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Abstract

We detail refinements made to Abstract Mean-
ing Representation (AMR) that make the rep-
resentation more suitable for supporting a situ-
ated dialogue system, where a human remotely
controls a robot for purposes of search and res-
cue and reconnaissance. We propose 36 aug-
mented AMRs that capture speech acts, tense
and aspect, and spatial information. This lin-
guistic information is vital for representing im-
portant distinctions, for example whether the
robot has moved, is moving, or will move. We
evaluate two existing AMR parsers for their
performance on dialogue data. We also out-
line a model for graph-to-graph conversion, in
which output from AMR parsers is converted
into our refined AMRs. The design scheme
presented here, though task-specific, is extend-
able for broad coverage of speech acts using
AMR in future task-independent work.

1 Introduction

We describe an augmented version of Abstract
Meaning Representation (AMR) for use as a con-
duit for natural language understanding (NLU) in
a robot dialogue system. We find that while AMR
is promising for NLU, refinements are needed in
order to capture information critical for live, situ-
ated communication. Specifically, we propose the
addition of a set of speech acts, tense and aspect
information, and parameters that help specify spa-
tial location.

After providing background on our broader re-
search goals and the AMR project, we motivate
our choice to explore the use of AMR for NLU
(sections 2, 3). We then detail our findings on
gaps in the representational coverage of existing
AMR for human-robot dialogue (4), and we de-
scribe our refinements (5). We next describe on-
going and future work to implement an augmented
AMR-based NLU that uses existing parsers and
graph-to-graph AMR conversion to replace a more

limited statistical classifier (6). We then compare
to related work (7) and conclude.

2 Background: Human-Robot Dialogue

The broad goal of this research is to develop a sys-
tem for conducting dialogue between a person and
a remotely located robot in collaborative naviga-
tion tasks common to disaster relief and search-
and-rescue scenarios. Efficient communication is
essential: the robot must be able to interpret both
the language used by the human and the intention
behind it, as well as to carry out the instructions in
these dynamic environments and coordinate with
the human by providing appropriate feedback of
the status of instructions at different times.

In the language of this domain, we find that peo-
ple communicating with robots often employ mul-
tiple ways of saying the same thing: Turn/rotate
left, Drive/move/go forward. However, they also
employ very similar syntactic structures to say dif-
ferent things: Can you take a picture?, intended as
a polite request for a picture, and Can you speak
Arabic?, intended as a question of the robot’s abil-
ities. To get at the underlying meaning of these ut-
terances despite surface variations and similarities,
our goal is to develop semantic representations for
this project. We plan to use these representations
in an implemented, live system to facilitate both
NLU of the robot-directed instructions as well as
Natural Language Generation (NLG) of robot re-
sponses and feedback.

2.1 Human-Robot Dialogue Corpus

We collected a corpus of observed data from the
target domain collected via a phased Wizard-of-
Oz approach (Marge et al., 2016, 2017), in which
a participant directed what they believed to be an
autonomous robot to complete search and naviga-
tion tasks. In reality, the participant was speak-
ing with two “wizard” experimenters responsible
for the robot’s dialogue and navigation capabili-
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Left floor Right Floor Annotations

# Participant DM → Participant DM → RN RN TU Ant Rel

1 move forward 3 feet 1
2 ok 1 1 ack-wilco
3 move forward 3 feet 1 1 trans-r
4 done 1 3 ack-done
5 I moved forward 3 feet 1 4 trans-l

Table 1: Example of a Transaction Unit (TU) which contains an instruction initiated by the participant, its trans-
lation to a simplified form (DM to RN), and the execution of the instruction and acknowledgement of such by the
RN. TU, Ant(ecedent), and Rel(ation type) are indicated in the right columns.

ties. This setup allowed for the creation of a cor-
pus of human-robot interactions that shows how
people communicate with a robot in collaborative
tasks when they are unconstrained in their com-
munication.

Dialogues in the corpus follow a set proce-
dure: a dialogue manager wizard (DM) listens to
the participant’s spoken instructions and replies to
the participant with feedback and clarification re-
quests via text messages. Executable instructions
are passed along by the DM to a robot naviga-
tor wizard (RN) via text messages in a separate
chat stream unseen by the participant. The RN
then tele-operates the robot to complete the par-
ticipant’s instructions. Finally, the RN provides
spoken feedback to the DM of completed actions
or problems that arose, which are relayed by the
DM to the participant. A sample interaction can
be seen in Table 1.

