
Proceedings of Discourse Relation Parsing and Treebanking (DISRPT2019), pages 133–143
Minneapolis, MN, June 6, 2019. c©2019 Association for Computational Linguistics

133

GumDrop at the DISRPT2019 Shared Task: A Model Stacking Approach
to Discourse Unit Segmentation and Connective Detection

Yue Yu

Computer Science

Georgetown University

Yilun Zhu

Linguistics

Georgetown University

Yang Liu

Linguistics

Georgetown University

Yan Liu

Analytics

Georgetown University

Siyao Peng

Linguistics

Georgetown University

Mackenzie Gong

CCT

Georgetown University

Amir Zeldes

Linguistics

Georgetown University

{yy476,yz565,yl879,yl1023,sp1184,mg1745,az364}@georgetown.edu

Abstract

In this paper we present GumDrop, George-

town University’s entry at the DISRPT 2019

Shared Task on automatic discourse unit seg-

mentation and connective detection. Our ap-

proach relies on model stacking, creating a

heterogeneous ensemble of classifiers, which

feed into a metalearner for each final task. The

system encompasses three trainable compo-

nent stacks: one for sentence splitting, one for

discourse unit segmentation and one for con-

nective detection. The flexibility of each en-

semble allows the system to generalize well to

datasets of different sizes and with varying lev-

els of homogeneity.

1 Introduction

Although discourse unit segmentation and con-

nective detection are crucial for higher level

shallow and deep discourse parsing tasks, re-

cent years have seen more progress in work on

the latter tasks than on predicting underlying

segments, such as Elementary Discourse Units

(EDUs). As the most recent overview on pars-

ing in the framework of Rhetorical Structure The-

ory (RST, Mann and Thompson 1988) points out

(Morey et al., 2017, 1322) “all the parsers in our

sample except [two] predict binary trees over man-

ually segmented EDUs”. Recent discourse pars-

ing papers (e.g. Li et al. 2016, Braud et al. 2017a)

have focused on complex discourse unit span ac-

curacy above the level of EDUs, attachment accu-

racy, and relation classification accuracy. This is

due in part to the difficulty in comparing systems

when the underlying segmentation is not identi-

cal (see Marcu et al. 1999), but also because of

a relatively stable SOA accuracy of EDU seg-

mentation as evaluated on the largest RST cor-

pus, the English RST Discourse Treebank (RST-

DT, Carlson et al. 2003), which already exceeded

90% accuracy in 2010 (Hernault et al., 2010).

However, as recent work (Braud et al., 2017b)

has shown, performance on smaller or less homo-

geneous corpora than RST-DT, and especially in

the absence of gold syntax trees (which are real-

istically unavailable at test time for practical ap-

plications), hovers around the mid 80s, making it

problematic for full discourse parsing in practice.

This is more critical for languages and domains in

which relatively small datasets are available, mak-

ing the application of generic neural models less

promising.

The DISRPT 2019 Shared Task aims to

identify spans associated with discourse rela-

tions in data from three formalisms: RST

(Mann and Thompson, 1988), SDRT (Asher,

1993) and PDTB (Prasad et al., 2014). The tar-

geted task varies actoss frameworks: Since RST

and SDRT segment texts into spans covering the

entire document, the corresponding task is to pre-

dict the starting point of new discourse units. In

the PDTB framework, the basic locus identify-

ing explicit discourse relations is the spans of dis-

course connectives which need to be identified

among other words. In total, 15 corpora (10 from

RST data, 3 from PDTB-style data, and 2 from

SDRT) in 10 languages (Basque, Chinese, Dutch,

English, French, German, Portuguese, Russian,

Spanish, and Turkish) are used as the input data

for the task. The heterogeneity of the frameworks,

languages and even the size of the training datasets

all render the shared task challenging: training

datasets range from the smallest Chinese RST cor-

pus of 8,960 tokens to the largest English PDTB

dataset of 1,061,222 tokens, and all datasets have

some different guidelines. In this paper, we there-

fore focus on creating an architecture that is not

only tailored to resources like RST-DT, and takes

into account the crucial importance of high accu-

racy sentence splitting for real-world data, gener-

alizing well to different guidelines and datasets.



134

Our system, called GumDrop, relies on model

stacking (Wolpert, 1992), which has been suc-

cessfully applied to a number of complex

NLP problems (e.g. Clark and Manning 2015,

Friedrichs et al. 2017). The system uses a range

of different rule-based and machine learning ap-

proaches whose predictions are all fed to a ‘met-

alearner’ or blender classifier, thus benefiting from

both neural models where appropriate, and strong

rule-based baselines coupled with simpler clas-

sifiers for smaller datasets. A further motiva-

tion for our model stacking approach is curricu-

lar: the system was developed as a graduate sem-

inar project in the course LING-765 (Computa-

tional Discourse Modeling), and separating work

into many sub-modules allowed each contributor

to work on a separate sub-project, all of which

are combined in the complete system as an ensem-

ble. The system was built by six graduate students

and the instructor, with each student focusing on

one module (notwithstanding occasional collabo-

rations) in two phases: work on a high-accuracy

ensemble sentence splitter for the automatic pars-

ing scenario (see Section 3.2), followed by the de-

velopment of a discourse unit segmenter or con-

nective detection module (Sections 3.3 and 3.4).

