the gender
bias contained in classification models is eval-
uated.

1 Introduction

The shared task Gendered Pronoun Resolution
aims to classify the pronoun resolution in the sen-
tences, hereby to find the true name referred by a
given pronoun, such as she in:

In May, Fujisawa joined Mari Motohashi’s rink
as the team’s skip, moving back from Karuizawa
to Kitami where she had spent her junior days.

This task for pronoun resolution closely relates
to the traditional coreference resolution task in
natural language processing. Many works (Wise-
man et al., 2016; Clark and Manning, 2016; Lee
et al., 2017) related to coreference resolution have
been published recently and all of them are evalu-
ated with CoNLL-2012 shared task dataset (Prad-
han et al., 2012). However, simply pursuing the
best score over the entire dataset may cause the
neglect of the model performance gap between the
two genders.

To explore the existence of gender bias in
such tasks, researchers from Google built and
released GAP (Gendered Ambiguous Pronouns)
(Webster et al., 2018), a human-labeled corpus
of 8908 ambiguous pronoun-name pairs derived

∗Both authors contributed equally in this work.

from Wikipedia with balanced gender pronouns.
It has been shown that most of the recent repre-
sentative coreference systems struggled on GAP
dataset with a overall mediocre performance and a
large performance gap between genders. This may
be due to both unbalanced training dataset used by
these coreference systems or the design of the sys-
tems. Up to now, detecting and eliminating gender
bias in such systems still remains a challenge.

In this paper, we explore transfer learning from
pre-trained models to improve the performance
of tasks with limited data. Various efficient ap-
proaches to reuse the knowledge from pre-trained
BERT on this shared task are proposed and com-
pared. The final system significantly outperforms
the off-the-shelf resolvers, with a balanced predic-
tion performance for two genders. Moreover, gen-
der bias in word and sentence level embeddings is
studied with a scientific statistical experiment on
Caliskan dataset (Caliskan et al., 2017).

2 Data

This shared task is based on GAP dataset includ-
ing:

• Test 4,000 pairs: used for official evaluation

• Development 4,000 pairs: used for model de-
velopment

• Validation 908 pairs: used for parameter tun-
ing

In the first stage, we use part of the released data
on Google GAP Github repository, which includes
2000 development pairs, 2000 test pairs, and 454
validation pairs.1 We refer the test pairs as training

1The testing data from the Kaggle website is the devel-
opment data in the GAP github repository. So we use the
development pairs to evaluate our model, and the test pairs to
train in order to conform the Kaggle competition rule.
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data, the development pairs as testing data and the
validation pairs as validation data. Each sample
contains a sentence and three mentions, A, B and
pronoun. Each pronoun has been labeled as A, B,
or NEITHER. Submissions are evaluated using the
multi-class logarithmic loss.

Table 1 shows the frequency of the different
types of pronouns in the dataset. The number of
masculine pronouns and feminine pronouns are
strictly equal.

Pronoun type Training Test Validation
he 348 373 93
him 96 98 26
his 556 529 108
her 603 572 140
hers 1 0 0
she 396 428 87
masculine 1000 1000 227
feminine 1000 1000 227

Table 1: Pronoun gender frequency

3 Data Preparation

We introduced the procedure for processing the
data before training in detail in this section.

3.1 Data Preprocessing
Data preprocessing can be summarized into the
following steps:

BERT embeddings generation: We use pre-
trained bert-large-uncased model to obtain contex-
tual embeddings as features. This part is imple-
mented with the bert-as-service library based on
Tensorflow (Xiao, 2018).

Dimension reduction: The dimension reduc-
tion for the original BERT contextual embeddings
is performed to mitigate the overfitting problems.
This approach is inspired by the Algorithm 2
(PPA-PCA-PPA) proposed in Raunak (2017).