The corpus contains dialogues from a total of
82 participants across three separate phased data
collections. The participants’ speech and the RN’s
speech are transcribed and time-aligned with text
messages generated by the DM and sent either to
the participant or the RN.

2.2 Dialogue Structure Annotations

The corpus also includes annotations of several as-
pects of dialogue structure (Traum et al., 2018)
that allow for the characterization of distinct in-
formation states (Traum and Larsson, 2003). The
portion of the data that we used, constituting
about 20 hours of interaction, has been annotated
with this scheme, specific to multi-floor dialogue
that identifies high-level aspects of initiator in-
tent and signals relations between individual ut-
terances pertaining to that intent.

An example annotation can be seen in Table 1.
The scheme consists first of transaction units
(TU), which cluster utterances from multiple par-

ticipants and floors into units according to the joint
realization of an initiator’s intent. Relations indi-
cate the graph structure of utterances within the
same TU, and are indicated with a Relation type
(Rel) (e.g., “ack-done” in row 4 of Table 1, sig-
nals that an utterance acknowledges completion of
a previous utterance) and an Antecedent (Ant) for
the relation. The existing annotation scheme high-
lights dialogue structure, but does not provide a
markup of the semantic content of participant in-
structions, which is the goal of our work.

3 Background: AMR

The AMR project (Banarescu et al., 2013) has cre-
ated a manually annotated semantics bank of text
drawn from a variety of genres. Each sentence is
represented by a rooted directed acyclic graph in
which variables (or graph nodes) are introduced
for entities, events, properties, and states; leaves
are labeled with concepts (e.g., (d / dog)).
For ease of creation and manipulation, annota-
tors work with the PENMAN representation of
the same information (Penman Natural Language
Group, 1989), as in Figure 1.

(w / want-01
:ARG0 (d / dog)
:ARG1 (p / pet-01

:ARG0 (g / girl)
:ARG1 d))

Figure 1: AMR of The dog wants the girl to pet him.

A goal of AMR research is to capture core
facets of meaning while abstracting away from id-
iosyncratic syntactic structures; thus, the same un-
derlying concept realized alternatively as a noun
(a left turn), verb (turn to the left) or light verb
construction (make/do a left turn) will all be rep-
resented by identical AMRs.
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3.1 Motivation for AMR in Human-Robot
Dialogue

A primary motivation for using AMR is that there
are a variety of fairly robust AMR parsers we can
employ for this work, enabling us to forego man-
ual annotation of data and facilitating efficient au-
tomatic parsing in a future end-to-end system.

The structured graph representations of AMRs
additionally facilitate the interpretation of novel
instructions and grounding instructions with re-
spect to the robot’s current physical surroundings.
This structure allows us to pinpoint those actions
that are executable for the robot. This latter moti-
vation is especially important given that the tar-
get human-robot dialogue is physically situated
and therefore distinct from other dialogue systems,
such as chat bots, which do not require establish-
ing and acting upon a shared understanding of
the physical environment and often do not require
any intermediate semantic representation (see Sec-
tion 7 for related work). AMR thus offers both
efficient and accurate parsing of natural language
to a structured representation, as well as ease of
conversion of this broad coverage representation
to the domain-specific representation discussed in
this paper (see 6.2 for more on graph conversion).

The fact that AMRs abstract away from sur-
face variation is a complementary motivation for
exploring their use within an NLU component.
The AMRs “tame” some of the variation of nat-
ural language, representing core concepts in the
human’s commands, which must ultimately be
mapped into the robot’s low-level mechanical op-
erations. Therefore, the robot will only be trained
to process and execute the actions corresponding
to semantic elements of the representation (see
Section 6).

This processing and execution can be seen with
a concrete example. Throughout the corpus data,
participants use the commands Take a picture and
Send image (as well as other variants) with the
same intention that the robot take a picture of what
is in front of it and send that image to the partic-
ipant’s screen. While take is a light verb in this
usage (and therefore dropped from the representa-
tion according to existing AMR guidelines), send
maintains its semantic weight and argument struc-
ture. For the purposes of our task, we can abstract
away from this variation and convert both types
of utterances into send-image commands (see
5.2). Though future work may deem these distinc-

tions of lexical choice and syntax meaningful, the
current task generalizes them for ease of task com-
pletion.

