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Abstract
We develop a general framework for weighted
parsing which is built on top of grammar-
based language models and employs flexible
weight algebras. It generalizes previous work
in that area (semiring parsing, weighted de-
ductive parsing) and also covers applications
outside the classical scope of parsing, e.g., al-
gebraic dynamic programming. We show an
algorithm which terminates and is correct for
a large class of weighted grammar-based lan-
guage models.

1 Introduction

The weighted parsing problem takes as input a
weighted language model (LM) and a syntactic
object a. For instance, the LM can be given by
some grammar G, e.g., a context-free grammar
(CFG) or a linear context-free rewriting system
(LCFRS), and a can be some string. Each rule r
of G has a value (weight of r); the weight is an ele-
ment of some weight algebra K. That algebra has
a binary commutative and associative operation ⊕
on its carrier set, which is used to handle ambigu-
ity of G. As output we expect an element k ∈ K

which is the ⊕-accumulation of the weight wt(d)K
of each abstract syntax tree (AST) d of a in G, i.e.,

k =
∑⊕

d∈AST(G,a)

wt(d)K

where wt(d)K is computed by other operations of
the algebra K (using the weights of the occurring
rules) and

∑⊕ is an extension of ⊕ to infinitely
many summands (infinitary sum operation). For
instance, if K = [0, 1] is the set of probabilities,
⊕ = max,

∑⊕ = sup, and wt(d)K is the product of
all weights of occurrences of rules in d, then k is
the maximal probability of an AST of a in G.

Goodman (1999) developed a formal frame-
work for weighted parsing, called semiring pars-
ing. As weight algebras he used complete semir-
ings (K,⊕,⊗, 0, 1,

∑⊕) (Eilenberg, 1974), i.e.,
∑⊕

is the infinitary sum operation extending ⊕. The
binary operation ⊗ is used to compute wt(d)K .
By appropriate choices of the complete semiring,
he formalized the following problems as weighted
parsing problems for a CFG G and a: the calcula-
tion of recognition, string probabilities, number of
derivations, derivation forests, probability of best
derivation, best derivation, and best n derivations.
The algorithm which he proposed for solving the
weighted parsing problem is a pipeline with two
phases. In the first phase, the CFG G, a deduc-
tion system I (Shieber et al., 1995), and the syn-
tactic object a (i.e., a string) are combined into a
single CFG G′ (using a construction idea of Bar-
Hillel et al., 1961). In the second phase, the value
k (from above) is calculated, if G′ is acyclic.1

Nederhof (2003) developed a similar frame-
work, called weighted deductive parsing. As
weight algebras he employed algebras of the form
(K,min, 0, Ω,∑min) where K is a totally ordered
set, ∑min = inf (infimum), inf(K) ∈ K, and Ω

is a set of superior functions; a superior function
f is an operation on K which is monotone non-
decreasing in each argument and f (k1, . . . , km) ≥
max(k1, . . . , km) holds. The algorithm which he
proposed for solving the weighted parsing prob-
lem is again a pipeline with two phases, where
the first phase is the same as in the framework
of Goodman (1999) and the resulting CFG G′ is
denoted by c(G, a). In the second phase, he em-
ployed the algorithm of Knuth (1977), which gen-
eralizes the shortest distance algorithm of Dijkstra
(1959) from graphs to hypergraphs and also works
if G′ is cyclic. If the CFG G′ is non-branching,
i.e., a linear grammar (Khabbaz, 1974, Def. 1),
then in the second phase a graph algorithm can

1Goodman (1999) actually defines the algorithm so that it
attempts to compute an infinite sum. He states that in appli-
cations, this computation needs to be replaced by instructions
specific to the used semiring.
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be used as an alternative to Knuth’s algorithm;
e.g., the single source shortest distance algorithm
of Mohri (2002) if the weight algebra K is a com-
plete semiring which is closed for G′.

In this paper, we generalize the two-phase
pipeline approach of Goodman (1999) and Neder-
hof (2003) as follows. We specify the LM by
using the general approach of initial algebra se-
mantics (Goguen et al., 1977). For this, we em-
ploy weighted regular tree grammars (wRTG) and
evaluate the generated trees (by the unique ho-
momorphism) in some language algebra L, which
provides the set of syntactic objects as carrier set.
This approach is very flexible and covers LMs for
strings (CFG, LCFRS), but also trees and graphs
(Drewes et al., 2016). Our second generalization
concerns the weight algebra. We consider com-
plete multioperator monoids (Kuich, 1999) which
are algebras of the form (K,⊕, 0, Ω,

∑⊕), where
Ω is a set of operations on K and

∑⊕ is the in-
finitary sum operation which extends ⊕. We call
the combination of such an LM and weight alge-
bra weighted RTG-based language model (wRTG-
LM). These combinations are very general and
even exceed the scope of parsing; e.g., each alge-
braic dynamic programming problem (Giegerich
et al., 2004), like minimum edit distance or ma-
trix chain multiplication, can be formalized within
this framework.

For solving the weighted parsing problem,
given a wRTG-LM and a syntactic object a, we
formalize the first phase as canonical weighted
deduction system, which uses a CYK-like deduc-
tion system. For the second phase (value com-
putation algorithm), we propose a generalization
of Mohri’s approach to hypergraphs, in the spirit
of Knuth’s generalization of Dijkstra’s algorithm.
We prove (in sketches) that our weighted parsing
algorithm is terminating and solves the weighted
parsing problem for every closed wRTG-LM with
a finitely decomposing language algebra. This
covers the approaches of Goodman (1999) and
Nederhof (2003); our value computation algo-
rithm subsumes the algorithms of Knuth (1977)
and Mohri (2002). Due to space restrictions, we
cannot show our detailed proofs of the theorems
in this paper.