2 Previous Work

Following early work on rule-based seg-

menters (e.g. Marcu 2000, Thanh et al. 2004),

Soricut and Marcu (2003) used a simple prob-

abilistic model conditioning on lexicalized

constituent trees, by using the highest node

above each word that has a right-hand sibling,

as well as its children. Like our approach,

this and subsequent work below perform EDU

segmentation as a token-wise binary classifica-

tion task (boundary/no-boundary). In a more

complex model, Sporleder and Lapata (2005)

used a two-level stacked boosting classifier on

syntactic chunks, POS tags, token and sentence

lengths, and token positions within clauses, all of

which are similar to or subsumed by some of our

features below. They additionally used the list of

English connectives from Knott (1996) to identify

connective tokens.

Hernault et al. (2010) used an SVM model with

features corresponding to token and POS trigrams

at and preceding a potential segmentation point, as

well as features encoding the lexical head of each

token’s parent phrase in a phrase structure syn-

tax tree and the same features for the sibling node

on the right. More recently, Braud et al. (2017b)

used a bi-LSTM-CRF sequence labeling approach

on dependency parses, with words, POS tags, de-

pendency relations and the same features for each

word’s parent and grand-parent tokens, as well as

the direction of attachment (left or right), achiev-

ing F-scores of .89 on segmenting RST-DT with

parser-predicted syntax, and scores in the 80s, near

or above previous SOA results, for a number of

other corpora and languages.

By contrast, comparatively little work has ap-

proached discourse connective detection as a sep-

arate task, as it is usually employed as an in-

termediate step for predicting discourse rela-

tions. Pitler and Nenkova (2009) used a Max

Entropy classifier using a set of syntactic fea-

tures extracted from the gold standard Penn

Treebank (Marcus et al., 1993) parses of PDTB

(Prasad et al., 2008) articles, such as the highest

node which dominates exactly and only the words

in the connective, the category of the immedi-

ate parent of that phrase, and the syntactic cate-

gory of the sibling immediately to the left/right of

the same phrase. Patterson and Kehler (2013) pre-

sented a logistic regression model trained on eight

relation types extracted from PDTB, with features

in three categories: Relation-level features such as

the connective signaling the relation, attribution

status of the relation, and its relevance to finan-

cial information; Argument-level features, captur-

ing the size or complexity of each of its two ar-

guments; and Discourse-level features, which in-

corporate the dependencies between the relation in

question and its neighboring relations in the text.

Polepalli Ramesh et al. (2012) used SVM and

CRF for identifying discourse connectives in

biomedical texts. The Biomedical Discourse Re-

lation Bank (Prasad et al., 2011) and PDTB were

used for in-domain classifiers and novel domain

adaptation respectively. Features included POS

tags, the dependency label of tokens’ immediate

parents in a parse tree, and the POS of the left

neighbor; domain-specific semantic features in-

cluded several biomedical gene/species taggers, in

addition to NER features predicted by ABNER (A

Biomedical Named Entity Recognition).

3 GumDrop

Our system is organized around three ensembles

which implement model stacking.



135

Figure 1: System architecture. The raw text from corpora without gold syntax is first split into sentences by the

ensemble sentencer. Sentences are then parsed using UDPipe. Corpora with predicted or gold syntax can then be

utilized for discourse unit segmentation and connective detection.

1. A trainable sentencer ensemble which feeds

an off-the-shelf dependency parser

2. A discourse unit segmenter ensemble, oper-

ating on either gold or predicted sentences

3. A connective detector ensemble, also using

gold or predicted sentences

Each module consists of several distinct sub-

modules, as shown in Figure 1. Predicted la-

bels and probabilities from sub-modules, along

with features for every token position are fed to

a blender classifier, which outputs the final predic-

tion for each token. By learning which modules

perform better on which dataset, in which scenario

(gold or predicted syntax) and in what linguistic

environments, the ensemble remains robust at both

tasks in both settings.

Since the sub-modules and the ensembles are

trained on the same training data, a crucial con-

sideration is to avoid over-reliance on modules,

which may occur if the metalearner learns about

module reliability from data that the sub-modules

have already seen. To counter this, we use 5-

fold multitraining: each base module is trained

five times, each time predicting labels for a dis-

joint held-out subset of the training data. These

predictions are saved and fed to the ensemble as

training data, thereby simulating the trained sub-

modules’ behavior when exposed to unseen data.

At test time, live predictions are gathered from the

sub-modules, whose reliability has been assessed

via the prior unseen multitraining data.

3.1 Features

Table 1 gives an overview of the features we ex-

tract from the shared task data, and the mod-

ules using those features for sentence splitting and

EDU segmentation/connective detection. Features

derived from syntax trees are not available for sen-

tence splitting, though automatic POS tagging us-

ing the TreeTagger (Schmid, 1994) was used as a

feature for this task, due to its speed and good ac-

curacy in the absence of sentence splits.

