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Abstract

Clustering unlinkable entity mentions across
documents in multiple languages (cross-
lingual NIL Clustering) is an important task as
part of Entity Discovery and Linking (EDL).
This task has been largely neglected by the
EDL community because it is challenging
to outperform simple edit distance or other
heuristics based baselines. We propose a
novel approach based on encoding the ortho-
graphic similarity of the mentions using a Re-
current Neural Network (RNN) architecture.
Our model adapts a training procedure from
the one-shot facial recognition literature in or-
der to achieve this. We also perform several
exploratory probing tasks on our name encod-
ings in order to determine what specific types
of information are likely to be encoded by
our model. Experiments show our approach
provides up to a 6.6% absolute CEAFm F-
Score improvement over state-of-the-art meth-
ods and successfully captures phonological re-
lations across languages.

1 Introduction

The objective of Entity Discovery and Linking
(EDL; Ji et al. 2014) is to identify within a text or
set of texts all of the names which refer to entities
in the world and then link those name mentions to
a Knowledge Base (KB). Common approaches to
EDL, however, often ignore the question of what
to do with name mentions that cannot be linked to
the KB.

Clustering unlinkable mentions is often criti-
cal to successfully extracting relevant information
from a given corpus about emergent situations.
For example, before June of 2013, no Wikipedia
entry existed for Edward Snowden. But, suddenly,
in that month, properly identifying and clustering
thousands of mentions in dozens of languages for
this entity became a key task for IE systems fo-
cused on breaking news. Similar situations occur

when significant political events occur in remote
areas. For example, in November of 2015, protests
broke out in the town of Ginci in Ethiopia (Pinaud
and Raleigh, 2017), but Ginci also does not appear
in Wikipedia.

Orthographic similarity provides one of the best
single indicators of which mentions ought to be
clustered. By relying on this clue, given two par-
allel sentences, human annotators are often able
to accurately determine which names refer to the
same entity even without speaking the relevant
languages (Lin et al., 2018). However, this re-
markable ability cannot be captured using simple
string similarity measures (such as edit distance)
alone. For example, Figure 1 shows the edit dis-
tance between several mentions of the same en-
tity Ethiopia as they appeared in an Oromo corpus.
The edit distances between various mentions vary
widely, making it extremely difficult to design a
clustering system based only on this metric and a
predefined threshold.

Figure 1: Edit distance between several mentions of
the same entity Ethiopia from an LDC Oromo news
corpus.

We propose to encode name mentions us-
ing a character-based Recurrent Neural Network
(RNN). We train this model in a manner inspired
by work on the analogous task of one-shot facial
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recognition as addressed by (Schroff et al., 2015).
In that task, a single model encodes images into
a shared space. Images of the same person are
identified by measuring which encoding vectors
are near one another in that space. Analogously,
we consider different name mentions of the same
entity as different “views” of that entity. Mentions
are encoded such that mentions likely to refer to
the same entity are close to one another in the en-
coding space. Mentions can then be clustered us-
ing standard clustering techniques.

2 Approach

2.1 Basic Model

In our approach, input mentions are represented
as a sequence of vectors X = {x1,x2, ...,xL}
where xi is a vector representing the i-th charac-
ter of a mention and L is the number of charac-
ters in the mention. xi is an embedding vector
for each character trained jointly with the rest of
the model. Input sequences are then fed to a bi-
directional RNN based on Gated Recurrent Units
(GRU; Cho et al. 2014). The hidden representa-
tions hi produced by the model are passed to a
fully-connected layer which creates an unnormal-
ized encoding for the mention ni which is normal-
ized to unit length to produce the final encoding
for the mention yi. A margin α, is set during
training, which controls the target minimum dis-
tance between any mention x and any other men-
tion which does not refer to the same entity.

Mentions are clustered into disjoint subsets Si
using the DBSCAN algorithm. We select DB-
SCAN primarily because it does not require the
user to pre-specify the number of expected clus-
ters. We set the hyperparameter ε for the clus-
tering by performing a grid search over possible
values and selecting the value that maximizes the
CEAFm score (Ji et al., 2014) on the training data.

Typical hyperparameter values for the encoding
model are summarized in Table 2. Dropout was
also used in order to provide regularization when
training data was limited.

2.2 Training Procedure

During training, the model is presented with
triplets of name mentions (xa, xp, xn). These
triplets consist of an anchor xa, a positive xp and
a negative xn. The anchor is drawn from the set of
name mentions MA which have at least two name
mentions in their cluster. That is, given the vocab-

ulary of all name mentions V

MA = {xa|( ∃x)[xa ∈ V ∧ refers to(xa, e)

∧ refers to(x, e)

∧ xa 6= x]}

The positive is a name mention drawn from the set
of name mentions MPi which refer to same entity
as the i-th anchor mention xai.

