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Abstract

Cues to linguistic categories are distributed
across the speech signal. Optimal categoriza-
tion thus requires that listeners maintain gradi-
ent representations of incoming input in order
to integrate that information with later cues.
There is now evidence that listeners can and
do integrate cues that occur far apart in time.
Computational models of this integration have
however been lacking. We take a first step at
addressing this gap by mathematically formal-
izing four models of how listeners may main-
tain and use cue information during spoken
language understanding and test them on two
perception experiments. In one experiment,
we find support for rational integration of cues
at long distances. In a second, more memory
and attention-taxing experiment, we find evi-
dence in favor of a switching model that avoids
maintaining detailed representations of cues in
memory. These results are a first step in under-
standing what kinds of mechanisms listeners
use for cue integration under different memory
and attentional constraints.

1 Introduction

Language is a fast, temporally unfolding signal.
Humans must quickly compress large amounts
of information into abstract linguistic representa-
tions and meanings that contain more manageable
amounts of information. However, cues to linguis-
tic categories often do not temporallly co-occur,
but are distributed quite broadly across the sig-
nal. Rational information integration thus requires
maintenance of gradient subcategorical informa-
tion so as to integrate cues that occur at differ-
ent points in time. For example, one of the pri-
mary cues to the voicing of a syllable-final stop
consonant in English is the duration of the preced-
ing vowel (Klatt, 1976). Thus, in order to obtain
a good estimate of the voicing of a syllable-final
stop, listeners must retain some subcategorical

information about the preceding vowel in mem-
ory. This is typical across languages and occurs
at multiple timescales: cues to sound categories
can come not only from proximate acoustic prop-
erties, but also from, e.g., later semantic context
that could potentially occur an unlimited distance
away from the target. This poses a memory chal-
lenge for language comprehenders: how can one
possibly maintain subcategorical information for
later use when such maintenance should overload
working memory?

This challenge has motivated theories of lan-
guage processing that contend that listeners com-
press input into abstract representations as quickly
as possible and discard all gradient information
after a categorical perceptual decision has been
reached (Just and Carpenter, 1980; Christiansen
and Chater, 2016). According to these accounts,
listeners cannot maintain gradient sub-categorical
information for cue integration at any significant
timescale, at certainly not beyond word bound-
aries. However, a growing body of literature has
suggested that listeners are in principle capable of
maintaining subcategorical representations (Mc-
Murray et al., 2009), including at timescales be-
yond the word boundary (Connine et al., 1991;
Brown-Schmidt and Toscano, 2017; Gwilliams
et al., 2018). For example, Connine et al. (1991)
exposed participants to sentences that contained
two cues about a target word, “tent” or “dent” in
the sentence. The first cue was the voice-onset
time (VOT) of the first sound in the word, which
was varied to form a continuum from more /t/-like
to more /d/-like. The second cue was a subse-
quent word that contextually biased toward either
the “tent” interpretation (e.g., “campground”) or
the “dent” interpretation (e.g., “teapot”). Partici-
pants heard sentences like “When the ?ent Sue had
found in the [campground/teapot]...”, and were
asked to categorize whether they heard the word
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“tent” or “dent” in the sentence. They found that
participants’ categorizations were influenced both
by the VOT of the sound and by subsequent con-
text, suggesting that listeners maintained a gradi-
ent representation of the initial sound for later use
in cue integration and categorization. Subsequent
studies have confirmed that listeners can maintain
subcategorical representations well beyond word
boundaries (Szostak and Pitt, 2013; Bushong and
Jaeger, 2017).

Despite recent interest in this phenomenon,
to date there has been no comprehensive effort
to spell out and quantitatively compare different
models of long-distance cue integration under dif-
ferent memory/information constraints. This pa-
per is a first attempt to explore this space, driven
largely by previous conceptual proposals. We con-
sider four different models that vary in the extent
to which they maintain sub-categorical informa-
tion and utilize multiple time-distant cues. Two
of the models maintain subcategorical information
about cues over time, and two do not.