4 Evaluating Suitability of AMR

We began our assessment of AMR for human-
robot dialogue by producing a small, randomly
selected sample (137 sentences) of gold standard,
manual annotations (provided by one senior and
two recently trained AMR annotators), based on
existing guidelines.1 We then examined how ef-
fectively these gold, guideline-based AMRs can
capture the distinctions of interest for human-
robot dialogue and how accurately two available
AMR parsers generate those gold annotations.

Common instructions in the corpus include
Move forward 10 feet, Take a picture, and Turn
right 45 degrees. People also used landmark-
based instructions such as Move to face the yel-
low cone, and Go to the doorway to your right,
although these were less common than the metric-
based instructions (Marge et al., 2017). In re-
sponse to these instructions from the DM to the
participant, common feedback would be indica-
tions that an instruction will be carried out (I
will move forward 10 feet), is in progress (Mov-
ing. . . ), or completed (I moved forward 10 feet).
Given that current AMR guidelines do not make
tense/aspect distinctions, these three types of feed-
back from the robot are represented identically un-
der the current guidelines (see Figure 2). The dis-
tinctions between a promise to carry out an in-
struction in the future, a declarative statement that
the instruction is being carried out, and an ac-
knowledgment that it has been carried out are crit-
ical for conveying the robot’s current status in a
live system.

(m / move-01
:ARG0 (i / i)
:direction (f / forward)
:extent (d / distance-quantity

:quant 10
:unit (f2 / foot)))

Figure 2: Identical AMR for I will move / I am moving
/ I moved forward...10 feet.

Although the imperative Move forward 10
feet should receive an AMR marker :mode
imperative, our evaluation of the existing

1https://github.com/amrisi/amr-guidelines/blob/master/
amr.md

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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parsers JAMR (Flanigan et al., 2014) and CAMR
(Wang et al., 2015) showed that parser output does
not include this marker as it is rare if not entirely
missing from the AMR 1.0 or 2.0 training corpora
(Section 6).2 As a result, the command to move
forward also received the identical above AMR
(Figure 2) in parser output. While this suggests
that additional training data is needed that includes
imperatives, this speaks to a larger issue of AMR:
the existing representation is very limited with re-
spect to speech act information. Current AMR
includes :mode imperative and represents
questions through the presence of amr-unknown
standing in for the concept or polarity being ques-
tioned. All unmarked cases are assumed to be as-
sertions. We found that more fine-grained speech
act information is needed for human-robot dia-
logue.

5 Refinements to AMR

To design a representative set of augmented AMRs
that capture the breadth of information neces-
sary for collaborative dialogue in our domain,
we started by creating a histogram of existing
dialogue annotation categories for the 20 hours
of experimental data available (described in Sec-
tion 2.2). This allowed us to see which types of
dialogue utterances are most prevalent in the cor-
pus, as well as to view the range of utterances
that comprise each category. Based on this data,
we designed a set of AMR “templates”—skeletal
AMRs in which the top, anchor node is a fixed
relation corresponding to a speech act type (e.g.,
assert-02), one of its arguments is a fixed rela-
tion corresponding to an action (e.g., turn-01),
and arguments of these relations are filled out
given the specifics of a particular utterance. These
skeletal AMRs can be modified and leveraged for
NLU and generation in future human-robot collab-
oration tasks. We note that our objective is to pro-
duce a set of refined AMRs that provide coverage
for human-robot dialogue, rather than an attempt
to change AMR on a general scale.

We augmented AMR with the following infor-
mation: i) coarse-grained information related to
the when (tense) and how (aspect) of events (5.1);
ii) speech acts (5.2); and iii) basic spatial informa-
tion pertinent to robot functioning (5.3).

2https://catalog.ldc.upenn.edu/LDC2014T12,
https://catalog.ldc.upenn.edu/LDC2017T10

5.1 Tense & Aspect

AMR currently lacks information that specifies
when an action occurs relative to speech time and
whether or not this action is completed (if a past
event) or able to be completed (if a future event).
This information is essential for situated human-
robot dialogue, where successful collaboration de-
pends on bridging the gap between differing per-
ceptions of the shared environment and creating
common ground (Chai et al., 2014).