Most modules represent underlying words

somehow, usually in a 3 or 5-gram window cen-

tered around a possible split point. An exception

is the LR module, which uses only the first/last (f/l

in Table 1) characters to prevent sparseness, but

which also uses #char types features, which

give the count of digits, consonant, vowel and

other characters per word. Modules with ‘top

200/100’ use only the n most frequent items in

the data, and otherwise treat each word as its

POS category. Neural modules (DNN, RNN)

use 300 dimensional FastText (Bojanowski et al.,

2017) word embeddings, and in the case of the

RNN, character embeddings are also used. For

Chinese in the LR module, we use the first/last

byte in each word instead of actual characters.

The feature genre gives the genre, based

on a substring extracted from document names,

in corpora with multiple genres. The features

quot/paren indicate, for each token, whether

it is between quotation marks or parentheses, al-

lowing modules to notice direct speech or uncom-

pleted parentheses which often should not be split.

The feature sent% gives the quantile position of



136

Sentence splitting EDU/connective segmentation

Feature LR NLTK UDPipe WikiSent DNN Meta Subtree RNN BOW Meta

word n y y y y top 100 top 200 y top 200 top 100
chars f/l n y n n n n y n n

upos/xpos y n n n n y y y y y
case y n n n n y y n n y

#char types y n n n n n n n n n
tok len y n n n n y y n n y
tok frq y n n n n n n n n n
genre n n n n n y y y n y

quot/paren n n n n n n y n n y
sent% n n n n n y y n n y
deprel – – – – – – y y n y

headdist – – – – – – y bin n y
depbracket – – – – – – y y n y

children – – – – – – y n n n

Table 1: Features for sentence splitting and EDU segmentation modules.

the current sentence in the document as a number

between 0–1. This can be important for datasets in

which position in the document interacts with seg-

mentation behavior, such as abstracts in early por-

tions of the academic genres in the Russian corpus,

which often leave sentences unsegmented.

The features deprel, headdist and

depbracket are not available for sentence

splitting, as they require dependency parses: they

give the dependency relation, distance to the gov-

erning head token (negative/positive for left/right

parents), and a BIEO (Begin/Inside/End/Out)

encoded representation of the smallest relevant

phrase boundaries covering each token for specific

phrase types, headed by clausal functions such as

‘advcl’, ‘xcomp’ or ‘acl’ (see Figure 2). For the

RNN, headdist is binned into 0, next-left/right,

close-left/right (within 3 tokens) and far-left/right.

The children feature set is unique to the

Subtree module and is discussed below.

3.2 Sentence Splitting

DNN Sentencer A simple Deep Neural Network

classifier, using 300 dimensional word embed-

dings in a Multilayer Perceptron for tokens in a

5–9-gram window. Optimization on dev data de-

termines the optimal window size for each dataset.

Flexible window sizes enable the DNN model to

remember the surrounding tokens in both small

and large datasets. Starting and ending symbols

(‘<s>’ and ‘</s>’) for each document guaran-

tee the model can always predict the correct label

when a new document starts.

Logistic Regression Sentencer The Logis-

tic Regression (LR) Sentencer uses sklearn’s

(Pedregosa et al., 2011) LogisticRegressionCV

implementation to predict sentence boundaries

given a variety of character-level information.

The beginning/ending characters (first/last let-

ter), auto-generated POS tags and charac-

ter/frequency count representations (number of

consonants/vowels/digits/other, token length, to-

ken frequency) are applied to a sliding 5-gram win-

dow (categorical features are converted into 1-hot

features). One advantage of the LR model is its re-

liability for smaller datasets where character-level

features prevent sparseness (including the top 200

feature decreases performance).

Wiki-Based Sentencer The Wiki-Based Sen-

tencer relies on the frequencies and ratios of

paragraph-initial tokens extracted from Wikipedia

articles obtained from Wikipedia database dumps

for all languages.1 The rationale is that even

though we have no gold sentence splits for

Wikipedia, if a token occurs paragraph-initial,

then it must be sentence-initial. For each Wiki

paragraph, we extract the first “sentence” based

on text up to the first sentence final character

(./?/!), and then the first word is obtained based

on automatic tokenization. Though this approach

is coarse, we are able to get a good approxima-

tion of frequently initial words thanks to the large

data. The frequencies and ratios of tokens be-

ing sentence initial are recorded, and thresholds

of frequency>10 and ratio > 0.5 are set to collect

the most relevant tokens. The main purpose of this

module is to capture potential sentence split points

such as headings, which are not followed by peri-

ods (e.g. Introduction in English).

UDPipe + NLTK Additionally, we used UD-

Pipe and NLTK’s freely available models as pre-

1 Traditional Chinese characters were converted into sim-
plified Chinese to be consistent with shared task data.



137

...allowed as ants when given the choice ignore poison
par-par min2 min1 node pls1 pls2 par

[lspan:1] [rspan: 2]
O B-advcl I-advcl B-advcl I-advcl I-advcl E-advcl I-advcl E-advcl

root

advcl

advcl

mark

obj

det

mark

nsubj

obj

Figure 2: Dependency features from a sentence fragment for a window surrounding ‘given’ in SubtreeSegmenter.

dictors for the ensemble. For Simplified Chinese,

we retrained UPipe using data from the Chinese

Treebank, not overlapping CDTB’s shared task

data.