These four models make distinct quantitative
and qualitative predictions about how human cat-
egorization judgments should be affected by two
cues. We first present the mathematical models
along with their predictions. We then evaluate
the models against human data from two behav-
ioral experiments. In these experiments, partici-
pants hear sentences like those in Connine et al.
paradigm. We manipulated the same two types of
cues as in the Connine et al. paradigm (i.e., VOT
and subsequent semantic context).

2 Models

We first describe how an ideal observer would cat-
egorize stimuli based on the first cue alone (VOT).
Then we describe the four potential models of cue
integration, along with their predictions. Figures 2
and 3 illustrate these predictions. Predictions are
shown with regard to log-odds (of a “t”-response),
since the predictions of all four models look (mis-
leadingly) similar in proportion space. The predic-
tion plots are meant as qualitative demonstrations.
For example, the predicted slope of the VOT ef-
fect depends on listeners’ beliefs about the means
and variances of the /t/ and /d/ categories along
the VOT continuum. Similarly, the specific mag-
nitude of the context effect depends on the bias (or
information) provided by context and the percep-
tual uncertainty about the VOT cue. Regardless
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Figure 1: Linear (A) vs. quadratic (B) effect of VOT
on log-odds of “t”-responses.
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Figure 2: Qualitative predictions of each model in
log-odds of “t”-responses (for a context bias of 0.95).
(A): ideal integration model, (B): categorize-&-discard
model, (C): ambiguity-only model, (D): categorize-
discard-&-switch model. Shown predictions assume a
quadratic effect of VOT (but predicted context effects
are identical even if VOT has a linear effect).

of these details, however, some qualitative differ-
ences in the context effect emerge across the four
different models (see Figure 3). It is these pre-
dicted shapes of the context effect that we later
compare against human responses from perception
experiments.

For all predictions, we assume Luce’s choice
rule for the link between models’ posterior prob-
ability of /t/ and the predicted decision to re-
spond “t” or “d”—i.e., pmodel(respond “t”) =
pmodel(/t/|context, V OT )

2.1 Ideal Observers: Predicting VOT Effects

Before we introduce our models of cue integra-
tion, we first spell out an ideal observer’s predic-
tions for the effect of VOT in the absence of any
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Figure 3: Predicted context effect (difference be-
tween blue and red line in Figure 3) for different pos-
sible context biases. (A): ideal integration model,
(B): categorize-&-discard model, (C): ambiguity-
only model, (D): categorize-discard-&-switch model.
Dashed line represents 0.

second cue. If two Gaussian categories (/t/ and /d/)
along VOT have equal variance, an ideal observer
will exhibit linear effects of VOT on the log-odds
of “t”-responses (Figure 1). However, it is well
established that voicing contrasts (including /t/ vs.
/d/) exhibit unequal variances along the VOT con-
tinuum (Lisker and Abramson, 1967). A stan-
dard ideal-observer model thus predicts quadratic
effects of VOT on the log-odds of “t”-responses.
We thus will visualize all of our model predictions
with an assumed quadratic effect of VOT. Next,
we turn to the four models of cue integration. We
emphasize, however, that the predicted effect of
context—the effect we test below—does not de-
pend on this assumption.

2.2 Ideal Integration
The ideal integration model holds that listen-
ers maintain subcategorical information about the
temporally first cue (here, VOT) in memory for
subsequent integration with a later cue (here, con-
text). Note that we use the term ’ideal’ in the sense
of rational cue integration frameworks proposed
across the literature (Ernst and Banks, 2002).
These normative models, like the ideal integra-
tion model, provide an optimal baseline against
which to compare human behavior. The ideal
integration model always maintains subcategor-
ical (gradient) information about VOT because
optimal categorization requires access to at least
P (category|V OT ) (or richer information about

VOT) during integration with context. Specifi-
cally, ideal integration predicts additive effects of
the two cues on the log-odds of categorization
(Bicknell et al., under review).

If humans have no memory constraints and per-
fectly integrate all cues available to them, their
behavior should resemble predictions of the ideal
observer; that is, “t”-responses should be condi-
tioned on both VOT and context:

pideal(respond “t”) = p(/t/|V OT, context) (1)

We can apply Bayes’ Theorem to arrive at the
following:

p(/t/|V OT, context) =
p(V OT |context, /t/)p(context, /t/)

p(V OT, context)
=

p(V OT |context, /t/)p(/t/|context)
p(V OT |context)

(2)

Under the plausible assumption that VOT and
context are conditionally independent (as in Bick-
nell et al., under review)1:

pideal(respond “t”) ∝ p(V OT |/t/)p(/t/|context)
(3)

As shown in Figure 2A and 3A, the ideal inte-
gration model predicts additive effects of VOT and
subsequent context in log-odds space.