For large scale vectors with dimension of 1024,
instead of directly using PCA (principal compo-
nent analysis), we train a linear autoencoder to ap-
proximate the linear PCA procedure. Namely, we
train the autoencoder by minimizing the loss:

L(X,W1,W2) = ||X −W2W1X||22, (1)

where X is the contextual embedding. W1 and W2

are m × n and n × m matrices to project vec-
tors to lower dimensional space and recover from

lower dimensional space, respectively (m < n).
Hence, the PCA part in the original algorithm is
performed by computing W1X , and the PPA part
in the original algorithm is performed by comput-
ing X −W2W1X .

Here the PPA procedures remove the first 4 prin-
cipal components. The PCA procedure maps 1024
dimension vectors to 256 dimension vectors.

Processing mention: A mention in the data (A,
B or the pronoun) can be a single word or mul-
tiple words. Also, since BERT is based on the
word piece model (Wu et al., 2016), a word may
be cut into multiple word pieces after the BERT
tokenization. We define the mention index as the
index for the tokenized word piece list which cor-
responds to the original mention.

The vectors in the BERT contextual embed-
dings which correspond to the mention index are
extracted. Meanwhile, vectors of mentions are the
mean value of all the vectors which correspond to
the mention. We call this mention vector.

Find names: All names in the sentences except
A and B are extracted with the named entity recog-
nition tool. After that, their mention indices are
found by the same procedure in the previous step.
We call these indices neither mention index. Stan-
ford Named Entity Tagger is used for finding the
names in the sentences in this step (Finkel et al.,
2005).

An example of tokenization and mention index
is shown in table 2.

Sentence: When asked in a 2010 interview with The
Mirror what her favourite scenes were, Beverley
Callard replied, “when Jim beat up Liz.
Names Except A and B: Jim
Tokens: [’when’, ’asked’, ’in’, ’a’, ’2010’, ’interview’,
’with’, ’the’, ’mirror’, ’what’, ’her’, ’favourite’,
’scenes’, ’were’, ’,’, ’beverley’, ’call’, ’##ard’,
’replied’, ’,’, ’‘’, ’‘’, ’when’, ’jim’, ’beat’, ’up’, ’liz’, ’.’]
Mention A: Beverley Callard
Mention B: Liz
Mention Pronoun: her
Mention Neither: Jim
A Mention Index: 15,16,17
B Mention Index: 26
Pronoun Mention Index: 10
Neither Mention Index: 23

Table 2: An example of tokenization and mention index

3.2 Data Augmentation

We replace the originally referred mention by a
different random mention in the sentence, then
change the label to neither. This creates 1445 sam-
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ples labeled neither from training data. Original
training data together with augmented neither data
make up the augmented training set.

4 Architecture

We mainly explored two sub-categories of mod-
els as shown in figure 1. One category is based
on fine-tuned BERT with different top layers. For
this category, Back-propagation is done to both top
layers and the pre-trained BERT model. Another
idea is to use BERT as a feature extractor. Differ-
ent from fine-tuned BERT, models in the second
category do not back propagate to BERT weights
during training. All of these base models con-
tribute to our final model.2

 Fine-tuned BERT
MLP-top

SVM BIDAF

Initial Sentences & Mention Indices

 Fine-tuned BERT
POS-top Feature Extractor

 x 1  x 7

LR MLP

 x 7  x 5  x 2  x 1 

Meta Classifier

Output Probabilities

 FINE-TUNED BERT  BERT AS FEATURE EXTRACTOR

BASE
MODELS

STACKING
MODEL

Figure 1: Structure of the final system. It contains 23
base models with different structures, different embed-
ding dimensions and data whether augmented.

4.1 Fine-tuned BERT

We propose two different kinds of top layers
to fine-tune BERT model on GAP task and im-
plemented with PyTorch Pretrained BERT li-
brary(Hugging-Face, 2018). The first kind of top
layer shown in figure 2 is called MLP-top. It ex-
tracts and aggregates vectors for all mentions by
concatenation, which are then fed into a multiple
layer neural network.