EnsembleSentencer As a metalearner receiving

input from the base-modules, we used tree-based

algorithms selected via optimization on dev data,

either RandomForest, ExtraTrees, GradientBoost-

ing (using sklearn’s implementation), or XGBoost

(Chen and Guestrin, 2016). In addition to the sub-

modules’ probability estimates, the metalearner

was given access to token features in a trigram

window, including word identity (for the top 100

items), POS tags, and orthographic case.

3.3 Discourse Unit Segmentation

The feature space for segmentation is much larger

than for sentence splitting, due to availability of

syntactic features (cf. Table 1). Additionally,

as usefulness of features varies across datasets

(for example, some lanaguage use only the UPOS

column, or UPOS is trivially predictable from

XPOS), we performed automatic variable filtering

per dataset for both the Subtree and the Ensemble

module below. We removed all categorical vari-

ables with a Theil’s U value of implication above

.98 (meaning some feature A is predictable based

on some feature B), and for numerical variables,

based on Pearson’s r>0.95.

SubtreeSegmenter This module focuses on de-

pendency subgraphs, looking at a trigram around

the potential split point. In addition to word, or-

thographic case, POS, and deprel features from

Table 1, the module uses a children feature set,

extracting information for the node token, neigh-

bors, parent and grandparent, including:

• their labels and depth (rank) in the tree

• labels of closest/farthest L/R children

• left/right span length and clause BIOE

• whether L/R neighbors share their parent

The features are illustrated in Figure 2. If we

consider a split at the node word ‘given’, we col-

lect features for two tokens in each direction, the

parent (‘ignore’) and grandparent (‘allowed’). The

left span of children of ‘given’ is 1 token long,

and the right 2 tokens long. We additionally col-

lect for each of these tokens whether they have the

same parent as their neighbor to the right/left (e.g.

‘ants’ has the same parent as ‘as’), as well as the

nearest and farthest dependency label on descen-

dents to each side of the node (here, mark for both

closest and farthest left child of ‘given’, and det

(closest) and obj (farthest) on the right. The BIOE

bracket feature is a flattened ‘chunk’ feature in-

dicating clauses opening and closing (B-ADVCL,

etc.) These features give a good approximation of

the window’s syntactic context, since even if the

split point is nested deeper than a relevant clausal

function, discrepancies in neighbors’ dependency

features, and distances implied by left/right spans

along with dependency functions allow the re-

construction of pertinent subtree environments for

EDU segmentation. The feature count varied be-

tween 86–119 (for rus.rst.rrt and eng.sdrt.stac re-

spectively), due to automatic feature selection.

BOWCounter Rather than predicting exact split

points, the BOWCounter attempts to predict the

number of segments in each sentence, using a



138

Ridge regressor with regularization optimized via

cross-validation. The module uses the top 200

most frequent words as well as POS tags in a bag

of words model and predicts a float which is fed

directly to the ensemble. This allows the module

to express confidence, rather than an integer pre-

diction. We note that this module is also capable

of correctly predicting 0 segmentation points in a

sentence (most frequent in the Russian data).

RNNSegmenter To benefit from the predictive

power of neural sequence models and word em-

beddings with good coverage for OOV items,

we used NCRF++ (Yang and Zhang, 2018), a bi-

LSTM/CNN-CRF sequence labeling framework.

Features included Glove word embeddings for En-

glish (Pennington et al., 2014) and FastText em-

beddings (Bojanowski et al., 2017) for other lan-

guages, trainable character embeddings, as well

as the features in Table 1, such as POS tags, de-

pendency labels, binned distance to parent, genre,

and BIEO dependency brackets, all encoded as

dense embeddings. We optimized models for each

dataset, including using CNN or LSTM encoding

for character and word embeddings.

Ensemble Segmenter For the metalearner we

used XGBoost, which showed high accuracy

across dataset sizes. The ensemble was trained on

serialized multitraining data, produced by train-

ing base-learners on 80% of the data and predict-

ing labels for each 20% of the training data sepa-

rately. At test time, the metalearner then receives

live predictions from the sub-modules, whose re-

liability has been assessed using the multitraining

data. In addition to base module predictions, the

metalearner is given access to the most frequent

lexemes, POS tags, dependency labels, genre, sen-

tence length, and dependency brackets, in a tri-

gram window.

3.4 Connective Detection

Frequency-based Connective Detector This

module outputs the ratios at which sequences of

lexical items have been seen as connectives in

training data, establishing an intelligent ‘lookup’

strategy for the connective detection task. Since

connectives can be either a single B-CONN or a B-

CONN followed by several I-CONNs, we recover

counts for each attested connective token sequence

up to 5 tokens. For test data, the module reports

the longest possible connective sequence contain-

ing a token and the ratio at which it is known to

be a connective, as well as the training frequency

of each item. Rather than select a cutoff ratio for

positive prediction, we allow the ensemble to use

the ratio and frequency dynamically as features.

RNN Connective Detector This module is ar-

chitecturally identical to the RNN EDU seg-

menter, but since connective labels are non-binary

and may form spans, it classifies sequences of

tokens with predicted connective types (i.e. B-

CONN, I-CONN or not a connective). Rather than

predicted labels, the system reports probabilities

with which each label is suspected to apply to to-

kens, based on the top 5 optimal paths as ranked

by the CRF layer of NCRF++’s output.