2.3 Ambiguity-Only
In contrast to the ideal integration model, the
ambiguity-only model stores information about
VOT to the extent to which VOT is perceptually
ambiguous: the more ambiguous VOT is, the more
likely listeners should be to maintain information
about VOT for subsequent integration with con-
text. The ambiguity-only hypothesis—first pro-
posed by Connine et al. (1991)—thus sees main-
tenance of subcategorical information as a special
case: if the signal is relatively clear then listen-
ers immediately categorize and discard low-level
information; only when the perceptual input is
ambiguous is information about it maintained in
memory so as to facilitate robust integration with

1In our descriptions of the remaining models, we will use
p(/t/|V OT, context) and p(/t/|V OT ) as shorthand rather
than fully expanding them using Bayes’ Theorem as in this
initial example.
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subsequent cues. This can be seen as serving
memory economy (for related proposals, see also
Dahan, 2010).

There are several ways of operationalizing the
idea that information about VOT is only main-
tained if VOT is perceptually ambiguous. Here,
we evaluate a gradient version of this hypothesis:
with increasingly unambiguous VOT evidence—
i.e., for p(/t/|V OT ) closer to 0 or 1—, listen-
ers are assumed to be less likely to maintain gra-
dient representations of VOT to integrate with
later context, instead categorizing on the basis of
VOT alone. As VOT becomes more ambiguous—
p(/t/|V OT ) closer to 0.5—, listeners are as-
sumed to be more likely to maintain gradient rep-
resentations for later integration. We can quantify
the degree of perceptual ambiguity as:

λ = 2|p(/t/|V OT )− 0.5| (4)
We note that λ is determined by the perceptual

ambiguity of the stimulus and does not constitute
a free parameter for this model. We can then use λ
as a weight in a mixture model that describes the
relative probability of using VOT only or integrat-
ing VOT and context:

pambiguity(respond “t”) = λp(/t/|V OT )+
(1− λ)p(/t/|V OT, context) (5)

Intuitively, we can think of this as listeners not
maintaining gradient representations of VOT on λ
proportion of trials, and maintaining gradient rep-
resentations on the remaining proportion.

2.4 Categorize-&-Discard
The other two models we consider do not main-
tain information about VOT in memory, but rather
immediately categorize based on the first cue
and then discard all subcategorical information
about that cue. These categorize-&-discard mod-
els maximize memory economy at the cost of
integration accuracy. Categorize-discard mod-
els thus capture the influential view that pro-
longed maintenance of subcategorical information
about the speech signal is not feasible given the
bounds of the relevant memory systems (see, e.g.,
Christiansen and Chater, 2016). The most sim-
ple categorize-&-discard model categorizes based
on VOT, discards all subcategorical information
about VOT, and then never revisits the categoriza-
tion decision. As this model never considers the

second source of information (VOT), its catego-
rization accuracy will necessarily be suboptimal.
We formalize this model as simply making deci-
sions on the basis of VOT alone:

pcat discard(respond “t”) = p(/t/|V OT ) (6)

2.5 Categorize-Discard-&-Switch

The final model we consider also discards all sub-
categorical information about VOT immediately
after having used it to categorize. However, un-
like the category-discard model, the categorize-
discard-&-switch model has a mechanism to take
into account context: if context conflicts with
the initial categorization decision, the model will
change its categorization response in proportion
to the evidence from context. Concretely, if the
model initially categorizes a segment as /d/, but
later evidence from context is more consistent
with /t/, the model will switch to /t/ in propor-
tion (over trials) to how strongly context points to-
ward the alternative categorization. While the cat-
egorization accuracy achieved by the categorize-
discard-&-switch model is better than that of the
simpler categorize-&-discard model, it is still sub-
optimal (i.e., underperforms compared to the ideal
integration model).

pcat switch(respond “t”) ∝ p(/t/|V OT )+
(1− p(/t/|V OT ))p(/t/|context) (7)

Like the ambiguity-only model, w can think of
this as a cross-trial description of the outcomes
of categorization. On some proportion of trials
p(/t/|V OT ), listeners would have categorized a
stimulus as /t/ based on VOT alone. On the re-
maining trials where listeners would have made a
/d/ categorization based on VOT alone, they some-
times switch, proportional to the evidence from
context.