Our tense and aspect annotation scheme is
based on Donatelli et al. (2018), who propose
a four-way division of temporal annotation and
three multi-valued categories for aspectual annota-
tion that fits seamlessly into existing AMR anno-
tation practice. We reduced the authors’ proposed
temporal categories to three, to capture temporal
relations before, during, and after the speech time.
In addition to the aspectual categories proposed
by Donatelli et al. (2018), we added the category
:completable +/- to signal whether or not
a hypothetical event has an end-goal that is exe-
cutable for the robot (described further in Section
5.3). Our annotation categories for tense and as-
pect can be seen in Table 2.

TEMPORAL ANNOTATION ASPECTUAL ANNOTATION
:time

1. (b / before :stable +/-
:op1 (n / now)) :ongoing +/-

2. (n / now) :complete +/-
3. (a / after :habitual +/-

:op1 (n / now)) :completable +/-

Table 2: Three categories for temporal annotation and
five categories for aspectual annotation are used to aug-
ment existing AMR for collaborative dialogue.

Notably, this annotation scheme is able to cap-
ture the distinctions missing in Figure 2. Updated
AMRs for utterances that communicate informa-
tion about a “move” event relative to the future,
present, and past are now re-annotated as in Fig-
ure 3. Using the scheme in Table 2, our augmented
AMRs allow for locating an event in time and ex-
pressing information related to the boundedness of
the event, i.e. whether or not the event is a fu-
ture event with a clear beginning and endpoint, a
present event in progress towards an end goal, or
a past event that has been completed from start to
finish.

https://catalog.ldc.upenn.edu/LDC2014T12
https://catalog.ldc.upenn.edu/LDC2017T10
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1. (m / move-01 :completable +
:ARG0 (i / i)
:direction (f / forward)
:extent (d / distance-quantity

:quant 10
:unit (f2 / foot))

:time (a / after
:op1 (n / now)))

2. (m / move-01 :ongoing + :complete -
:ARG0 (i / i)
:direction (f / forward)
:extent (d / distance-quantity

:quant 10
:unit (f2 / foot))

:time (n / now))

3. (m / move-01 :ongoing - :complete +
:ARG0 (i / i)
:direction (f / forward)
:extent (d / distance-quantity

:quant 10
:unit (f2 / foot))

:time (b / before
:op1 (n / now)))

Figure 3: Updated AMRs for (1) I will move..., (2) I am
moving..., and (3) I moved.... New temporal informa-
tion is in blue; new aspectual information is purple.

5.2 Speech Acts

Annotation of speech acts allows us to capture
how dialogue participants use language (its prag-
matic effect) in addition to what the language
means (its semantic content). The existing anno-
tation on the corpus involves only dialogue struc-
ture (section 2.2). Our longer-term goal is to cre-
ate a set of speech acts that i) cover the range of
in-domain language use found in the corpus and
ii) are generalizable to speech acts in other dia-
logue and conversational settings. To inform this
work, we drew upon classical speech acts work
such as Austin (1975) and Searle (1969).

To capture the range of speech acts present in
the corpus, we arrived at an inventory of 36 unique
speech acts specific to human-robot dialogue, in-
spired loosely by the dialogue move annotation of
Marge et al. (2017). These 36 speech acts are clas-
sified into 5 types. In Figure 4, these are listed
with the number of their subtypes in parentheses,
along with a list of example subtypes for the type
command. A full listing of subtypes and can be
found in the Appendix.

To integrate speech acts into AMR design, we
selected existing AMR/PropBank (Palmer et al.,
2005) rolesets corresponding to each speech act
(e.g., command-02, assert-02, request-01, etc.)

SPEECH ACT TYPES
c / command (6) → command:move
a / assert (9) command:turn
r / request (4) command:send-image
q / question (3) command:repeat
e / express (5) command:cancel

command:stop

Figure 4: Five proposed speech act types for human-
robot dialogue are listed on the left with number of
subtypes in parentheses. Examples of the range of sub-
types for :command are given to the right.

that serve as the anchor node in our augmented
AMR. One argument of each of these top-level
speech act relations corresponds to the action be-
ing commanded or asserted, or in general the con-
tent of a question, command, or assertion (e.g.,
turn-01, move-01, picture-01, etc.). For each
speech act constituting the top relation and each
action constituting one argument of the speech
act relation—i.e. each speech act subtype in Fig-
ure 4—there is a corresponding AMR template.
All utterances of a particular speech act and ac-
tion combination are mapped to one template.
For example, see (1) in Figure 6 for a blank
assert:turn template and (2) and (3) for com-
pleted AMRs using that template. Note that se-
mantically similar utterances using different vo-
cabulary choices (e.g., rotate, spin), which would
have slightly distinct AMRs under existing guide-
lines, would all map to the same AMR template
using turn-01 (see Section 6.2 for plans on how to
map parser output to templates).

