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Abstract

In this paper, we advocate the use of Mes-
sage Sequence Chart (MSC) as a knowledge
representation to capture and visualize multi-
actor interactions and their temporal ordering.
We propose algorithms to automatically ex-
tract an MSC from a history narrative. For a
given narrative, we first identify verbs which
indicate interactions and then use dependency
parsing and Semantic Role Labelling based
approaches to identify senders (initiating ac-
tors) and receivers (other actors involved) for
these interaction verbs. As a final step in
MSC extraction, we employ a state-of-the art
algorithm to temporally re-order these inter-
actions. Our evaluation on multiple publicly
available narratives shows improvements over
four baselines.

1 Introduction

Narrative texts, particularly in history, contain rich
knowledge about actors and interactions among
them along with their temporal and spatial de-
tails. For such texts, it is often useful to ex-
tract and visualize these interactions through a
set of inter-related timelines, one for each ac-
tor, where the timeline of an actor specifies the
temporal order of interactions in which that ac-
tor has participated. Message Sequence Chart
(MSC) is an intuitive visual notation with rigor-
ous mathematical semantics that can help to pre-
cisely represent and analyze (Alur et al., 1996)
such scenarios. Feijs (2000), and Li (2000) pro-
pose techniques to convert software requirements
to MSC. Event timeline construction is a related
task about inferring the temporal ordering among
events, but where events are not necessarily inter-
actions among actors (Do et al., 2012). Another
related line of research is storyline or plot gen-
eration from narrative texts such as news stories
or fiction (Chambers and Jurafsky, 2009; Vossen

et al., 2015, 2016; Goyal et al., 2010; Kim et al.,
2018), which uses different narratological out-
put representations (not MSC), such as event se-
quences or story curves.

In this paper, we extract actors and their in-
teractions from the given input history narrative
text, and map them to actors and messages in
the basic MSC notation. We generalize the pre-
vious work along several dimensions, and pro-
pose an unsupervised approach enriched with lin-
guistic knowledge. MSC extracted from the
given history text can be analyzed for consis-
tency, similarity, causality and used for applica-
tions such as question-answering. For example,
from the example in Table 1 we extract the MSC
as shown in Figure 1, which can be used to answer
questions like "Whom did Napoleon defend the

National Convention from?". To the best of
our knowledge, this is the first work that uses MSC
to represent knowledge about actors and their in-
teractions in narrative history text. Our approach
is general, and can represent interactions among
actors in any narrative text (e.g., news, fiction
and screenplays). We propose unsupervised ap-
proaches using dependency parsing and Semantic
Role Labelling for extracting interactions and cor-
responding senders/receivers. We use a state-of-
the-art tense based technique (Laparra et al., 2015)
to temporally order the interactions to create the
MSC.

2 Problem Definition

The input is a document D containing narrative
text, and the desired output is an MSC depicting
the interactions among the actors. No informa-
tion about the actors or interactions is given as in-
put; they need to be identified. For history narra-
tives, we define an actor as an entity of type Per-
son, Organization (ORG) or Location (LOC),
which actively participates in various interactions



29

Figure 1: MSC for the example history text.

1. Napoleon Bonaparte was born in 1769 on the
island of Corsica.
2. When he was 9 years old, his parents sent him to
a military school.
3. He finished school in 1785 before starting in
the artillery department.
4. When the new government was formed , Napoleon
joined its army.
5. When royalist rebels marched on the National
Convention in October 1795,

the young officer defended it.
6. The rebels then ran away in panic.
7. Three months earlier, Napoleon had raided the
rebels.

Table 1: Sample narrative text. Implicit and explicit
temporal expressions are underlined.

with other actors. The reason for including LOC
entities as actors is that locations are important
in history, and a timeline of events at a partic-
ular location provides an interesting perspective.
Further, we also need to identify all coreferences
of an actor and use a canonical (i.e., a standard-
ized, normalized) mention for each; e.g., In Ta-
ble 1, the actor mentions, Napoleon Bonaparte,
Napoleon, he and the young officer refer to
the actor Napoleon Bonaparte.

An interaction among actors is either (i) any
deliberate (intentional) physical action, which is
typically initiated by one or more actors and the
remaining actors involved in it are affected by it
in some way (e.g. attacked, joined), or (ii)
communication, which results in passing of infor-
mation or control among them (e.g. announced,
talked).

We focus on interactions involving one or two
actors. An interaction with itself involves only

one actor; e.g., the attackers fled. When
more than two actors are involved in an interac-
tion (e.g., Napoleon’s parents sent him to a

military school.), we break it into several pair-
wise interactions, if possible. On the other hand,
if the sender or receiver in an interaction are miss-
ing, we use a dummy actor environment (denoted
by ENV) as the corresponding sender or receiver.
For instance, in the sentence "The rebels ran

away in panic", there is no explicit receiver. So,
as shown in Fig. 1, we use ENV as the receiver
for the message, i.e., we create the message (The

rebels; ran; ENV).