The categorize-discard-&-switch model is of
particular relevance in light of the recent findings
of Bicknell et al. (under review). In their com-
parison of the ideal integration model with the
ambiguity-only model, Bicknell et al. (under re-
view) found no evidence that perceptually less am-
biguous VOTs were associated with smaller ef-
fects of subsequent context. Rather, the human
data seemed to support a constant effect of subse-
quent context across the entire VOT spectrum. If
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anything, some of the behavioral data considered
by Bicknell et al. (under review) contained numer-
ical trends towards larger effects of subsequent
context for perceptually less ambiguous VOTs. As
can be seen in Figures 2D and 3D, such a pat-
tern would be predicted by the categorize-discard-
&-switch model. In order to put the hypothesis
of ideal integration to a stronger test, it is thus
necessary to compare the ideal integration model
also against the new plausible competitor we have
identified, the categorize-discard-&-switch model.
Next, we describe the two perception experiments
that we use to model human responses.

3 Behavioral Experiments

The human data we analyze here stem from two
experiments originally reported in Bushong and
Jaeger (under review). In both experiments, partic-
ipants are exposed to sentences and have to make
categorization judgments about a target word in
the sentence. We varied a critical word in the
sentence to vary acoustically between “tent” and
“dent”, and a subsequent word in the sentence pro-
vides a contextual bias relevant to the critical tar-
get word (e.g., “campgrounds” biases towards a
“tent” interpretation over a “dent” interpretation).
The critical difference between the two experi-
ments is which words participants needed to cate-
gorize. In Experiment 1, participants always were
asked to make categorization decisions about our
critical target words, “tent” and “dent”. In Exper-
iment 2, this was only their task on half of the
trials; on the other half, they were asked to cat-
egorize a different word in the sentence that was
neither our critical target word nor the subsequent
contextually biasing word (see Figure 4). The ba-
sic conceptual difference here is that in Experi-
ment 1, it is relatively easy for participants to ide-
ally integrate cues: they always know which cue
they need to maintain a gradient representation of
(i.e., the initial sound of the target word). Experi-
ment 2 increases the memory and attentional bur-
den of maintaining gradient representations, how-
ever: now participants have several possible words
they could be asked about and thus cannot per-
fectly predict which parts of the signal will be rel-
evant for the task. We hypothesized that structure
of Experiment 2 might bias participants towards
discarding subcategorical information about the
speech input (like the categorize-&-discard and
categorize-discard-&-switch models).

 
 

“After the ?ent Sue 
had found in the 

campgrounds 
collapsed, we went 

to a hotel.” 

Press X for “tent” 
Press M for “dent” 

(48 trials) 

Press X for “tent” 
Press M for “dent” 

(24 trials) 
OR 

Press X for “hotel” 
Press M for “motel” 

(24 trials)  

Experiment 1 

Experiment 2 

Figure 4: Visualization of an example trial.

3.1 Participants
We recruited 128 native English-speaking partici-
pants from Amazon Mechanical Turk for each ex-
periment who were rewarded $3.00 for their par-
ticipation in the experiment. No participants com-
pleted both Experiment 1 and Experiment 2.

3.2 Materials
We take the paradigm from Bushong and Jaeger
(2017) as a starting point for our experiments. We
constructed 12 sentence pairs like the following:

(1) After the ?ent Sue had found in the camp-
grounds collapsed, we went to a hotel. (tent-
biasing context)

(2) After the ?ent Sue had found in the teapot was
noticed, we threw it away. (dent-biasing con-
text)

We manipulated two aspects of the sentence
stimuli. First, we acoustically manipulated the “?”
to range between /d/ and /t/ by changing the value
of its voice-onset time (VOT), the primary cue
distinguishing voiced from voiceless consonants.
Based on norming and previous experiments, we
chose to test VOT values of 10, 40, 50, 60, 70, and
85ms to cover a perceptual range from unambigu-
ous /d/ to unambiguous /t/ with ambiguous points
in between. Second, we manipulated whether
later context biased toward a /t/-interpretation, /d/-
interpretation, or neither. The onset of informative
context words were between 6-9 syllables after tar-
get word offset.