5.3 Spatial Information
A key component of successful human-robot col-
laboration is whether or not robot-directed com-
mands are executable. In the dialogues repre-
sented in the corpus, for a command to be ef-
fectively executable by the robot, it must have a
clear beginning and endpoint and comprise a ba-
sic action. For example, Move forward is not exe-
cutable, since it lacks a clear endpoint; Move for-
ward two feet, which identifies an endpoint, is ex-
ecutable. Additionally, a command such as Ex-
plore this room is currently too high-level for our
robot to execute. For implementation within a
robot’s system, a semantic representation must in-
clude well-defined, low-level actions that can then
be combined into more complex actions.

Thus, our set of AMRs make explicit any im-
plicit spatial roles in the PropBank/AMR verb role
sets (in this sense, we follow the annotation prac-
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tices of O’Gorman et al. 2018 for Multi-Sentence
AMR). Our AMRs also specify additional spatial
parameters necessary for a command to be exe-
cutable, in the form of new core and non-core
roles, when these are not already present in the
original relation’s set of arguments. If all required
roles are present and instantiated by an utterance,
then our AMR is marked with completable
+; if any required roles are missing, the AMR is
marked with completable -. For example,
see Figure 5 for a non-executable command that
requires more information to be carried out.

(c / command-02
:ARG0 (c2 / commander)
:ARG1 (r / robot)
:ARG2 (m / move-01 :completable -

:ARG0 r
:direction (f / forward)
:extent (a / amr-unknown)
:time (a2 / after

:op1 (n / now))))

Figure 5: Move forward (non-executable) is missing
spatial information to complete the action. An existing
AMR concept, a / amr-unknown, is employed to
stand in for the missing parameter.

5.4 Final AMR Templates

Our final set of AMRs needed to provide cover-
age for the search and navigation domain includes
36 templates (one template corresponding to each
speech act and action combination), which cap-
ture i) tense and aspect information; ii) speech
acts; and iii) spatial parameters required for robot
execution. In addition to a command example
in Figure 5, we provide an example of a blank
assert:turn template with filled-in examples
of assertions about the future and present moments
in Figure 6.

Note that we do not yet know how effective
these templates will be in facilitating task-oriented
human-robot dialogue. Future evaluation will in-
clude examining the coverage of these templates
in mapping to a robot-specific action specification
as well as generating appropriate responses and
feedback. Our plans for implementation for fur-
ther evaluation are presented in the next section.

6 Implementation

The intent behind our exploration of AMR for
human-robot dialogue is to create a representation
that is useful for an eventual live implemented sys-

1. (a / assert-02
:ARG0-speaker
:ARG2-listener
:ARG1 (t / turn-01

:ARG1-thing turning
:direction
:extent
:destination))

2. (a2 / assert-02
:ARG0 (r2 / robot)
:ARG1 (t / turn-01 :completable +

:ARG1 r2
:direction (r / right-04

:ARG2 r2)
:extent (a / angle-quantity

:quant 90
:unit (d / degree))

:time (a2 / after
:op1 (n / now)))

:ARG2 (c / commander))

3. (a2 / assert-02
:ARG0 (r2 / robot)
:ARG1 (t / turn-01 :ongoing +

:complete -
:ARG1 r2
:direction (r / right-04

:ARG2 r2)
:extent (a / angle-quantity

:quant 90
:unit (d / degree))

:time (n / now))
:ARG2 (c / commander))

Figure 6: Final AMR template of assert:turn.
Blank template in (1), followed by a future I will turn
right 90 degrees and a present, follow-up turning.

tem. To accomplish this goal we intend to i) lever-
age existing parsers to gain automatic AMR parses
for the corpus data; ii) use graph-to-graph trans-
formations to move from parser output to one of
the 36 augmented in-domain AMRs; and iii) in-
tegrate the resulting AMRs with a language un-
derstanding component.3 Our planned pipeline is
presented in Figure 7. Ongoing work on each of
these components is described in the sections to
follow.