2 Preliminaries

Mathematical notions. We let N = {0, 1, 2, . . .}
be the set of natural numbers and [m] = {1, . . . ,m}

for each m ∈ N. An alphabet is a finite, nonempty
set. The powerset of a set A is denoted by P(A).
Let f : A → B be a mapping; we extend it to
the mapping f ′:P(A) → P(B) by letting f (U) =
{ f (a) | a ∈ U}, and we denote f ′ also by f . A
family over A is a mapping f : I → A, where I is
a countable set (index set). As usual, we represent
each family f over A by ( f (i) | i ∈ I) and abbrevi-
ate f (i) by fi.

Ranked sets, trees, and regular tree grammars.
A ranked set is a set Γ such that each γ ∈ Γ is
associated with a natural number rkΓ(γ), its rank.
The set of all elements of Γ with rank m ∈ N is
denoted by Γm. A ranked set Σ with Σ ⊆ Γ is rank
preserving (in Γ) if Σm ⊆ Γm for each m ∈ N. Let
H be a set. The set of trees over Γ and H is defined
in the usual way, where elements of H may only
occur at leaves. We denote this set by TΓ(H) and
abbreviate TΓ(∅) by TΓ. Let t ∈ TΓ(H). A path
in t is a sequence of positions of d from the root to
a leaf. Let p be a path in t. The sequence of labels
of d along p is denoted by seq(d, p). A ranked
alphabet is a ranked set which is an alphabet.

A regular tree grammar (RTG) (Brainerd,
1969) is a tuple G = (N, Σ, A0,R) where N is an
alphabet (nonterminals), Σ is a ranked alphabet
(terminals) with N ∩ Σ = ∅, A0 ∈ N (initial non-
terminal), and R is finite set of rules where each
rule has the form A→ σ(A1, . . . , Am) with m ∈ N,
A, A1, . . . , Am ∈ N, and σ ∈ Σm. Each RTG G can
be considered as a context-free grammar G′ (with
terminal alphabet Σ ∪ {(, ), comma}), which gen-
erates well-formed expressions. Thus the deriva-
tion relation⇒G is the usual derivation relation of
G′. The tree language generated by G is the set
L(G) = {t ∈ TΣ | A0 ⇒

∗
G t}.

By viewing each rule A → σ(A1, . . . , Am) of
R as symbol with rank m, we can define the set
AST(G) of abstract syntax trees of G to be the set
of all d ∈ TR such that for each position w of d the
following holds: if d has label A→ σ(A1, . . . , Am)
at w, then the i-th successor of w (i ∈ [m]) is la-
beled by a rule with left-hand side Ai (cf. Fig. 2).
We define the mapping πΣ : AST(G) → TΣ such
that πΣ(d) is obtained from d by replacing each la-
bel A → σ(A1, . . . , Am) by σ (cf. Fig. 2). Hence
πΣ(AST(G)) = L(G).

Γ-algebras. Let Γ be a ranked set. A Γ-algebra
(or: algebra) is a pair (A, φ) whereA is a set (car-
rier set) and φ is a mapping (interpretation map-
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ping) which maps each γ ∈ Γm (m ∈ N) to an m-
ary operation φ(γ) overA, i.e., φ(γ):Am → A. In
the sequel, we will sometimes identify φ(γ) and γ
(as it is usual in algebra).

The Γ-term algebra is the Γ-algebra (TΓ, φΓ)
where φΓ(γ)(t1, . . . , tm) = γ(t1, . . . , tm) for every
m ∈ N, γ ∈ Γm, and t1, . . . , tm ∈ TΓ. For each
Γ-algebra (A, φ) there is exactly one homomor-
phism, denoted by (.)A, from the Γ-term algebra
to (A, φ) (Wechler, 1992). We write its applica-
tion to an argument t ∈ TΓ as tA. Intuitively, (.)A
evaluates a tree t in (A, φ), in the same way as
arithmetic expressions (e.g., 3 + 2 · (4 + 5)) are
evaluated in the {+, ·}-algebra (Z,+, ·) to some val-
ues (here: 21). Often we abbreviate an algebra
(A, φ) by its carrier set A. For every a ∈ A we
let factors(a) = {b ∈ A | b <factor

∗a}, where for
every a, b ∈ A, b <factor a if there is a γ ∈ Γ

such that b occurs in some tuple (b1, . . . , bm) with
φ(γ)(b1, . . . , bm) = a. We call (A, φ) finitely de-
composable if factors(a) is finite for every a ∈ A.