3.3 Procedure
Both experiments were split into two phases: Ex-
posure (72 trials) and Test (48 trials). The orig-
inal purpose of these experiments was to test a
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Experiment 1 Likelihood Ratio Test Bayesian Analysis
Comparison χ2 p Bayes Factor Posterior Probability
Analysis 2 vs. Analysis 1 38.78 < 0.001 3.5× 106 > 0.999

Analysis 3 vs. Analysis 2 3.76 0.15 0.001 0.001

Experiment 2 Likelihood Ratio Test Bayesian Analysis
Comparison χ2 p Bayes Factor Posterior Probability
Analysis 2 vs. Analysis 1 71.23 < 0.001 5.66× 1013 > 0.999

Analysis 3 vs. Analysis 2 40.07 < 0.001 1.9× 105 > 0.999

Analysis 3 vs. Analysis 3 control 39.27 < 0.001 6.5× 106 > 0.999

Table 1: Model comparisons for Experiments 1 and 2, both in terms of likelihood ratio tests and Bayes Factor.
Best-fitting model is bolded for each experiment.

particular relationship between exposure and test
in a between-subjects manipulation (see Bushong
and Jaeger, under review). The difference be-
tween the experimental groups is that one group
of subjects heard sentences with no subsequent
biasing context in the exposure phase, while the
other group always heard sentences with subse-
quent context. Because of this imbalance between
groups, we only analyze data from the test phase
which was identical across participants2. What is
important here is that in the test phase, all partici-
pants heard sentences that contained the full range
of our VOT manipulation (evenly split between all
values) and informative later context (split evenly
between /t/-biasing and /d/-biasing contexts). Test
sentences crossed all 6 steps of our VOT contin-
uum with the two context conditions (/t/-biasing
and /d/-biasing). All 12 combinations of VOT and
context occurred equally often, so as to allow us
to reliably estimate the effect of context across the
VOT continuum.

Participants’ task was simply to categorize
whether they heard the word “tent” or “dent” af-
ter they heard the full sentence. In Experiment
1, this task was constant across all trials. In Ex-
periment 2, on half of all trials, participants in-
stead had to categorize another word in the sen-
tence (e.g., for sentence (2) above they were asked
whether they heard “hotel” or “motel”). Figure 4
shows the structure of the two experiments.

4 Analysis

Following previous work (Bushong and Jaeger,
2017), we excluded participants whose categoriza-
tion responses were not modulated by VOT, sug-

2Additionally, not all combinations of VOT and context
were tested in the exposure phase for the group that did hear
subsequent context.

gesting that they did not understand the task. This
resulted in the exclusion of 11 participants from
Experiment 1 (8.6%) and 16 participants from Ex-
periment 2 (12.5%).

We fit mixed-effects logistic regression analy-
ses predicting the log-odds of /t/ responses in the
test phase from predictors of interest. Regressions
were fit using the lme4 package in R (Bates et al.,
2014). Each analysis contained the maximal ran-
dom effects structure that resulted in successful
model convergence. We fit four different types of
analyses to each of the two experiments in order
to assess each of the models outlined above:

Analysis 1: /t/ response ∼ VOT + VOT2.
This analysis represents the categorize-&-discard
model, where participants only categorize based
on VOT then immediately discard information
(and thus do not integrate the subsequent context
cue).

Analysis 2: /t/ response ∼ VOT + context +
VOT2. This analysis represents the ideal integra-
tion model, where participants optimally integrate
VOT and context (i.e., use both with no interac-
tion).

Analysis 3: /t/ response ∼ VOT*context +
VOT2*context. This analysis represents both the
ambiguity-only and categorize-discard-&-switch
models. Both models predict that there is
a quadratic interaction between VOT and con-
text. A negative quadratic coefficient supports the
ambiguity-only model, and a positive coefficient
supports the categorize-discard-&-switch model.