6.1 AMR Parsers
We initially developed a triple-annotated and ad-
judicated gold standard sample of 137 sentences
from the given corpus to serve as a test set for
evaluating the performance of the existing AMR
parsers. Inter-annotator agreement (IAA) among
the initial independent annotations obtained ade-

3Although we do plan to explore the utility of AMR for
NLG, we focus first on the NLU direction of communication.
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Figure 7: Planned pipeline for implementing AMRs into our human-robot dialogue system: natural language in-
structions are parsed using AMR parsers into existing AMR, which is then converted via graph-to-graph transfor-
mation into one of our augmented AMR templates. If all required parameters in the template are complete and the
instruction executable, it will be mapped onto one of the robot’s action specifications for execution. Clarifications
and feedback from the robot are generated from the AMR templates.

quate scores of .82, .82, and .91 using the Smatch
metric (Cai and Knight, 2013). According to
AMR development group communication, 2014,
IAA Smatch scores on AMRs are generally be-
tween .7 and .8, depending on the complexity of
the data.

Having created a gold standard sample of our
data, we ran both JAMR4 (Flanigan et al., 2014)
and CAMR5 (Wang et al., 2015) on the same sam-
ple and obtained the Smatch scores when com-
pared to the gold standard. We selected these two
parsers to explore because JAMR was one of the
first AMR parsers and uses a two-part algorithm to
first identify concepts and then to build the maxi-
mum spanning connected subgraph of those con-
cepts, adding in the relations. CAMR, in con-
trast, starts by obtaining the dependency tree—
in this case, using the Charniak parser6 and Stan-
ford CoreNLP toolkit (Manning et al., 2014)—and
then applies a series of transformations to the de-
pendency tree, ultimately transforming it into an
AMR graph. As seen in Table 3, CAMR performs
better on both precision and recall when trained
on AMR 1.0, thus obtaining the higher F-score.
However, compared to their self-reported F-scores
(0.58 for JAMR and 0.63 for CAMR) on other cor-
pora, both under-perform on the human-robot dia-
logue data.

Given the relatively poor performance of both
parsers on the human-robot dialogue data and er-

4https://github.com/jflanigan/jamr
5https://github.com/c-amr/camr
6https://github.com/BLLIP/bllip-parser

Parser Data Precision Recall F-score

CAMR 1.0 0.33 0.51 0.40
JAMR 1.0 0.27 0.44 0.33
JAMR 2.0 0.46 0.28 0.35
JAMR 2.0+D 0.56 0.27 0.36

Table 3: Parser performances on human-robot dia-
logue test set after being trained on AMR 1.0, AMR 2.0
corpus and on AMR 2.0 corpus combined with small
in-domain training set of human-robot dialogue data.

ror analysis of the output, we concluded that addi-
tional in-domain training data was needed. To this
end, we manually selected 504 sentences (distinct
from the original 137 test set) made up of short, se-
quential excerpts of the corpus data representative
of the variety of common exchange types that we
see. These sentences were independently double-
annotated (IAA 87.8%) and adjudicated to create
our new small training set. We retrained JAMR
in several iterations. First, we retrained JAMR on
the larger AMR 2.0 corpus (which includes and
expands upon the AMR 1.0 corpus), then we re-
trained JAMR on the AMR 2.0 corpus and our in-
domain data combined. Comparative results are
summarized in Table 3. We are currently explor-
ing retraining CAMR and plan to investigate other
more recent parsers, such as Lyu & Titov (2018).

Although F-score improvements are modest,
they are trending upward, and qualitative analy-
sis of the output of the system making use of in-
domain training data shows notable improvements

https://github.com/jflanigan/jamr
https://github.com/c-amr/camr
https://github.com/BLLIP/bllip-parser
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in some of the common navigation-related lan-
guage. For example, compare the output of the
system trained on AMR 2.0 to the system trained
on AMR 2.0 plus in-domain data for a common
instruction, shown in Figure 8.