Ensemble Connective Detector The connective

ensemble is analogous to the segmenter ensemble,

and relies on a Random Forest classifier fed the

predicted labels and probabilities from base con-

nective detectors, as well as the same features fed

to the segmenter ensemble above.

4 Results

Sentence Splitting Although not part of the

shared task, we report results for our Ensemble-

Sentencer and LR module (best sub-module on av-

erage) next to a punctuation-based baseline (split

on ‘.’, ‘!’, ‘?’ and Chinese equivalents) and

NLTK’s (Bird et al., 2009) sentence tokenizer (ex-

cept for Chinese, which is not supported). Since

most sentence boundaries are also EDU bound-

aries, this task is critical, and Table 2 shows the

gains brought by using the ensemble. GumDrop’s

performance is generally much higher than both

baselines, except for the Portuguese corpus, in

which both the system and the baseline make ex-

actly 2 precision errors and one recall error, lead-

ing to an almost perfect tied score of 0.988. Some-

what surprisingly, NLTK performs worse on av-

erage than the conservative strategy of using sen-

tence final punctuation. The LR module is usually

slightly worse than the ensemble, but occasionally

wins by a small margin.

Discourse Unit Segmentation Table 3 gives

scores for both the predicted and gold syntax sce-

narios. In order to illustrate the quality of the sub-

modules, we also include scores for Subtree (the

best non-neural model) and the RNN (best neu-

ral model), next to the ensemble. The baseline is

provided by assuming EDUs overlap exactly with

sentence boundaries.



139

Baseline (./!/?) NLTK LR GumDrop

corpus P R F P R F P R F P R F

deu.rst.pcc 1.00 .864 .927 1.00 .864 .927 .995 .953 .974 .986 .986 .986
eng.pdtb.pdtb .921 .916 .918 .899 .863 .880 .891 .970 .929 .963 .948 .955
eng.rst.gum .956 .810 .877 .943 .807 .870 .935 .885 .909 .977 .874 .923
eng.rst.rstdt .901 .926 .913 .883 .900 .891 .897 .991 .942 .963 .946 .954
eng.sdrt.stac .961 .290 .446 .990 .283 .440 .805 .661 .726 .850 .767 .806

eus.rst.ert .964 1.00 .982 .945 .972 .958 1.00 1.00 1.00 1.00 .997 .998
fra.sdrt.annodis .970 .910 .939 .965 .910 .937 .957 .943 .950 .985 .905 .943

nld.rst.nldt .991 .919 .954 .983 .919 .950 .951 .931 .941 .980 .964 .972
por.rst.cstn .984 .992 .988 .967 .967 .967 .984 .992 .988 .984 .984 .988
rus.rst.rrt .867 .938 .901 .737 .927 .821 .948 .980 .964 .952 .972 .962

spa.rst.rststb .912 .851 .881 .938 .845 .889 .996 .934 .964 .993 .934 .963
spa.rst.sctb .860 .920 .889 .852 .920 .885 .889 .960 .923 .857 .960 .906
tur.pdtb.tdb .962 .922 .942 .799 .099 176 .979 .979 .979 .983 .984 .983

zho.pdtb.cdtb .959 .866 .910 .– .– .– .954 .975 .965 .980 .975 .978
zho.rst.sctb .879 .826 .852 .– .– .– 1.00 .811 .895 .991 .795 .882

mean .939 .863 .888 .915 .790 .815 .945 .931 .937 .963 .933 .947
std .046 167 128 .079 .273 .235 .055 .089 .065 .046 .070 .050

Table 2: GumDrop sentence splitting performance.

Overall the results compare favorably with pre-

vious work and exceed the previously reported

state of the art for the benchmark RST-DT dataset,

in both gold and predicted syntax (to the best of

our knowledge, 93.7 and 89.5 respectively). At

the same time, the ensemble offers good perfor-

mance across dataset sizes and genres: scores

are high on all English datasets, covering a range

of genres, including gold STAC (chat data), as

well as on some of the smaller datasets, such as

Dutch, French and German (only 17K, 22K and

26K training tokens each). Performance is worse

on the SCTB corpora and Russian, which may

be due to low-quality parses in the gold scenario,

and some inconsistencies, especially in the Rus-

sian data, where academic abstracts and bibliogra-

phies were sometimes segmented and sometimes

not. Comparing the ensemble to the RNN or

subtree modules individually shows that although

they each offer rather strong performance, the en-

semble outperforms them for all datasets, except

German, where Subtree outperforms it by a small

margin, and STAC, where the RNN is slightly bet-

ter, both showing just half a point of improvement.

For automatically parsed data, the table

clearly shows that eng.rst.stac, eng.rst.gum and

zho.rst.sctb are the most problematic, in the first

case since chat turns must be segmented automat-

ically into sentences. This indicates that a trust-

worthy sentencer is crucial for discourse unit seg-

mentation and thus very useful for this shared

task. Here the EnsembleSentencer brings results

up considerably from the punctuation based base-

line. The ensemble achieves top performance for

most datasets and on average, but the RNN per-

forms better on French, Subtree on Portuguese,

and both are tied for Spanish RSTSTB.