Analysis 3 control: /t/ response ∼
VOT*context + VOT2. Since both a linear
and squared interaction between VOT and context
are necessary to support the ambiguity-only
and categorize-discard-&-switch models, we fit
an additional control model with only a linear
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Figure 5: Log-odds of /t/-categorizations in Experi-
ments 1 (A) and 2 (B) by VOT and subsequent con-
text. Error bars are 95% confidence intervals over item
means.

interaction between VOT and context. Thus,
for us to conclude that the ambiguity-only or
ategorize-discard-&-switch models have support,
Analysis 3 must be a better fit compared to
Analysis 2 and Analysis 3 must be a better fit
compared to Analysis 3 control.

Note that both the ambiguity-only and
categorize-discard-&-switch models also predict
an overall smaller context effect, compared
to the ideal integration model (see Figure 3).
Additionally, the categorize-discard-&-switch
model also predicts a more shallow slope for the
VOT effect, compared to all other models (see
Figure 2). However, the test of these more specific
predictions would require precise knowledge of
listeners’ beliefs about both a) the distribution of
VOT for /t/ and /d/, and b) the exact strength of
the context cue. Since we do not have access to
this information, we instead take advantage of the
qualitative differences in predictions captured by
Analyses 1-3.

To determine which models were the best fit
for each experiment, we conducted two kinds of
model comparisons between the analyses. First,
we conducted standard likelihood ratio tests be-
tween each pair of models. We additionally de-
rived Bayes Factor (BF) and posterior probability
estimates by comparing the BICs of pairs of mod-
els (see Wagenmakers, 2007).

Table 1 shows the results for Experiments 1 and
2. The results of the likelihood ratio tests and the
Bayesian analysis support the same conclusions.

5 Results

5.1 Experiment 1

Analysis 2 (corresponding to the ideal-integration
model) was the best fit both by standard likeli-
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Figure 6: Model-predicted context effect (in log-odds)
from Analysis 3 for Experiment 1 (A) and Experiment
2 (B). Error bars are 95% confidence intervals.

hood ratio tests and Bayes Factor. Within Anal-
ysis 2, we found significant effects of z-scored
VOT (β̂ = 1.43, z = 5.72, p < 0.001), z-scored
squared VOT (β̂ = 2.43, z = 6.62, p < 0.001),
and subsequent context (β̂ = 0.8, z = 6.67, p <
0.001).

5.2 Experiment 2

Analysis 3 was the best fit to the Experiment 2
data both by standard likelihood ratio tests and
Bayes Factor. Within Analysis 3, we found ef-
fects of z-scored VOT (β̂ = 0.73, z = 2.5, p =
0.01), z-scored squared VOT (β̂ = 1.67, z =
4.873, p < 0.001), subsequent context (β̂ =
1.28, z = 9.75, p < 0.001), and an interaction be-
tween z-scored squared VOT and susbequent con-
text (β̂ = 0.23, z = 2.494, p = 0.01).

5.3 Discussion

Both experiments return clearly significant effects
of squared VOT. This is predicted by an ideal
observer model, since the /t/ and /d/ categories
have unequal variance along the VOT continuum
(Lisker and Abramson, 1967). With regard to the
question of ideal integration, the results differ be-
tween the two experiments.

In Experiment 1, we found strong evidence for
the ideal integration model: participants displayed
effects of VOT and context, with no interaction be-
tween these factors. This suggests that participants
were able to maintain gradient representations of
VOT to later integrate with our contextual cue.

In Experiment 2, we found strong evidence for
the categorize-discard-&-switch model: partici-
pants showed effects of VOT and context, but also
showed a positive interaction between squared
VOT and context such that the context effect was
largest at the endpoints and smallest at the most
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ambiguous points. These results suggest that par-
ticipants in Experiment 2 took a more memory-
efficient strategy where they did not maintain gra-
dient information about VOT but were still able to
use both relevant cues in categorization.