Monoids. A monoid is an algebra (K,⊕, 0) such
that ⊕ is a binary, associative operation on K and
0 ⊕ k = k = k ⊕ 0 for each k ∈ K. In the rest of
this paper, each occurrence of k, k1, k2, . . . is as-
sumed to be universally quantified over K if not
specified otherwise. The monoid is commutative
if ⊕ is commutative; it is extremal (Mahr, 1984) if
k1⊕k2 ∈ {k1, k2}; it is idempotent if k⊕k = k. It is
naturally ordered if the binary relation �⊆ K ×K

(defined by k1 � k2 if there is a k ∈ K such that
k1⊕k = k2) is anti-symmetric (in which case it is a
partial order, since reflexivity and transitivity hold
by definition). It is complete if for each count-
able set I, there is an operation

∑⊕
I which maps

each family (ki | i ∈ I) to an element of K, co-
incides with ⊕ when I is finite, and otherwise sat-
isfies axioms which guarantee commutativity and
associativity (Eilenberg, 1974, p. 124). We abbre-
viate

∑⊕
I (ki | i ∈ I) by

∑⊕
i∈I ki. A complete monoid

is d-complete (Karner, 1992) if for every k ∈ K

and family (ki | i ∈ N) of elements of K the fol-
lowing holds: if there is an n0 ∈ N such that for
every n ∈ N with n ≥ n0,

∑⊕
i∈N:i≤n ki = k, then∑⊕

i∈N ki = k. A complete monoid is completely
idempotent if for every k ∈ K and countable set I
it holds that

∑⊕
i∈I k = k.

By easy calculations we obtain the following
implications: (1) if K is extremal, then it is idem-
potent, (2) if K is completely idempotent, then it
is d-complete, and (3) if K is d-complete, then it

is naturally ordered.

Multioperator monoids. A multioperator
monoid (M-monoid) (Kuich, 1999) is an algebra
(K,⊕, 0, Ω) such that (K,⊕, 0) is a commutative
monoid and Ω is a set of operations on K which
contains at least the unary identity id:K → K.
We view Ω as a ranked set, and hence (K, φ) as an
Ω-algebra where φ(ω) = ω for each ω ∈ Ω. Thus
tK ∈ K is the evaluation of t ∈ TΩ in the algebra
(K, φ). An M-monoid inherits the properties of
its monoid (e.g., being complete). We denote a
complete M-monoid by (K,⊕, 0, Ω,

∑⊕).
An M-monoid is distributive if for each m-ary

ω ∈ Ω and every i ∈ [m],
ω(k1,i−1, ki ⊕ k, ki+1,m)
= ω(k1,i−1, ki, ki+1,m) ⊕ ω(k1,i−1, k, ki+1,m)

where k1,i−1 and ki+1,m abbreviate k1, . . . , ki−1 and
ki+1, . . . , km, respectively. If K is complete, then
we additionally require that the above equation
also holds for each countable set of summands.

Next we show examples of M-monoids.

• Each semiring (K,⊕,⊗, 0, 1) can be considered
as the M-monoid (K,⊕, 0, Ω⊗) (Fülöp et al.,
2009) where Ω⊗ = {mul(m)

k
| m ∈ N, k ∈ K}

and for every m ∈ N we define
mul(m)

k
(k1, . . . , km) = k ⊗ k1 ⊗ · · · ⊗ km .

Note that 1 = mul(0)
1

().

• Knuth (1977) uses complete, distributive M-
monoids of the form (K,min, 0, Ω,

∑min) where
K is a totally ordered set, inf(K) ∈ K, and
the operations in Ω are superior functions. We
will call such M-monoids superior M-monoids.
We note that each superior M-monoid is d-
complete.

3 Weighted RTG-based language models
and the weighted parsing problem

As framework for the definition of our lan-
guage models we use the initial algebra approach
(Goguen et al., 1977). An RTG-based language
model (RTG-LM) is a tuple (G, (L, φ)) where

• G = (N, Σ, A0,R) is an RTG and

• (L, φ) is a Γ-algebra (language algebra) such
that Σ ⊆ Γ is rank preserving; the elements ofL
are called syntactic objects.

The language generated by (G, (L, φ)) is the set
L(G)L = {tL | t ∈ L(G)} ⊆ L ,

i.e., the set of all syntactic objects which result
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r1: S
1.0
−→ 〈x1 x2〉(NP,VP) r8: NN

1.0
−→ 〈fruit〉

r2: NP
0.2
−→ 〈x1〉(NN) r9: NNS

0.4
−→ 〈flies〉

r3: NP
0.5
−→ 〈x1 x2〉(NN,NNS) r10: NNS

0.6
−→ 〈bananas〉

r4: NP
0.3
−→ 〈x1〉(NNS) r11: VBZ

1.0
−→ 〈flies〉

r5: VP
0.4
−→ 〈x1 x2〉(VBZ,PP) r12: VBP

1.0
−→ 〈like〉

r6: VP
0.6
−→ 〈x1 x2〉(VBP,NP) r13: IN

1.0
−→ 〈like〉

r7: PP
1.0
−→ 〈x1 x2〉(IN,NP)

Figure 1: Rules of RTG of Ex. 1.

from evaluating trees of L(G) in the language al-
gebra L. For each a ∈ L, we let

AST(G, a) = {d ∈ AST(G) | πΣ(d)L = a} .

Example 1. We consider the Γ-algebra
CFG

∆ = (∆∗, φ) as language algebra where
∆ = {fruit, flies, like, bananas}, Γ =

⋃
m∈N Γm, and

Γm = {〈u0x1u1 · · · xmum〉 | ui ∈ ∆
∗}. We define

φ(〈u0x1u1 · · · xmum〉)(a1, . . . , am)
= u0a1u1 · · · amum

for every a1, . . . , am ∈ ∆
∗.

We consider the RTG G = (N, Σ, S,R) with
N = {S,NP,VP,PP,NN,NNS,VBZ,VBP, IN}
and Σ = {〈δ〉 | δ ∈ ∆} ∪ {〈x1〉, 〈x1x2〉} ⊆ Γ, and
R contains the rules shown in Fig. 1 (ignoring the
numbers above the arrows for the time being).