Connective Detection Results for connective

detection are shown in Table 4. As a baseline,

we consider assigning each word in the test data

a connective label if and only if it is attested ex-

clusively as a connective in the training set (case-

sensitive). As the results show, the baseline has

low recall but high precision, correlated with the

size of the corpus (as exhaustivity of exclusive

connective words increases with corpus size).

The frequency-based connective detector gives

a reasonable result with a rather simple strategy,

using a threshold of 0.5 as the connective detection

ratio. More importantly, it is useful as input for

the ensemble that outperforms the sequence label-

ing RNN by itself on every dataset. We suspect at

least two factors are responsible for this improve-

ment: firstly, the imbalanced nature of connective

annotations (the vast majority of words are not

connectives) means that the RNN achieves over

99% classification accuracy, and may have diffi-

culty generalizing to rare but reliable connectives.

Secondly, the RNN may overfit spurious features

in the training data, to which the frequency detec-

tor is not susceptible. Coupled with the resistance

of tree ensembles to overfitting and imbalanced

problems, the ensemble is able to give a better so-

lution to the task.

5 Error Analysis

5.1 EDU Segmenter

In both gold and predicted syntax scenarios, the

RST corpora in Russian, Spanish and Chinese



140

Gold syntax Baseline Subtree RNN GumDrop

corpus P R F P R F P R F P R F

deu.rst.pcc 1.0 .724 .840 .960 .891 .924 .892 .871 .881 .933 .905 .919
eng.rst.gum 1.0 .740 .850 .974 .888 .929 .950 .877 .912 .965 .908 .935
eng.rst.rstdt 1.0 .396 .567 .951 .945 .948 .932 .945 .939 .949 .965 .957
eng.sdrt.stac .999 .876 .933 .968 .930 .949 .946 .971 .958 .953 .954 .953

eus.rst.ert .981 .530 .688 .890 .707 .788 .889 .754 .816 .909 .740 .816
fra.sdrt.annodis 1.0 .310 .474 .943 .854 .897 .894 .903 .898 .944 .865 .903

nld.rst.nldt 1.0 .721 .838 .979 .927 .952 .933 .892 .912 .964 .945 .954
por.rst.cstn .878 .435 .582 .911 .827 .867 .815 .903 .857 .918 .899 .908
rus.rst.rrt .760 .490 .596 .809 .745 .775 .821 .710 .761 .835 .755 .793

spa.rst.rststb .974 .647 .777 .921 .792 .851 .759 .855 .804 .890 .818 .853
spa.rst.sctb .970 .577 .724 .938 .631 .754 .901 .649 .754 .898 .679 .773
zho.rst.sctb .924 .726 .813 .880 .744 .806 .843 .768 .804 .810 .810 .810

mean .957 .598 .724 .927 .823 .870 .881 .841 .858 .914 .853 .881

Pred syntax Baseline Subtree RNN GumDrop

corpus P R F P R F P R F P R F

deu.rst.pcc 1.0 .626 .770 .924 .867 .895 .876 .867 .872 .920 .898 .909
eng.rst.gum .956 .599 .737 .948 .777 .854 .910 .805 .854 .940 .772 .848
eng.rst.rstdt .906 .368 .524 .916 .871 .893 .883 .911 .897 .896 .914 .905
eng.sdrt.stac .956 .253 .401 .849 .767 .806 .819 .814 .817 .842 .775 .807

eus.rst.ert .970 .543 .696 .917 .705 .797 .877 .747 .807 .901 .734 .809
fra.sdrt.annodis .980 .285 .442 .938 .824 .877 .892 .915 .903 .945 .853 .896

nld.rst.nldt .991 .663 .794 .951 .849 .897 .938 .835 .883 .947 .884 .915
por.rst.cstn .879 .440 .586 .935 .867 .900 .788 .883 .833 .930 .851 .888
rus.rst.rrt .664 .463 .545 .825 .717 .767 .813 .731 .770 .821 .748 .783

spa.rst.rststb .912 .566 .698 .934 .772 .845 .820 .871 .845 .875 .798 .835
spa.rst.sctb .888 .565 .691 .870 .637 .735 .813 .595 .687 .853 .655 .741
zho.rst.sctb .798 .589 .678 .806 .643 .715 .803 .607 .692 .770 .696 .731

mean .908 .497 .630 .901 .775 .832 .853 .798 .822 .887 .798 .839

Table 3: Subtree, RNN and full GumDrop discourse unit segmentation performance.

(rst.rus.rrt, spa.rst.sctb and zho.rst.sctb) achieve

the lowest F-scores on this task. Leaving the sen-

tencer performance aside, this error analysis for

EDU segmentation will mainly focus on the gold

syntax scenario of these three corpora.

Coordinating Conjunctions (CCONJ) Only

particular types of coordinated structure consist of

two discourse units in different corpora, e.g. VP

coordination, or each coordinate predicate having

its own subject, etc. For example, in eng.rst.gum,

two coordinated verb phrases ([John is athletic

but hates hiking] are annotated as one discourse

unit whereas [John is athletic] [but he hates hik-

ing] is divided into two units since both coordi-

nates have their own subjects. Additionally, if one

coordinate VP has a dependent adverbial clause,

multiple units are annotated. However, even with

dependency features included in GumDrop, preci-

sion and recall errors happen with different coordi-

nating conjunctions. These include and, or in En-

glish, y (‘and’), o (‘or’) in Spanish, and i (‘and’),

a (‘but’), ili (‘or’) in Russian.