MPi = {xp|xp ∈ V ∧ refers to(xp, e)

∧ refers to(xai, e)

∧ xp 6= xai}

An example anchor-positive pair may consist of
the names (Bill Gates, Gates). The negative is
a name that does not refer to the same entity as
the anchor. Rather than selecting the negative ran-
domly, we select the negative example which has
an encoding closest to the anchor as measured by
Euclidean distance. In this way, we follow the ex-
ample of (Schroff et al., 2015) and select for the
negative a name calculated to provide useful in-
formation about areas of poor model performance.
For example, the anchor-positive-negative triplet
(Bill Gates, Gates, Gaines) is more difficult and
therefore likely to be informative to the model than
the triplet (Bill Gates, Gates, Smith). Over the
course of training, this negative sampling tech-
nique ensures that the model is consistently ex-
posed to informative examples. Randomly sam-
pling the negative provides no guarantee that the
model will ever see the triplets it most needs to
improve. Our experimental results show that this
non-random negative sampling led to a meaning-
ful improvement in model performance.

More specifically, negatives are sampled ac-
cording to the following procedure: before train-
ing and after the model is presented with each
training batch, all names in the dataset are encoded
by the model in its current state and the encodings
are cached. For any given pair of an anchor en-
coding and a positive encoding (xa, xp), a name is
chosen from the dataset vocabulary of name men-
tions V to serve as the negative xn such that the
encoding of the negative is as close to the an-
chor encoding as possible. Treating our encoding
model as a single function f , we select the nega-
tive according to the following equation:

argmin
xnεV

‖f(xa)− f(xn)‖22
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Naive Baseline Edit Distance Random Sampling Our Approach
Oromo 0.531 0.840 0.827 0.868
Tigrinya 0.573 0.806 0.828 0.872
Oromo + Tigrinya 0.454 0.828 0.817 0.841

Table 1: CEAFm F-score for baseline models compared to system performance.

Hidden Dim. 64
Num. RNN Layers 2
Embedding Dim. 16
Margin α 0.2
Output Dim. 16

Table 2: Typical hyperparameters for the encoding
model.

As an optimization, in practice we subject the
negative to the following additional constraint:

‖f(xa)− f(xn)‖22 > ‖f(xa)− f(xp)‖
2
2

This produces what is referred to as a “semi-
hard” example in (Schroff et al., 2015), and was
found to be an important optimization to ensure
that the model converges.

Triplets constructed according to this procedure
are then encoded by the model and the model is
trained to optimize the following loss function:

N∑
i

[
‖f(xai )− f(x

p
i )‖

2
2−‖f(x

a
i )− f(xni )‖

2
2+α

]
+

A single epoch of training consists of showing
the model all triplets composed of every possible
anchor-positive pair and their corresponding neg-
ative xni .

Our method can be applied to cross-lingual
datasets without modification. New anchor-
positive pairs are constructed by pairing mentions
that refer to the same entity regardless of the lan-
guage of origin and training proceeds as normal.

3 Experiment

3.1 Data and Scoring Metric

We use two languages, Oromo and Tigrinya, for
our experiments. Both languages are members of
the Afro-Asiatic language family, but they belong
to separate branches of that family and have dis-
tinct phonologies, grammars, and writing systems
from one another. We select these languages as
exemplars of extremely low-resource languages.

These languages have been used in the standard
NIST shared tasks LoreHLT1. Specifically we use
data from the DARPA LORELEI program2 be-
cause these data sets include human annotated
ground truth. Each mention in the dataset be-
longs to one of the four following types: person,
organization, geopolitical entity, or location. We
also create a combined Oromo-Tigrinya dataset by
merging the two datasets. Table 3 shows the de-
tailed data statistics. The test set consists only of
NIL mentions. We produce it by collecting all NIL
mentions from the complete dataset and dividing
them randomly. One portion is used as the test
set and the other is used during model training as
a development set. All non-NIL mentions are also
used during training. Our final model for Oromo is
trained on 4101 mentions from 327 clusters while
for Tigrinya we use 3990 mentions from 330 clus-
ters.

Tigrinya Oromo
Test Set NIL Mentions 640 894
Test Set NIL Clusters 78 70

Table 3: Statistics for experimental datasets. Test Set
NIL Clusters refers to the number of clusters with size
> 1.

3.2 Results

We compare our system’s score to three base-
lines. The first is a naive baseline which gives the
score on the dataset if every mention is assigned
a unique cluster ID. We also compare the scores
to a baseline based primarily on edit distance and
enhanced with simple heuristics (such as merging
a mention of a person’s last name with mentions
of their full name that appear in the same docu-
ment). The edit distance baseline does not incor-
porate any special weighting for edits, but does
use the Python Unidecode package (Solc, 2009)
in order to map Tigrinya into ascii characters in
the combined dataset task. Finally, we report the

1https://www.nist.gov/itl/iad/mig/lorehlt-evaluations
2LDC2017E57 and LDC2017E58 in the LDC Catalog
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results for a model that is the same as our final
model, but trained by sampling the negative ran-
domly. Table 1 shows the results.