The second kind of top layer first map the out-
put of BERT into a scalar by a linear layer whose
output size is 1. Then we extract the value corre-
sponding to the mention index and feed it into a
softmax layer for a 3-class-probability-output. We
call this Positional-top which is illustrated in Fig-
ure 3.3

2Due to the space limit, we do not explain all the base
models that we use to produce the final ensemble model in
detail. The models in the following description are only ef-
ficient and representative base models. For a comprehensive
list of the base models we use, please check: https://
github.com/bxclib2/kaggle_gender_coref/

3Both figure 2 and figure 3 show the mentions which con-
tain only a single word-piece after tokenization. If one men-
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Figure 2: Fine-tuned BERT with MLP-top layer
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Figure 3: Fine-tuned BERT with Positional-top layer.
Linear layers for A,B and Pronoun are with the same
parameter.

4.2 BERT as Feature Extractor

When BERT is used as a feature extractor, the
contextual embeddings and the mention vectors
prepared are passed to the subsequent classifier.
Here we use SVM (support vector machine) and
BIDAF (bi-directional attention flow layer) (Seo
et al., 2017) as classifiers.

SVM: We denote the mention vector of A, B
and pronoun as hA, hB and hpron. The vector:

[hA,hB,hpron,hA � hpron,hB � hpron] (2)

is fed as the input of the SVM, where the�means
point-wise product. The multiclass support is han-
dled according to a one-vs-one scheme. The SVM

tion contains multiple word-pieces, the mean of the multiple
positions in BERT output layer should be computed in order
to generate a tensor with desired size to be fed into the top
layer.

https://github.com/bxclib2/kaggle_gender_coref/
https://github.com/bxclib2/kaggle_gender_coref/
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classifier is implemented with Scikit-Learn library
(Pedregosa et al., 2011).

BIDAF: BERT contextual embeddings and the
pronoun mention vectors are passed to the bi-
directional attention flow layer as the context and
the query, respectively. We use the original em-
bedding extracted from BERT large with embed-
ding dimension of 1024 here. Then a two-layer
point-wise fully-connected neural network is con-
nected to map the output embedding vectors to
scalars. The fully-connected layer has 64 hid-
den units with ELU as activation function (Djork-
Arn Clevert, 2016). Finally, the scalars corre-
sponding to the A, the B and the neither are fed
into a softmax layer to generate 3-class probabili-
ties.

Two Layer Point-wise 
Fully-connected 
Neural Network

Output Probabilities for Three Classes

Query2Context
&

Context2Query
Attention

Query(Pronoun)

BERT Pre-extracted
Embeddings of Context

Probabilities RI�$�%�DQG�1HLWKHU
softmax

Extract the mention
vector as query 

Extract the positions corresponding to
the A mention index, 
the B mention index

and the neither mention index 

Extract Indices

Figure 4: Structure of BIDAF network

The top layer of BIDAF network works simi-
larly to the positional head of the fine-tuned BERT.
However, there are two major differences: the po-
sitional head of the fine-tuned BERT uses only
a linear layer to map the embeddings to scalars,
while the BIDAF network uses a two-layer neu-
ral network with the ELU activation layer. Also,
the output of BIDAF is from the positions corre-
sponding to the A, the B and the neither mention
respectively, while the BERT positional head ex-
tracts the scalars corresponding to the A, the B and
the pronoun mention respectively.

4.3 Model Ensemble

Ensemble learning greatly improves the results
compared to single models. Stacking method is
used for ensemble. During ensemble, several base
classifiers are trained to make preliminary predic-
tions, and a meta classifier is used to make a final

prediction based on these predictions.
In order to reduce the data leakage, 5-fold cross

validation is performed when building the train-
ing data for the meta classifier from the original
training data. In other words, we avoid the base
classifiers and meta classifier to be trained with
the same fold of data (Beaudon, 2016). For each
training time 4-fold of data is used to train, and the
resulting model predicts the remaining one fold of
data to build one fold of training data for the meta
classifier, as shown in figure 5. Here we use the
logistic regression as the meta classifier.
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Figure 5: 5-Fold cross validation for stacking

5 Experiment

In this section, we present the result of different
classifiers to the shared task.

5.1 Experiment setting

For SVM, C equals to 5.0 and the kernel function
is the RBF function. The SVM is trained both
with the original 1024 dimension mention vectors
and the 256 dimension-reduced mention vectors
respectively for comparison.