The tree in the middle of the upper row of
Fig. 2 is an abstract syntax tree d ∈ AST(G).
It expresses that certain insects (fruit flies) like
something (bananas). We obtain πΣ(d) by drop-
ping the non-highlighted parts of d (left of up-
per row). The application of the homomorphism
(.)
CFG∆

: TΣ → CFG
∆ to πΣ(d) yields the string

a = fruit flies like bananas. We note that there
is another abstract syntax tree d′ ∈ AST(G), viz.,
d′ = r1(r2(r8), r5(r11, r7(r13, r4(r10)))) such that
πΣ(d′)

CFG∆
= a. It expresses how fruit performs

a certain activity (to fly like bananas). Hence this
RTG-LM is ambiguous. �

It should be clear from Ex. 1 that each context-
free grammar with terminal alphabet ∆ can be
represented as an RTG-LM (G,CFG∆), and vice
versa, each RTG-LM (G,CFG∆) represents a
CFG. In the same way, one can characterize
LCFRS and tree adjoining grammars by (1) super-
posing sorts to the set N of nonterminals of the
RTG (in order to represent fanout and the char-
acteristic “substitution tree / adjoining tree” of ar-
guments, respectively), and (2) by defining ap-

propriate Γ-algebras LCFRS∆ (Kallmeyer, 2010,
Def. 6.2+6.3) and TAG∆ (Büchse et al., 2012;
Koller and Kuhlmann, 2012), respectively. The
language algebras CFG∆, LCFRS∆, and TAG∆

are finitely decomposable.
A weighted RTG-based language model

(wRTG-LM) is a tuple(
(G, (L, φ)), (K,⊕, 0, Ω,

∑⊕), wt
)
,

where

• (G, (L, φ)) is an RTG-LM,

• (K,⊕, 0, Ω,
∑⊕) is a complete M-monoid

(weight algebra), and

• wt maps each rule of G with rank m to an m-
ary operation in Ω. We lift wt to the mapping
wt′: TR → TΩ and denote wt′ also by wt.

Definition 2. The weighted parsing problem
is the following problem: given a wRTG-LM(
(G, (L, φ)), (K,⊕, 0, Ω,

∑⊕),wt
)

and an a ∈ L,
compute the value parse(a) ∈ K where

parse(a) =
∑⊕

d∈AST(G,a)

wt(d)K . �

Example 3. (Ex. 1 cont.) The best derivation
problem of (Goodman, 1999) consists of comput-
ing, given a syntactic object a and a grammar, the
abstract syntax trees of a with maximal probabil-
ity (and this probability). Let R∞ be a ranked set
such that (R∞)m is infinite for each m ∈ N. In anal-
ogy to Goodman, we define the best derivation M-
monoid to be the d-complete M-monoid

BD =
(
V, maxBD, (0, ∅), ΩBD,

∑maxBD ),
where V = [0, 1] × P(TR∞) and [0, 1] is the inter-
val of real numbers from 0 to 1 and

• for every (p1,D1), (p2,D2) ∈ V , the value
maxBD((p1,D1), (p2,D2)) is (pi,Di) if pi > p j

for i, j ∈ {1, 2}, and (p1,D1 ∪ D2) if p1 = p2,

• ΩBD = {tcp,r | p ∈ [0, 1] and r ∈ R∞},
where for each p ∈ [0, 1] and r ∈ R∞ of
rank m, we define tcp,r: Vm → V (tc abbre-
viates top concatenation) such that for every
(p1,D1), . . . , (pm,Dm) ∈ V

tcp,r
(
(p1,D1), . . . , (pm,Dm)

)
= (p′,D′)

where p′ = p · p1 · . . . · pm and D′ =
{r(d1, . . . , dm) | di ∈ Di, 1 ≤ i ≤ m}, and

• for every family ((pi,Di) | i ∈ I) over V , we
define

∑maxBD
i∈I (pi,Di) = (p,D), where p =

sup{pi | i ∈ I} and D =
⋃

i∈I:pi=p Di.

Since BD is completely idempotent, it is also d-
complete.
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〈x1 x2〉

〈x1 x2〉

〈fruit〉 〈flies〉

〈x1 x2〉

〈like〉 〈x1〉

〈bananas〉

S→

NP→

NN→ NNS→

VP→

VBP→ NP→

NNS→

(NP,VP)

(NN,NNS) (VBP,NP)

(NNS)

d ∈ AST(G)

〈x1 x2〉

〈x1 x2〉

〈fruit〉 〈flies〉

〈x1 x2〉

〈like〉 〈x1〉

〈bananas〉

t ∈ TΣ

tc1.0,r1

tc0.5,r3

tc1.0,r8 tc0.4,r9

tc0.6,r6

tc1.0,r12 tc0.3,r4

tc0.6,r10

in TΩ

(
0.0216, {r1(r3(r8, r9), r6(r12, r4(r10)))}

)
(
0.0144, {r1(r2(r8), r5(r11, r7(r13, r4(r10))))}

)maxBDa = fruit flies like bananas

wt(d′) ∈ TΩd′ ∈ AST(G)πΣ(d′) ∈ TΣ

πΣ wt

(.)
CFG∆

(.)BD

(.)BD
wtπΣ

(.)
CFG∆

parse

Figure 2: Illustration of the weighted parsing problem for the wRTG-LM
(
(G,CFG∆),BD,wt

)
and the syntactic

object a = fruit flies like bananas of ∆∗, see Ex. 3.