Subordinating Conjunctions (SCONJ) Gum-

Drop sometimes fails when there is an ambiguity

between adpositions and subordinating conjunc-

tions. Words that can function as both cause prob-

lems for segmentation since subordinate clauses

are discourse units but adpositional phrases are not

in most datasets. Ambiguous tokens include to,

by, after, before in English, en (‘in’), de (‘of’), con

(‘with’), por (‘by’) in Spanish, as well as zai (‘at’)

in Chinese.

Classifying the boundary of subordinate clauses

is another problem. The depbracket feature can

identify the beginning of a subordinate clause

when the main clause precedes it. However, when

they are in reverse order as in Figure 3, GumDrop

fails to identify the beginning of the second dis-

course unit possibly due to the absence of a second

B-feature at jiaoshi.

... tongguo ... mokuai ... jiaoshi zhangwo ...
through module teacher master

B-nmod:prep E-nmod:prep I-root I-root

BeginSeg BeginSeg RErr

root

nmod:prep

case nsubj

Figure 3: Example of a main clause preceded by a sub-

ordinate clause in zho.rst.sctb that causes a Recall Error

(RErr) on the second instance of BeginSeg.



141

Gold syntax Baseline Freq RNN GumDrop

corpus P R F P R F P R F P R F

eng.pdtb.pdtb .964 .022 .044 .836 .578 .683 .859 .871 .865 .879 .888 .884
tur.pdtb.tdb .333 .001 .002 .786 .355 .489 .759 .820 .788 .766 .816 .790

zho.pdtb.cdtb .851 .259 .397 .715 .618 .663 .726 .628 .674 .813 .702 .754

mean .716 .094 .148 .779 .517 .612 .781 .773 .776 .819 .802 .809

Pred syntax Baseline Freq RNN GumDrop

corpus P R F P R F P R F P R F

eng.pdtb.pdtb .964 .022 .044 .836 .578 .683 .811 .798 .805 .846 .828 .837
tur.pdtb.tdb .333 .001 .002 .786 .355 .489 .761 .821 .790 .768 .817 .792

zho.pdtb.cdtb .851 .259 .397 .715 .618 .663 .705 .590 .642 .806 .673 .734

mean .716 .094 .148 .779 .517 .612 .759 .736 .746 .806 .773 .788

Table 4: Connective detection performance.

Enumerations and Listings In rus.rst.rrt, the

special combination of a number, a backslash and

a period, e.g. 1\. , 2\. etc., is used for enumera-

tion. However, their dependency labels vary: root,

flat, nmod etc. Due to the instability of the labels,

these tokens may result in recall errors, suggesting

possibile improvements via parser postprocessing.

Similar errors also occur with 1, 2 in Spanish and

variants of hyphens/dashes in Russian.

5.2 Connective Detection

Co-occurring Connective Spans Unlike EDU

segmentation, where only splits are marked,

connectives are spans that consist of a mandatory

B-Conn and possible I-Conn labels. However, in

Chinese, it is possible for a a connective to consist

of discontinuous spans. In (1), both zai ‘at’

and the localizer zhong, are connectives and are

required to co-occur in the context. However, the

system fails to capture the relationship between

them.

(1) zai cunmin zizhi zhong ...

P:at villager autonomy LC:in

B-Conn B-Conn

‘Under the autonomy of villagers...’

Syntactic Inversions Syntactic inversion as a

connective is also problematic since no content

words are involved: For instance, though the

system is able to identify B-Conn in both (2) and

(3), it is hard to determine whether content words,

such as the verbs (fueling and yinrenzhumu),

belong to the connective span or not. The model

can be potentially improved by handling these

using dependency features.

(2) Further fueling the belief that ...

B-Conn I-Conn

(3) ... geng yinrenzhumude de shi ...

more striking DE COP

B-Conn I-Conn

‘the more striking thing is that ...’

6 Conclusion and Future Work

A main lesson learned from the present work has

been that while RNNs perform well on large and

consistent datasets, such as RST-DT, they are not

as robust when dealing with smaller datasets. This

was especially apparent in the predicted syntax

scenario, where decision tree ensembles outper-

formed the RNN on multiple datasets. At the same

time, the model stacking approach offers the ad-

vantage of not having to choose between neural

and tree-based models, by letting a metalearner

learn who to believe and when.

Although we hope these results on the shared

task dataset represent progress on discourse unit

segmentation and connective detection, we would

also like to point out that high accuracy (95% or

better) is still out of reach, and especially so for

languages with fewer resources and in the realistic

‘no gold syntax’ scenario. Additionally, the archi-

tecture used in this paper trades improvements in

accuracy for a higher level of complexity, includ-

ing complex training regimes due to multitrain-

ing and a variety of supporting libraries. In future

work, we plan to integrate a simplified version of

the system into tools that are easier to distribute.