6 General Discussion

Language is a signal that carries thousands of
bits of acoustic information per second that lis-
teners need to somehow compress into categori-
cal abstract representations. However, maintain-
ing some sub-categorical detail about the original
signal in memory in order to integrate it with later
potentially relevant cues is beneficial for achiev-
ing optimal categorization. Several lines of work
have suggested either that this kind of integra-
tion is severely limited by time (Christiansen and
Chater, 2016), the ambiguity of the initial signal
(Connine et al., 1991), or is actually optimal and
not very constrained by time or ambiguity (Bick-
nell et al., under review). However, these propos-
als have not been formalized and tested in a rigor-
ous way (but see Bicknell et al., under review, for
a discussion of ideal observers and one formaliza-
tion of the ambiguity hypothesis). Here, we took
a first step toward understanding and testing these
three proposals.

We enumerated four possible models for the
integration of cues that occur at different points
in the speech signal. Two of these models in-
volve maintaining gradient representations of the
initial speech cue in memory for later integration
with the subsequent cue, either being fully optimal
(the ideal integration model), or partially restricted
by ambiguity of the first cue (the ambiguity-only
model). The other two models reduce the bur-
den on memory by not maintaining gradient in-
formation about the initial speech cue, either by
immediately categorizing and ignoring later cues
(the categorize-&-discard model), or potentially
changing categorization if later information con-
flicts with the initial binary categorization (the
categorize-discard-&-switch model).

In Experiment 1, we found strong evidence for
the ideal integration model, in line with previous
work (Bicknell et al., under review; Szostak and
Pitt, 2013). Experiment 2 added a manipulation
that made it more difficult for participants to pre-
dict which words they would need to attend to
in our sentences. When we introduced this ma-
nipulation, we interestingly found strong support

for the categorize-discard-&-switch model, sug-
gesting that listeners were not maintaining sub-
categorical information about initial speech cues
in memory. This finding is particularly notewor-
thy since the categorize-discard-&-switch model
has not been previously considered in the litera-
ture as a possibility for cue integration during lan-
guage processing. Significantly, in neither experi-
ment did we find any evidence for the ambiguity-
only model, which has been the primary proposal
for how subcategorical information is maintained
(Connine et al., 1991; Dahan, 2010).

Our results here suggest that listeners behave
like ideal integrators under the task demands of
typical right-context studies in the literature (Con-
nine et al., 1991; Szostak and Pitt, 2013; Bushong
and Jaeger, 2017; Bicknell et al., under review).
However, those task demands are quite far from
those of everyday language processing where lis-
teners need to attend to many different parts of
the signal and topics change rapidly. To the ex-
tent that Experiment 2 more closely reflects the
task demands of natural language understanding—
which strikes us as likely—our results suggest that
listeners may not ideally integrate long-distance
cues. Future work should continue to investigate
the limits of subcategorical maintenance: what do
listeners do when confronted with the typical de-
mands of natural language use?

7 Future Work

One question not addressed in the current work is
the extent to which different participants engage
in different integration strategies or may change
strategy over time. Our data are likely a mix of
participants who show ideal integrator-like behav-
ior and categorize-discard-&-switch behavior—
what drives these differences? One possibility
could be differences in working memory and at-
tention. In addition, it is plausible that strate-
gies could change over time as a sort of adap-
tation to task demands. It is possible that lis-
teners under naturalistic demands tend to take a
memory-saving suboptimal strategy for the mem-
ory benefits (like in our Experiment 2), but with
a more constrained, easier-to-predict task become
more inclined to switch to a more optimal strat-
egy. Future work should investigate whether and
why these changes may occur.

By making models of cue integration explicit,
we inform future theoretical and experimental
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work. For example, we can analyze these mod-
els to understand how well each model performs
word recognition: we can directly quantify how
much word identification accuracy is expected to
decline for the non-optimal models compared to
ideal integration. Paired with experiments that em-
phasize different task demands of typical language
use, we can then begin to investigate (i) under what
circumstances listeners are (sub)optimal and (ii)
whether listeners maximize accuracy given task
demands. It may be the case, for example, that in
some contexts non-optimal integration is preferred
to ideal integration if the expected gain in accuracy
does not justify the expected memory demand of
maintaining subcategorical information for ideal
integration. Equipped with these formal models,
we can begin to address such questions.
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