1. (m / move-01
:ARG1 (f / foot

:quant 15)
:direction (f2 / forward))

2. (m / move-01
:direction (f2 / forward)
:extent (d / distance-quantity

:quant 15
:unit (f / foot)))

Figure 8: (1) Output from JAMR trained on AMR 2.0
for move forward 15 feet. Note that foot is incorrectly
represented as the ARG1 of move, or the thing-moved.
(2) Output from JAMR trained on AMR 2.0 plus in-
domain data. Note that 15 feet is correctly treated as an
extent of the movement

Despite improvements, the system trained on
the small sample of in-domain data still fails to
represent :mode imperative and also fails to
include implicit subjects. Thus, we conclude that
additional data more similar to the corpus is still
needed, and we are currently working with other
research groups to develop a larger training sample
of human-agent dialogue that includes movement
direction-giving. However, note that we do not yet
know what downstream impact improvements in
F-score will have on the final system. Since we
do not plan for the robot to act upon parser out-
put AMRs, but rather in-domain AMRs, it may be
that the a graph-to-graph transformation algorithm
could be robust to some noise in the parser output
but still map to the correct in-domain AMR.

6.2 Graph-to-Graph Transformations

We are in the early stages of exploring graph-
to-graph transformations that will allow us to
move from the parser-output AMRs to our set of
in-domain AMRs. Rather than train parsers to
parse directly into the augmented AMRs described
here, a graph-to-graph transformation allows us to
maintain the parser output as a representation of
the sentence meanings themselves as input, while
the output captures our contextual domain-specific
layer and includes speaker intent on top of the sen-
tence meaning. To create training data for graph-
to-graph transformation algorithms and to evaluate
the coverage and quality of the set of in-domain

AMRs, we have begun this exploration by manu-
ally mapping a set of our gold-standard AMRs to
the 36 in-domain AMR templates.7

Necessary transformations so far include the
following: i) changing participant roles, for ex-
ample I/you to robot/commander); ii) creating a
merge step for all actions of similar type, for ex-
ample merging movement commands of move, go,
walk, back up into the go-02 frame (following
our command:move template); and iii) expand-
ing AMR frames to include implicit roles. Next
steps will include the general tasks of pairing utter-
ances with one of the 36 speech act types, making
use of linguistic cues (for example, when an ut-
terance lacks a personal pronoun or named entity
like “robot”, it is likely a command), and identify-
ing when a command is not executable and further
information is necessary.

6.3 Revising, Adapting NLU Component
In previous work using the same human-robot di-
alogue corpus, Lukin et al. (2018) implemented a
preliminary dialogue system which uses a statis-
tical classifier for NLU (NPCEditor, Leuski and
Traum, 2011). The classifier relies on language
model similarity measures to associate an instruc-
tion with either a “translation” to be sent forward
to the RN-Wizard or a clarification question to
be returned to the participant. The system also
exploits the dialogue structure annotations (sec-
tion 2.2) as features. Error analysis has demon-
strated that this preliminary system, by simply
learning an association between an input string
and a particular set of executed actions, fails to
generalize to unseen, novel input instructions (e.g,
Turn left 100 degrees, as opposed to a more typical
number of degrees like 90), and is unable to inter-
pret instructions with respect to the current physi-
cal surroundings (e.g., the destination of Move to
the door on the left needs to be interpreted differ-
ently depending where the robot is facing).

Our proposed domain-specific AMRs from sec-
tion 5 are intended as a replacement for the clas-
sifier functionality of the current preliminary di-
alogue system, allowing a much richer represen-
tation of the semantics of actions, including al-
lowing previously unseen values, and composi-
tional construction of referring expressions. A
downstream dialogue manager component will be

7We plan to eventually model our graph-to-graph trans-
formation on work by (Liu et al., 2015) for abstractive sum-
marization with AMR, though in the opposite direction.
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able to perform slot-filling dialogue (Xu and Rud-
nicky, 2000) including clarification of missing or
vague descriptions and, if all required parameters
are present, will use the domain-specific AMR for
robot execution.

7 Related Work

7.1 Semantic Representation

There is a long-standing tradition of research in se-
mantic representation within NLP, AI, as well as
theoretical linguistics and philosophy (see Schu-
bert (2015) for an overview). Thus, there are a
variety of options that could be used within di-
alogue systems for NLU. However, for many of
these representations, there are no existing auto-
matic parsers, limiting their feasibility for larger-
scale implementation. An exception is combina-
tory categorical grammar (CCG) (Steedman and
Baldridge, 2011); CCG parsers have been incor-
porated in some current dialogue systems (Chai
et al., 2014). Although promising, CCG parses
closely mirror the input language, so systems mak-
ing use of CCG parses still face the challenge of
a great deal of linguistic variability that can be
associated with a single intent. Universal Con-
ceptual Cognitive Annotation (UCCA) (Abend
and Rappoport, 2013), which also abstracts away
from syntactic idiosyncrasies, and its correspond-
ing parser (Hershcovich et al., 2017) merits future
investigation.