The BIDAF network is trained for 50 epoches
with a batch size of 25. We use the Adam opti-
mizer with a learning rate of 1e-3 for training. For
each fully-connected layer in BIDAF, a dropout
with probability 0.7 is performed. It is trained both
with the original training set and the augmented
training set for comparison. This training process
takes about 10 minutes with the GTX 1070 GPU.

The fine-tuned BERT models are trained with
the Adam optimizer with a learning rate of 2e-5.
All the dropout layers in the original BERT model
are set to a dropout rate of 0.15. Models are trained
for 1 epoch with a batch size of 16. Note that it is
not possible to fit 16 training sentences at one time
due to the limited GPU memory. Hence, gradient
accumulation trick is used. Every time we fit 2
training sentences and we accumulate the gradient
for 8 times. This fine-tuning process takes about
10 minutes with the Tesla K80 GPU.
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The meta classifier is the logistic regression
with l2 regularization of the regularization con-
stant C which equals to 0.5.

5.2 Evaluation
The results are shown in table 3. The masculine
data loss and feminine data loss are shown respec-
tively in order to show the gender bias. We com-
pute the model loss for testing data (stage 1) and
the loss caused by the masculine part and the fem-
inine part in stage 1 testing data. We also submit
our base model results after the competition fin-
ishes in order to get the private testing data (stage
2) loss.

M F T PT
SVM 256 0.516 0.495 0.506 0.395
SVM 1024 0.619 0.574 0.596 0.475
BIDAF 0.490 0.498 0.494 0.364
BIDAF-aug 0.550 0.579 0.565 0.422
BERT-pos 0.376 0.377 0.377 0.280
BERT-mlp 0.360 0.365 0.362 0.351
Ensemble 0.325 0.337 0.331 0.208

Table 3: Evaluation results (multi-class logarithmic
loss) for models. SVM 256: SVM trained with the
mention vector after dimension reduction. SVM 1024:
SVM trained with the original 1024 dimension men-
tion vector. BIDAF: BIDAF trained with the origi-
nal training set. BIDAF-aug: BIDAF trained with the
augmented training set. BERT-pos: Fine-tuned BERT
with the Positional-top. BERT-mlp: Fine-tuned BERT
with the MLP-top. Masculine, Feminine, Testing data
and Private Testing data results are shown respectively.
Bold indicates the best performance.

We derive the following conclusions:

• The dimension reduction greatly enhances
the result of SVM which reduces about 0.1
multi-class logarithmic loss. The SVM 1024
has a loss of 0.184 and 0.597 with respect to
training and testing data, while the SVM 256
has a loss of 0.250 and 0.505. Both SVM
model overfit a lot, while the dimension re-
duction of BERT contextual embeddings effi-
ciently mitigate overfitting, which bridges the
performance gap between training data and
testing data.

• The BIDAF model performs worse when
trained with the augmented training set than
the original training set, due to the distribu-
tion mismatching caused by data augmenta-

tion that, the portion of the neither data is
larger in the training set than in the testing
set.

• Both two fine-tuned BERT models achieve
much more competitive results compared to
Bert as Feature Extractor models.4

• The ensemble learning with logistic regres-
sion greatly enhances the overall classifica-
tion result.

Although the data augmentation does not im-
prove the BIDAF model directly, it still helps
to make more accurate predictions of the neither
class in the ensemble model. The BIDAF-aug and
the BIDAF reach the loss of 0.982 and 1.095, re-
spectively. In the testing data (stage 1), the respec-
tive accuracy of A, B and neither class is 89.8%,
89.5% and 73.1%, indicating that predicting the
neither class correctly is much harder than predict-
ing A and B. We can observe that it is easier for
the model to choose an answer as A or B than to
predict as no reference.

We also evaluate our system F1 score with stage
1 testing dataset to compare to the off-the-shelf re-
solvers in table 4:

M F B O
Wiseman et al. 68.4 59.9 0.88 64.2
Lee et al. 67.2 62.2 0.92 64.7
BERT-pos 86.8 86.1 0.99 86.5
BERT-mlp 86.3 85.9 1.00 86.1
Our ensemble 88.1 87.9 1.00 88.0

Table 4: Comparison to off-the-shelf resolvers, split
by Masculine and Feminine (Bias shows F/M), and
Overall. Bold indicates the best performance.