Now we consider the finite set R of rules
of the RTG G given in Ex. 1. We can as-
sume that R ⊆ R∞ is rank preserving. We de-
fine the mapping wt: R → ΩBD by wt(ri) =
tcpi,ri where pi is shown in Fig. 1 above the ar-
row of ri. For each d ∈ AST(G, a), the sec-
ond component of wt(d)BD has exactly one el-
ement. Recall d′ from Ex. 1, a second AST
which is evaluated to a. We obtain wt(d′)BD =
(0.0144, {r1(r2(r8), r5(r11, r7(r13, r4(r10))))}). Thus

maxBD
(

wt(d)BD,wt(d′)BD
)
= wt(d)BD .

As one might expect, it is more likely that a refers
to the preferences (to like bananas) of certain in-
sects (fruit flies). Fig. 2 illustrates the parsing
problem for the wRTG-LM ((G,CFG∆),BD,wt)
and a = fruit flies like bananas. �

In summary, each wRTG-LM consists of two
components: a syntax component and a weight
component. The syntax component (cf. the left of
Fig. 2) contains the language algebra (L, φ). This
is a Γ-algebra whose carrier set is the set of syn-
tactic objects. The mapping πΣ maps each abstract
syntax tree to a tree in the Σ-term algebra TΣ ,
which is then evaluated to a syntactic object by the
unique homomorphism (.)L (recall that Σ ⊆ Γ).

The weight component (cf. the right of Fig. 2)
contains a complete M-monoid (K,⊕, 0, Ω,

∑⊕)
whose carrier set is the set of weights. The map-
ping wt maps each abstract syntax tree to a tree in
the Ω-term algebra TΩ, which is then evaluated to
a weight in K by the unique homomorphism (.)K .
Weights in K are accumulated using ⊕.

A→ dela(A) φ(dela)(w) = aw dela(n) = n + 1
A→ insa(A) φ(insa)(w) = wa insa(n) = n + 1
A→ repa,b(A) φ(repa,b)(w) = awb repa,b(n) = n′

A→ nil φ(nil)() = $ nil() = 0

Figure 3: Rules of G for each a, b ∈ ∆, the interpre-
tation φ, and the operations in Ω where n′ = n + 1 if
a , b, and n otherwise.

The weighted parsing problem takes as input a
wRTG-LM and a syntactic object a, and it com-
putes the ⊕-accumulation of the weights of each
AST of a.

Example 4. Giegerich et al. (2004) formalized dy-
namic programming (Bellman, 1952, 1954) in an
algebraic setting, called algebraic dynamic pro-
gramming (ADP). We claim that each ADP prob-
lem is a weighted parsing problem. To support
this statement, we consider the computation of
the minimum edit distance (med) between two
words over some alphabet ∆ by deletion, inser-
tion, and replacement, and we “simulate” its ADP-
specification as wRTG-LM ((G, (L, φ)),K,wt).
The rules of the RTG G and the interpretation
φ are shown in the first and second columns of
Fig. 3, respectively. Thus, for each tree t ∈ L(G),
tL = u$v for some u, v ∈ ∆∗. We choose the
complete, distributive M-monoid (K,⊕, ∅, Ω,

∑⊕)
with K = {h(F) | F ∈ P(N)} for the single-
valued objective function h:P(N) → P(N) with
h(F) = {min(F)}. We let F1 ⊕ F2 = h(F1 ∪ F2) for
every F1, F2 ∈ K, and

∑⊕
i∈N Fi = {inf(

⋃
i∈N Fi)}.

The set Ω is shown in the third column of Fig. 3.
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- wRTG-LM(
(G,L),K,wt

)
- a ∈ L

canonical weighted
deduction system

wRTG-LM(
(G′,CFG∅),K,wt′

) value computation
algorithm (Alg. 1)

V(A′0) =∑⊕
d∈AST(G′)

wt′(d)K parse(a)=

weighted parsing algorithm

Figure 4: Two-phase pipeline for solving the weighted parsing problem (A′0 is the initial nonterminal of G′).

Note that h satisfies Bellman’s principle of op-
timality: h(ω(F)) = h(ω(h(F))) for each unary
ω ∈ Ω and F ∈ K. Then med(u, v) = parse(u$v−1)
for every u, v ∈ ∆∗, where v−1 is the reversal of v.

This construction can be generalized to a pro-
cedure which turns every specification of an ADP
problem into a weighted parsing problem. Due to
space restrictions, we cannot present this proce-
dure in its entirety. �

4 The weighted parsing algorithm

The weighted parsing algorithm is supposed to
solve the weighted parsing problem. As input, it
takes a wRTG-LM G and a syntactic object a. Its
output is intended to be parse(a). The algorithm is
a pipeline with two phases (cf. Fig. 4) and follows
the modular approach of Nederhof (2003). First,
a canonical weighted deduction system computes
from G and a a new wRTG-LM G′ with the same
weight structure as G, but a different RTG and the
language algebra CFG∅. Second, G′ is the input to
the value computation algorithm (Alg. 1), which
computes the value V(A′0); this is supposed to be∑⊕

d∈AST(G′) wt(d)K = parse(a).