In particular, we aim to integrate automatic seg-

mentation facilities into rstWeb (Zeldes, 2016), an

open source RST editor interface, so that end users

can more easily benefit from system predictions.

References

Nicholas Asher. 1993. Reference to Abstract Objects
in Discourse. Kluwer, Dordrecht.



142

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly, Sebastopol, CA.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

Chloé Braud, Maximin Coavoux, and Anders Søgaard.
2017a. Cross-lingual RST discourse parsing. In
Proceedings of EACL 2017, pages 292–304, Valen-
cia, Spain.

Chloé Braud, Ophélie Lacroix, and Anders Søgaard.
2017b. Does syntax help discourse segmentation?
not so much. In Proceedings of EMNLP 2017, pages
2432–2442, Copenhagen.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2003. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure Theory.
In Current and New Directions in Discourse and Di-
alogue, Text, Speech and Language Technology 22,
pages 85–112. Kluwer, Dordrecht.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In KDD ’16 Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 785–794, San Francisco, CA.

Kevin Clark and Christopher D. Manning. 2015.
Entity-centric coreference resolution with model
stacking. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (ACL-IJCNLP 2015),
pages 1405–1415, Beijing.

Jasper Friedrichs, Debanjan Mahata, and Shubham
Gupta. 2017. InfyNLP at SMM4H task 2: Stacked
ensemble of shallow convolutional neural networks
for identifying personal medication intake from
Twitter. In Proceedings of SMM4H@AMIA 2017,
Washington, DC.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A discourse
parser using support vector machine classification.
Dialogue and Discourse, 1(3):1–33.

Alistair Knott. 1996. A Data-Driven Methodology for
Motivating a Set of Coherence Relations. Ph.D.
thesis, University of Edinburgh, University of Ed-
inburgh.

Qi Li, Tianshi Li, and Baobao Chang. 2016. Discourse
parsing with attention-based hierarchical neural net-
works. In Proceedings of EMNLP 2016, pages 362–
371, Austin, TX.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Daniel Marcu. 2000. The Theory and Practice of Dis-
course Parsing and Summarization. MIT Press,
Cambridge, MA.

Daniel Marcu, Estibaliz Amorrortu, and Magdalena
Romera. 1999. Experiments in constructing a cor-
pus of discourse trees. In Proceedings of the ACL
Workshop Towards Standards and Tools for Dis-
course Tagging, pages 48–57, College Park, MD.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Special Is-
sue on Using Large Corpora, Computational Lin-
guistics, 19(2):313–330.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2017. How much progress have we made on RST
discourse parsing? a replication study of recent re-
sults on the RST-DT. In Proceedings of EMNLP
2017, pages 1319–1324, Copenhagen, Denmark.

Gary Patterson and Andrew Kehler. 2013. Predicting
the presence of discourse connectives. In Proceed-
ings of EMNLP 2013, pages 914–923.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of EMNLP
2014, pages 1532–1543, Doha, Qatar.

Emily Pitler and Ani Nenkova. 2009. Using syntax to
disambiguate explicit discourse connectives in text.
In Proceedings of the ACL-IJCNLP 2009 Confer-
ence Short Papers, pages 13–16, Suntec, Singapore.

Balaji Polepalli Ramesh, Rashmi Prasad, Tim Miller,
Brian Harrington, and Hong Yu. 2012. Automatic
discourse connective detection in biomedical text.
Journal of the American Medical Informatics Asso-
ciation, 19(5):800–808.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bon-
nie Webber. 2008. The Penn Discourse Treebank
2.0. In Proceedings of the 6th International Confer-
ence on Language Resources and Evaluation (LREC
2008), pages 2961–2968, Marrakesh, Morocco.

Rashmi Prasad, Susan McRoy, Nadya Frid, Aravind
Joshi, and Hong Yu. 2011. The Biomedical
Discourse Relation Bank. BMC bioinformatics,
12(1):188.

Rashmi Prasad, Bonnie Webber, and Aravind Joshi.
2014. Reflections on the Penn Discourse Treebank,
comparable corpora, and complementary annota-
tion. Computational Linguistics, 40(4):921–950.



143

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of the
Conference on New Methods in Language Process-
ing, pages 44–49, Manchester, UK.

Radu Soricut and Daniel Marcu. 2003. Sentence level
discourse parsing using syntactic and lexical infor-
mation. In Proceedings of HLT-NAACL 2003, pages
149–156, Edmonton.

Caroline Sporleder and Mirella Lapata. 2005. Dis-
course chunking and its application to sentence com-
pression. In Proceedings of EMNLP 2005, pages
257–264, Vancouver.

Huong Le Thanh, Geetha Abeysinghe, and Christian
Huyck. 2004. Generating discourse structures for
written text. In Proceedings of COLING 2004,
pages 329–335, Geneva, Switzerland.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5(2):241–259.

Jie Yang and Yue Zhang. 2018. NCRF++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics, pages 74–79, Mel-
bourne.

Amir Zeldes. 2016. rstWeb - a browser-based anno-
tation interface for Rhetorical Structure Theory and
discourse relations. In Proceedings of NAACL-HLT
2016 System Demonstrations, pages 1–5, San Diego,
CA.