Our model improves on the baseline for all
datasets. Of special note is the increase in per-
formance we get from using the negative sam-
pling technique designed by (Schroff et al., 2015).
For all datasets, sampling the most difficult nega-
tive rather than sampling randomly gives a signifi-
cant increase in performance of about 4% CEAFm
F-score. In our experience, this technique also
seemed to help reduce overfitting by varying the
training data from batch to batch.

The baseline model performed significantly
worse on Tigrinya compared to Oromo. The rea-
sons for this are not entirely clear, but it could
be due to the fact that the Ge’ez script used for
Tigrinya is an abugida (a writing system which
represents entire syllables with single characters)
and contains a large number of characters. This
means that syllables (and by extension, words)
that are phonetically similar are spelled with en-
tirely different characters even if they share some
vowel or consonant sounds. Notably, applying the
Unidecode package did not seem to remedy this
issue. Whatever the problem, our model did not
seem to encounter the same struggles and actually
performed better on Tigrinya relative to the other
tasks.

4 Probing Mention Encodings

In order to illustrate some of the linguistic infor-
mation captured by our model, we give an exam-
ple examination of the vectors produced by sev-
eral closely related input sequences. This qual-
itative analysis illustrates that our model learns
which letter alternations are most and least impor-
tant when transliterating words between given lan-
guage pairs.

We hypothesize that alternating among charac-
ters that represent very similar sounds between
two languages should make little difference in the
final encoding. By determining which alternations
cause the smallest difference in output encodings,
we can ascertain which letters the model finds are
most interchangeable for this language pair.

We train an encoder model on the Google Ara-
bic to English transliteration dataset (Rosca and
Breuel, 2016), for this example.

Table 4 shows the result of alternating the first
letter of the name ’peter’ after training our model.

Replacement Distance
p→ b 0.026
p→ baa 0.060
p→ shiin 1.05
p→ raa 1.02

Table 4: First letter replacements for the name ’peter’
which make the largest and smallest differences in the
output encoding.

Shown in the right column is the distance of the
output encoding from the original encoding af-
ter making each replacement. Our model encodes
names beginning with ’p’, ’b’, or the Arabic ’baa’
similarly because alternations among these sounds
do not often distinguish the names of entities from
one another in this language pair. This is because
Arabic has no equivalent of the English ’p’ sound,
and thus, in English names containing ’p’s and
’b’s, those letters are most commonly transliter-
ated to the single Arabic character ’baa’.

5 Related Work

The task of clustering NIL entity mentions was in-
troduced in the TAC2014 Knowledge Base Pop-
ulation track (Ji et al., 2014). Approaches to
this task have included using direct string or sub-
string matches (Cassidy et al., 2011; Jiang et al.,
2017) and edit distance based metrics (Ploch et al.,
2011; Greenfield et al., 2016). Elaborations on
these methods include leveraging systems for en-
tity coreference (Huynh et al., 2013), query ex-
pansion (Radford et al., 2011; Yu et al., 2013) us-
ing context features either on the document level
(Fahrni et al., 2013; Graus et al., 2012; Hong
et al., 2014) or the sentence level (Ploch et al.,
2011), and applying hand-crafted heuristic rules
(Al-Badrashiny et al., 2017; Li et al., 2016). Our
method differs from the above by clustering based
on a measurement of surface similarities between
words, but not relying directly on edit distance.

We found in our experiments that the standard
DBSCAN algorithm for clustering (Ester et al.,
1996) performed well, but many additional clus-
tering techniques for NIL entities were explored
in (Tamang et al., 2012). In particular, hierarchical
agglomerative clustering methods have seen some
success (Zhang et al., 2012; Graus et al., 2012;
Ploch et al., 2012) Because our work focused on
the effective encoding of word forms rather than
new techniques for clustering the encoded vectors,
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we did not pursue these techniques.
Neural machine transliteration models have

used RNNs to encode input character sequences
into fixed length vectors (Finch et al., 2016; Ja-
didinejad, 2016; Ameur et al., 2017). This is sim-
ilar to our own approach, but where these models
produce vectors only as an intermediate step (to be
later fed to a decoder network), we use the vectors
produced by the encoder directly and do not use a
decoder at all.

Our training procedure relies on a negative sam-
pling technique from the one-shot facial recogni-
tion literature (Schroff et al., 2015). More specif-
ically, we sample our negative samples according
to the method used to train FaceNet.

6 Conclusion and Future Work

We construct a model to encode the surface fea-
tures of words and cluster those encodings to de-
termine which unlinkable mentions refer to the
same entities. Our model shows improvement
over baseline models based on edit distance and
ad hoc heuristic rules. Future work may include
incorporating more information from the context
surrounding the name mentions and exploration
of new encoding architectures and clustering al-
gorithms.
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