Weighted deduction systems. Parsing of some
string w with some grammar G can be formalized
as a deduction system D (Shieber et al., 1995).
D consists of a set of inference rules

I1 ... Im
I {c1, . . . , cp}

where m ∈ N, I, I1, . . . , Im are items, and c1, . . . , cp

are side conditions. Each item represents a
Boolean-valued property (of some combination of
nonterminals of G and/or substrings of a = w).
The meaning of an inference rule is: given that
I1, . . . , Im and c1, . . . , cp are true, I is true as well.
Nederhof (2003) pointed out that “a deduction sys-
tem having a grammar G [...] and input string w in
the side conditions can be seen as a construction
c of a context-free grammar c(G, w) [...]”; also, he
extendedD and c(G, a) with weights.

Inspired by this, we define the canonical
weighted deduction system as a mapping cwds
which takes two arguments: (a) a wRTG-LM

G =
(
(G,L),K,wt

)
such that the language alge-

bra (L, φ) is finitely decomposable and (b) a syn-
tactic object a ∈ L. Let G = (N, Σ, A0,R). Then
we define

cwds
(
G, a
)
=
(
(G′,CFG∅),K,wt′

)
,

where G′ = (N′, Σ′, A′0,R
′) and

• N′ = {(A0, a)}∪
(
N×Σ× factors(a)

)
; N′ is finite,

because L is finitely decomposable,
• Σ′ = {〈x1 . . . xm〉 | a rule with rank m is in R},
• A′0 = (A0, a), and
• for each σ ∈ Σ, the rule r′ = (A0, a) →

(A0, σ, a) is in R′ and wt′(r′) = id; for each r =(
A → σ(A1, . . . , Am)

)
in R and a0, a1, . . . , am ∈

factors(a) with φ(σ)(a1, . . . , am) = a0 and every
rule Ai → σi(. . . ) (i ∈ [m]) in R, the rule r′

(A, σ, a0)→ 〈x1 . . . xm〉
(
(A1, σ1, a1), . . . , (Am, σm, am)

)
is in R′ and we let wt′(r′) = wt(r).

Note that cwds implements a CYK-like deduction
system. The elements of N′ have a very general
form. Depending on L, they can be understood
as, e.g., spans of strings, occurrences of patterns
in trees, or occurrences of subgraphs in graphs.
We note that for every d ∈ AST(G′) it holds that
πΣ(d)

CFG∅
= ε, i.e., each abstract syntax tree is

evaluated to the empty string. Moreover, cwds is
weight-preserving in the following sense:
(1) there is a bijective mapping ψ from the set

AST(G, a) to AST(G′) and
(2) for every d ∈ AST(G, a) we have that

wt(d)K = wt′(ψ(d))K .

Value computation algorithm. This is Alg. 1.
Its input is a wRTG-LM G′ with language algebra
CFG

∅. It maintains a mapping V , which assigns
a weight to each nonterminal, and a Boolean vari-
able changed. The output is the value V(A′0). The
algorithm starts by assigning the weight 0 to each
nonterminal (lines 1–2). Then, in a repeat-until
loop (lines 3–12), the weight of each nonterminal
is recomputed in every iteration of that loop as fol-
lows (where 〈x1,m〉 abbreviates 〈x1, . . . , xm〉):

V(A) =
⊕
r∈R′:

r=(A→〈x1,m〉(A1,...,Am))

wt′(r)
(
V(A1), . . . ,V(Am)

)
.
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Algorithm 1 Value computation algorithm

Input:
(
(G′,CFG∅), (K,⊕, 0, Ω,

∑⊕), wt′
)

which
is a wRTG-LM with G′ = (N′, Σ′, A′0,R

′)
Variables: V: N′ → K, V ′ ∈ K, changed ∈ B
Output: V(A′0)

1: for each A ∈ N′ do
2: V(A)← 0

3: repeat
4: changed ← false
5: for each A ∈ N′ do
6: V ′ ← 0

7: for each r = (A→ 〈x1,m〉(A1, . . . , Am)) in R′ do
8: V ′ ← V ′ ⊕ wt′(r)

(
V(A1), . . . ,V(Am)

)
9: if V(A) , V ′ then

10: changed ← true
11: V(A)← V ′

12: until changed = false

The algorithm terminates after the first iteration in
which no nonterminal has changed its weight.

We note that in practice, a complete compu-
tation of cwds(G, a) prior to the execution of the
value computation algorithm (Alg. 1) is impossi-
ble. Similar to Nederhof (2003), we execute the
value computation algorithm on an incomplete in-
put which is extended on demand (lazy evalua-
tion). More precisely, G′ is initialized so that it
only contains the rules of rank 0 (and the nonter-
minals in their left-hand sides). Then, each time a
value different from 0 is first assigned to a nonter-
minal A in line 11, we compute the following set
of rules: each rule whose right-hand side only con-
tains A and other nonterminals for which this com-
putation has already been done is in that set. These
new rules (and the nonterminals in their left-hand
sides) are added to G′.

5 Termination and correctness

We are interested in two formal properties of the
value computation algorithm (Alg. 1) and of the
weighted parsing algorithm (Fig. 4): termination
and correctness.

The value computation algorithm computes the
weights of the ASTs bottom-up and reuses the re-
sults of common subtrees (as in dynamic program-
ming); this requires distributivity of the weight
algebra. Moreover, solving the weighted parsing
problem by a terminating algorithm involves the
following difficulty: there may be infinitely many
ASTs (due to cycles) which are evaluated to the

same syntactic object a. Thus parse(a) is an in-
finite sum, which in general cannot be computed
in finite time. Hence, a terminating algorithm can
only solve the weighted parsing problem if the in-
finite sum is equal to the sum over some finite sub-
set of the infinite sum’s index set.