Since we represent an interaction as a message
in an MSC, the direction of the interaction is im-
portant. We assume the direction to be from the
initiator of the interaction to the actor affected by
it. However, some interactions can be direction-
less; e.g., met, married. In such cases, we show
the subject of the sentence as sender of the mes-
sage in MSC. Though our notion of an interac-
tion is similar to an event, a key difference be-
tween them is that there is explicit and intentional
involvement of actors in an interaction; e.g., an

earthquake is an event but it is not an interaction.

Temporal ordering of messages is the impor-
tant and culminating step in the overall process
of automated MSC extraction from narrative text.
We need to exploit temporal clues available in the
input narrative text to derive the temporal order
among the messages in the MSC.
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2.1 Scope
In this paper, we focus on interactions expressed
using verbs because most of the action events in
a language are expressed using verbs. We con-
sider interactions expressed using nouns as part of
future work. Not all interactions in history nar-
ratives are important for creating an MSC. E.g.,
mental actions, such as felt cheated, came to

know, assumed, considered, envisioned, are
not considered as interactions. Copula verbs and
verbs denoting a state of an object or actor also do
not trigger an interaction and hence, such verbs are
ignored.

3 MSC Extraction

3.1 Actor Identification
We first make one pass through the text and iden-
tify all the actors who are involved in one or more
interactions. We group all co-referring mentions
of an actor into a set, and choose one canonical
mention as a representative on the MSC. One com-
plication can occur due to complex actors, which
is an actor that contains multiple actors, one of
which is independent and the others are depen-
dent and serve to elaborate on the independent ac-
tor; e.g., his parents, military school, the

army of the new government. We need to iden-
tify a complex actor as a whole, and not its con-
stituent actors separately. We use the algorithm
in (Patil et al., 2018) to identify an actor and all its
coreferents.

3.2 Interaction Identification
Typically the input text mentions many different
interactions, and identifying each verbal interac-
tion is required, omitting non-interactions as dis-
cussed in Section 2.1. A simple algorithm clas-
sifies each verb in the given sentence as an ac-
tion verb or a communication verb (and ignores
other types of verbs) using WordNet hypernyms
of the verb itself or its nominal forms. For ex-
ample, for the verb defended, one of its nominal
forms, defence, has the category act in its hyper-
nym tree; so it is classified as an action verb.

Since we are focusing on interactions that
have already occurred, we focus on verbs in
the past tense. In some cases, a verb not in the
past tense, should also be considered as hav-
ing past tense; e.g., in Growing up in rural

Hunan, Mao described his father as a

stern disciplinarian, “Growing” should be

considered to be in the past tense. To achieve
this, we systematically propagate the past tense to
other verbs using linguistic rules. To detect verbs
in past tense, we traverse the dependency parse
tree of the input sentence in breadth-first-search
(BFS) manner. A verb having POS tag of VBD is
definitely in the past tense. A verb with VBG or
VBN POS tag is considered to be in past tense if:
(i) it is a child of another verb tagged with VBD;
or (ii) it is the parent of an auxiliary verb tagged
with VBD. An infinitive verb is deemed to be in
past tense if it has a governor in the dependency
tree with dependency relation either advcl:to or
xcomp and the governor is tagged with VBD. In
the above sentence, described is tagged with
VBD and hence it is in past tense; Growing is
tagged with VBG and is child of described in the
dependency parse tree; hence, it is also considered
to be in the past tense.

3.3 Message Creation
We need to map each identified interaction to one
or more messages in the output MSC. We also
need to identify the sender (initiator of the inter-
action) and receiver (other actors involved in the
interaction) for each message. We have developed
several approaches for identifying a set of senders
(SX) and a set of receivers (RX) for each valid
interaction verb. If SX and RX are both empty,
we ignore that interaction. If only one of them is
empty, we add a special actor Environment (ENV)
to that set. Once such sets are identified, a mes-
sage is created for each unique combination of a
sender and a receiver for a particular interaction
verb.
Dependency parsing-based Approaches: We
developed two approaches for message creation
based on dependency parsing output: i) Baseline
B1 which directly maps the dependencies output
to messages and ii) Approach M1 (Algorithm 1)
which builds on the dependencies output by apply-
ing additional linguistic knowledge. We use Stan-
ford CoreNLP (Manning et al., 2014) for depen-
dency parsing.