7.2 NLU in Dialogue Systems

Broadly, the architecture of task-oriented spoken
dialogue systems includes i) automatic speech
recognition (ASR) to recognize an utterance, ii) an
NLU component to identify the user’s intent, and
iii) a dialogue manager to interact with the user
and achieve the intended task (Bangalore et al.,
2006). The meaning representation within such
systems has, in the past, been predefined frames
for particular subtasks (e.g., flight inquiry), with
slots to be filled (e.g., destination city) (Issar and
Ward, 1993). In such approaches, the meaning
representation was crafted for a specific appli-
cation, making generalizability to new domains
difficult if not impossible. Current approaches
still model NLU as a combination of intent and
dialogue act classification and slot tagging, but
many have begun to incorporate recurrent neu-
ral networks (RNNs) and some multi-task learn-
ing for both NLU and dialogue state tracking

(Hakkani-Tür et al., 2016; Chen et al., 2016), the
latter of which allows the system to take advan-
tage of information from the discourse context to
achieve improved NLU. Substantial challenges to
these systems include working in domains with
intents that have a large number of possible val-
ues for each slot and accommodation of out-of-
vocabulary slot values (i.e. operating in a domain
with a great deal of linguistic variability).

7.3 Speech Act Taxonomies for Dialogue

Speech acts have been used as part of the mean-
ing representation of task-oriented dialogue sys-
tems since the 1970s (e.g., Bruce, 1975; Cohen
and Perrault, 1979; Allen and Perrault, 1980). For
a summary of some of the earlier work in this area,
see Traum (1999). There have been a number of
widely used speech act taxonomies, including an
ISO standard (Bunt et al., 2012), however these
often have to be particularized to the domain of in-
terest to be fully useful. Our approach with speech
act types and subtypes representing a kind of se-
mantic frame is perhaps most similar to the dia-
logue primitives of Hagen and Popowich (2000).
Combining these types with fully compositional
AMRs will allow flexible expressiveness, inferen-
tial power and tractable connection to robot action.

8 Conclusions

This paper has proposed refinements for AMR to
encode information necessary for situated human-
robot dialogue. Specifically, we elaborate 36
templates specific to situated dialogue that cap-
ture i) tense and aspect information; ii) speech
acts; and iii) spatial parameters for robot exe-
cution. These refinements come after evaluating
the coverage of existing AMR for a corpus of
human-robot dialogue elicited from tasks related
to search-and-rescue and reconnaissance. We also
manually annotated 641 in-domain gold standard
AMRs in order to evaluate and retrain existing
AMR parsers, JAMR and CAMR, for performance
on dialogue data. Future work will continue to an-
notate situated dialogue data and assess the per-
formance of both a graph-to-graph transformation
algorithm and an existing statistical classifier for
eventual, autonomous human-robot collaboration.
We plan to make our AMR-annotated data pub-
licly available; please contact the authors if you
would like access to it beforehand.
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Appendix

Type Subtype Example

Command Move Move forward 5 feet
Turn Turn left 90 degrees
Send-Image Take a picture
Repeat Do that again
Cancel Cancel that
Stop Ok stop here

Assert Move I will move forward 5 feet
Turn I turned right 90 degrees
Send-Image Sent
Do Executing. . .
Confirm Correct
Scene I see two doorways ahead
Ability I can’t manipulate objects
Map The table is 2 feet away
Task Calibration complete

Request Wait Please wait
Confirm I’ll go as far as I can, ok?
Clarify Can you describe it another way?
Instruct What should we do next?

Question Ability Can you speak Arabic?
Scene Have you seen any shoes?
Map How far are you from wall?

Express Greet Hello!
Thank Thanks for the help!
Good Good job!
Mistake Woops!
Sorry Sorry!

Table 4: Listing of Speech Act Types and Subtypes (actions), with example utterances. Note
that each subtype corresponds to a unique augmented AMR template. 27 subtypes are listed
here; the Assert-Task subtype has several subtypes of its own, which are omitted here.