We have organized this section as follows.
In Subsection 5.1 we define the class of closed
wRTG-LMs (similar to Mohri, 2002) and prove
that the value computation algorithm (Alg. 1) is
terminating and correct for closed wRTG-LMs as
input. We say that the value computation algo-
rithm is correct if after termination

V(A′0) =
∑⊕

d∈AST(G′)

wt′(d)K .

In Subsection 5.2 we prove that the weighted
parsing algorithm (Fig. 4) is terminating and cor-
rect for two classes of inputs. We say that the
weighted parsing algorithm is correct if it com-
putes parse(a).

5.1 Properties of the value computation
algorithm

Since each wRTG-LM has a finite set of rules, an
infinite set of ASTs is only possible if the ASTs
are cyclic in the following sense. Recall that R′ is
the set of rules of the input G′ to the value compu-
tation algorithm (Alg. 1). Let ρ ∈ (R′)∗. We call ρ
cyclic if |ρ| ≥ 2, ρ1 = ρ|ρ|, and for every i, j ∈ N,
if 1 ≤ i < j < |ρ|, then ρi , ρ j. From now on,
let ρ ∈ (R′)∗ be cyclic, d ∈ TR′ , and c ∈ N. A
path p in d is (c, ρ)-cyclic if ρ occurs exactly c
times in seq(d, p). We define the set cutout(d, ρ)
which contains every tree obtained from d by cut-
ting out at least one occurrence of ρ. We illustrate
cutout by an example in Fig. 5.

Definition 5. Let c ∈ N. A wRTG-LM G′ =(
(G′,CFG∅),K,wt′

)
is c-closed if K is distribu-

tive and d-complete, and for each d ∈ TR′ and
cyclic string ρ ∈ (R′)∗ the following holds: if there
is a (c, ρ)-cyclic path in d, then
wt′(d)K ⊕

⊕
d′∈cutout(d,ρ)

wt′(d′)K =
⊕

d′∈cutout(d,ρ)
wt′(d′)K .

G′ is closed if it is c-closed for some c ∈ N. �

For every c ∈ N and ranked set R′, we let
T(c)

R′ be the set of all those d ∈ TR′ such that
for every cyclic ρ ∈ (R′)∗ and c′ > c, no path
in d is (ρ, c′)-cyclic. In other words, T(c)

R′ con-
tains all those trees of TR′ which have at most c
occurrences of some cycle in some of their paths.
Clearly T(c)

R′ is finite, T(c)
R′ ⊆ T(c+1)

R′ for every c ∈ N,
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Figure 5: Top: tree d over the ranked set R′ = {r(2)
1 , r(1)

2 , r(1)
3 , r(0)

4 } with a (2, ρ)-cyclic path (horizontal line) for
ρ = r1r2r1. Bottom: the set cutout(d, ρ). Please do not confuse the elements of R′ with the rules of Ex. 1 and 3.

and
⋃

c∈N T(c)
R′ = TR′ . Given a wRTG-LM G′ =(

(G′,CFG∅),K,wt′
)

with set of rules R′, we let
AST(G′)(c) = T(c)

R′ ∩AST(G′) for every c ∈ N.

Theorem 6. For every c ∈ N and c-closed wRTG-
LM
(
(G′,CFG∅),K,wt′

)
the following holds:∑⊕

d∈AST(G′)

wt′(d)K =
⊕

d∈AST(G′)(c)

wt′(d)K .

Proof (sketch). As K is distributive, we can show
by induction on n ∈ N that for every B ⊆

AST(G′) r AST(G′)(c) with |B| = n, adding B to
the index set of ⊕ does not change the sum’s value.
Then, as K is d-complete, the equality holds. �

This theorem reflects the desired property:
given that our wRTG-LM is c-closed (with c ∈ N),
each (possibly infinite) sum over all ASTs can be
computed as a sum over the finite set AST(G′)(c).

Theorem 7. The value computation algorithm
(Alg. 1) is terminating and correct for every closed
wRTG-LM G′ with language algebra CFG∅.

Proof (sketch). Let G′ be c-closed. We note that
in line 8, the value in the right-hand side of ⊕ al-
ways corresponds to the sum over the weights of
some trees in (TR′)A; this is due to the fact that K
is distributive. By the form of recomputation in
lines 3–12, each d ∈ (TR′)A contributes to that
sum at most once. Furthermore, V ′ only differs
from V(A) if a tree from the finite set T(c)

R′ has been
used to compute V ′, but not V(A) (this is a con-
sequence of G′ being closed). Thus, changed is
only set to true finitely often and the algorithm
eventually terminates. Then, after termination,
V(A′0) =

⊕
d∈AST(G′)(c) wt′(d)K and Theorem 6 im-

plies correctness. �

5.2 Properties of the weighted parsing
algorithm

We discuss two classes of wRTG-LMs for which
the weighted parsing algorithm (Fig. 4) is termi-

nating and correct.
(1) Closed wRTG-LMs with arbitrary language al-
gebras. Each of them is a wRTG-LM

(
(G, (L, φ)),

(K,⊕, 0, Ω,
∑⊕), wt

)
which is c-closed for some

c ∈ N, and c-closed is defined as in Def. 5. (We
note that this generalization is possible because
Def. 5 does not use any property of CFG∅.) The
following particular wRTG-LMs are closed:

• wRTG-LMs with acyclic RTG, where an
RTG G is acyclic if AST(G) = AST(G)(0),

• wRTG-LMs with superior, d-complete M-
monoids as weight algebras, and

• wRTG-LMs with weight algebra BD if no chain
rule and ε-rule has probability 1.0 (as in Ex. 3).