6 Gender Bias in the Embeddings

To further demonstrate the presence or absence of
gender bias in embeddings, we use both the Word
Embedding Association Test (WEAT) (Caliskan
et al., 2017) and Sentence Embedding Association
Test (SEAT) (May et al., 2019) to measure it. As
fine-tuned BERT large models with Positional-top
contribute a lot to our final ensemble model, we
only focus on this category of models in this sec-
tion.

4Here the experiment shows that the MLP-top is slightly
better than the Positional-top. However, the Positional-top is
more stable with different random seeds. Also it is obvious
that the MLP-top performs worse than the Positional-top in
the private testing data.
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6.1 WEAT & SEAT

For both word-level test and sentence level test, let
X and Y be two sets of target concept word or sen-
tence embeddings, and let A and B be two sets of
attribute word embeddings. The test statistic is the
difference between sums of similarities of the re-
spective attributes over target concepts, which can
be calculated as:

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B),

(3)
where:

s(w,A,B) =meana∈Acos(w, a)−
meanb∈Bcos(w, b),

(4)

the p-values on s(X,Y,A,B) is used to compute
the significance between (A,B) and (X,Y ),

p = Pr[s(Xi, Yi, A,B) > s(X,Y,A,B)], (5)

where Xi and Yi are of equal size. Also the effect
size d is used to measure the magnitude of associ-
ations:

d =
meanx∈Xs(x,A,B)−meany∈Y s(y,A,B)

std devw∈X∪Y s(w,A,B)
(6)

6.2 Experiments and Results

We apply WEAT and SEAT on Caliskan Test of
male/female names with career and family, which
corresponds to past social psychology studies.

Method GloVe ELMo BERT F-BERT
WEAT 1.81∗ −0.45 0.21 0.38
SEAT 1.74∗ −0.38 0.08 0.07

Table 5: Effect sizes for male/female names with ca-
reer/family task with word and sentence level embed-
dings. ∗: significant at 0.01. F-BERT indicates Fine-
tuned BERT.

Table 5 shows the result of WEAT and SEAT.
Sentence vectors are aggregated by taking the
mean value of all word vectors in the sentences
for GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018), BERT and Fine-tuned BERT.5 With
p-values lower than 0.01, embeddings by GloVe

5Here we use a different method to aggregate sentence
vector for BERT, comparing to the cited paper which uses
[CLS] vector as sentence vector for better comparison.

on both word level and sentence level show signif-
icant gender bias, indicating that women are asso-
ciated with family while men are associated with
career.

However, p-values of all contextual embeddings
including ELMo, BERT and Fined-tuned BERT
are larger than 0.05, which suggests that there is
no evidence suggesting existence of gender bias
in these embeddings. One possible explanation
is that, by training contextual word embeddings,
a single word is usually represented differently
in different sentences, resulting in more flexible
word representations focusing on single context
within a sentence rather than the overall word fre-
quency distribution.

7 Conclusion and Future Work

We propose a transfer-learning-based solution
for pronoun resolution. The proposed solution
leads to gender balance in both word embed-
dings and overall predictions. It greatly improves
the prediction accuracy of this task by 23.3% F1
against the off-the-shelf solutions proposed by Lee
et al. (2017) on the widely studied Google GAP
dataset. Meanwhile, among several single models
in our ensemble solution, BERT-mlp and BERT-
pos model highly outperform others in the exper-
iments. Overall this work shows the efficacy of
employing BERT in downstream natural language
processing classification tasks.

In the future, we would like to investigate var-
ious transfer structures on the top of pre-trained
BERT, especially for the sake of enhancing the
stability of the fine-tune process. We observe in
our experiments that the performance of fine-tune
models based on BERT strongly depends on ini-
tial random state, thus, further research on build-
ing more robust models is indispensable.
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