(2) Non-looping wRTG-LMs with distributive M-
monoids as weight algebras. A wRTG-LM G is
non-looping if for every syntactic object a and
tree d over the set of rules of G which is evaluated
to a the following holds: no proper subtree of d
is evaluated to a. ADP problems can be specified
by non-looping wRTG-LMs, because the syntactic
objects of ADP represent (sub-)problems which
have to be solved. Thus, if G is looping, then the
solution of a subproblem would depend on itself,
which contradicts dynamic programming. In gen-
eral, non-looping is not decidable, but it is for par-
ticular language algebras, e.g., CFG∆.

Lemma 8. For every closed or nonlooping
wRTG-LM G with finitely decomposable lan-
guage algebra and syntactic object a, the wRTG-
LM cwds(G, a) is closed.

Theorem 9. The weighted parsing algorithm
(Fig. 4) is terminating and correct for every closed
or nonlooping wRTG-LM with finitely decompos-
able language algebra.

Proof. The weighted parsing algorithm terminates
because (a) the computation of cwds is terminating
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algorithm class of valid inputs class C1 of RTG class C2 of weight algebras

(a) Knuth (1977) C1 × C2 RTG superior M-monoid
(b) Goodman (1999) C1 × C2 acyclic RTG complete semiring
(c) Mohri (2002) C2 closed for C1 monadic RTG commutative, d-complete semiring
(d) Alg. 1 closed wRTG-LM RTG distributive, d-complete M-monoid

Table 1: Comparison of four value computation algorithms. The second column represents the class of wRTG-LMs
to which the corresponding algorithm is applicable. The expression C1 × C2 denotes the class of all wRTG-LMs
with RTGs in C1 and weight algebras in C2.

for every wRTG-LM with finitely decomposable
language algebra and (b) the value computation
algorithm (Alg. 1) is terminating by Theorem 7,
which we can be applied due to Lemma 8. The
weighted parsing algorithm is correct because (a)
cwds is weight-preserving and (b) the value com-
putation algorithm is correct by Theorem 7 (which
is applicable again due to Lemma 8), hence

parse(a)
(a)
=
∑⊕

d∈AST(G′)

wt′(d)K
(b)
= V(A′0) . �

6 Comparison of value computation
algorithms

Here we compare our value computation algo-
rithm (Alg. 1) to the algorithm of Knuth (1977),
the second phase of Goodman (1999), and the al-
gorithm of Mohri (2002).

We focus on the question of applicability of
the algorithms, i.e., we identify the classes of
inputs for which the algorithms are terminat-
ing and correct (class of valid inputs). In
order to have a basis for a fair comparison,
we understand the inputs of the algorithms of
Knuth (1977), Goodman (1999), and Mohri
(2002) as particular wRTG-LMs of the form(
(G′,CFG∅), (K,⊕, 0, Ω,

∑⊕),wt′
)

with G′ =

(N′, Σ′, A′0,R
′). An algorithm is correct for such

a wRTG-LM if it returns
∑⊕

d∈AST(G′) wt′(d)K .
We employ two parameters: C1 (subset of the

class of all RTGs) and C2 (subset of the class of
all weight algebras). Tab. 1 shows the classes of
valid inputs parameterized with values for C1 and
C2. Each valid input in rows (a)–(d) is a closed
wRTG-LM. Thus, if one of the value computation
algorithms (a)–(c) is applicable, then our value
computation algorithm (Alg. 1) is applicable too.
In particular, Alg. 1 is applicable to wRTG-LMs
with the best derivation M-monoid BD as weight
algebra (cf. Ex. 3), which in general is the case for
neither of algorithms (a)–(c). The reason for this
is that BD is not superior (opposing (a)) and RTG-
LMs are in general neither acyclic (opposing (b))

nor monadic (opposing (c)). The same holds for
ADP problems.

We cannot give a general statement about the
complexity of our value computation algorithm
(Alg. 1), because the operations in the weight al-
gebra of a wRTG-LM can be undecidable. If we
abstract from the costs of particular operations,
then we obtain the complexity of Mohri’s algo-
rithm. This complexity depends on the number of
times the value of a nonterminal changes, which
in general is not polynomial in the size of the in-
put wRTG-LM. Mohri circumvents this problem
by specifying the order in which nonterminals are
processed for well-known classes of inputs, e.g.,
acyclic graphs or superior weight algebras. We
can adapt this idea by imposing such an ordering
on the iteration over the nonterminals in line 5.
Thus our value computation algorithm achieves
the same complexity as Knuth’s algorithm (if the
input is restricted to superior wRTG-LMs) or the
algorithm in Goodman’s second phase (if the input
is restricted to acyclic wRTG-LMs), respectively.

We note that although our value computation
algorithm (Alg. 1) has the same complexity as
the other algorithms, in average it performs more
computations than those. This is because in each
iteration of lines 5–11, the values of all nontermi-
nals are recomputed. This could be avoided by
using a direct generalization of Mohri’s algorithm
to the branching case rather than Alg. 1. However,
the intricacies of such a generalization would ex-
ceed the scope of this paper.
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