Baseline B1 simply maps each interaction verb
in the dependency tree to a set of messages. Actors
directly connected to an interaction verb with cer-
tain dependency relations (nsubj, nmod:agent)
are identified as senders whereas actors directly
connected to the verb with certain other depen-
dency relations (dobj, nsubjpass, xcomp, iobj,
advcl:to, nmod:∗) are identified as receivers.
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Approach M1 improves upon this baseline by
generalizing connections between the verb and po-
tential senders and receivers. Rather than consid-
ering only direct connections in dependency tree,
M1 identifies certain actors as senders which are
connected to the verb with a set of allowable de-
pendency paths such as nmod:poss → nsubj
or nsubj → advcl (lines 3-9 in Algorithm 1).
E.g., consider the sentence Bravery of Rajputs

pushed the Mughals back. Here, Rajputs is
not directly connected to pushed in the depen-
dency tree. Still, M1 would be able to identify
Rajputs as sender because its dependency path
to the verb pushed is nmod:of → nsubj. Sim-
ilarly, M1 identifies certain actors as receivers
which are descendants of the verb in the depen-
dency tree and the dependency paths connect-
ing them to the verb satisfy certain properties
such as “no other verb is allowed on the path”
(lines 10-13 in Algorithm 1). Presence of an-
other intermediate verb on such dependency path
is a strong indicator that the receiver is an ar-
gument for the intermediate verb. For example,
in the sentence Crossing the Alps, Napoleon

attacked Italy., “the Alps” is not a valid re-
ceiver for the verb attacked because another verb
Crossing occurs on the dependency path connect-
ing the Alps to attacked.

SRL-based Approaches: We developed two ap-
proaches for message creation based on SRL: i)
Baseline B2 which directly maps the SRL out-
put to messages and ii) Approach M2 (Algo-
rithm 2) which builds on the SRL output by
applying additional linguistic knowledge. We
use MatePlus (Roth and Lapata, 2015) for SRL
which produces predicate-argument structures as
per PropBank (Kingsbury and Palmer, 2002). The
baseline B2 simply maps each verbal predicate
corresponding to an interaction verb to a set of
messages. Actors corresponding to A0 arguments
of a verbal predicate are identified as senders
whereas actors corresponding to other arguments
are identified as receivers.

Approach M2 improves upon this baseline by
using VerbNet (Schuler, 2005) roles (the func-
tion vnrole) associated with PropBank argu-
ments. Certain selectional preferences are used
on these VerbNet roles, so as to qualify them
as valid senders or receivers. These preferences
are based on the linguistic knowledge and the
details are described in the Algorithm 2. E.g.,

consider the sentence Peter described John as

very polite. Here, for the communication verb
describe, vnrole (describe.01.A1) = theme.
As per our linguistic rule, even if any actor is part
of theme of a communication verb, that actor does
not qualify to be a receiver, as it is not directly
participating in the interaction. Line 18 in Algo-
rithm 2 encodes this rule, thereby not allowing any
actor which is part of a theme to be a receiver.
Hence, in this example sentence, John will not be
a receiver for describe.

Algorithm 2 also handles a special case about
Ergative verbs which lie in between the spectrum
of transitive and intransitive verbs. Their most
distinguishing property is that when an ergative
verb does not have a direct grammatical object,
its grammatical subject plays an object-like role.
E.g., consider following two sentences containing
an ergative verb move:
S1: Mao’s father moved him to a hostel.

S2: Mao moved to Beijing.

In S1, moved has an object but in S2, it does not
have any direct object. Semantic Role Labelling
would assign the role A1 (thing moving) to Mao in
S2 and hence it can not be a sender. But as S2
indicates that the actor (Mao) is willingly perform-
ing the action of moving, we expect Mao to be a
sender. Hence, for an ergative verb, even if the
SRL assigns A1 role to an actor, we consider such
an actor for being sender if no A0 role is assigned
for the ergative verb by the SRL (lines 9-13 in Al-
gorithm 2).

Combined SRL and Dependency parsing based
Approach (M3): SRL tools are useful to identify
senders and receivers of a message, but they do
have a few important limitations. E.g. (i) SRL tool
may fail to identify any A0 even when it is present
or when it assumes the verb does not require A0 in
the sentence; (ii) the identified A0 may be wrong
or cannot be considered as a sender; (iii) SRL tool
may fail to identify any A1/A2 even when it is
present; (iv) the identified A1/A2 may be wrong
or cannot be considered as a receiver.

We call this combined approach as M3 which
corrects the output of SRL-based approach
M2 by using output of the dependencies based
approach B1. The intuition, here is that B1
uses only high-precision rules for identifying
senders and receivers. Hence, B1’s output can
be used to correct a few errors introduced in the
M2’s output. E.g., in He was accorded a very
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Algorithm 1: create messages M1
input : s (sentence), A (set of known actors with

coreferents), v (interaction verb),
DPOSS = {nmod : poss, nmod : of},
DS = {nsubj, nmod : agent}, DR =
{dobj, iobj, nmod∗, xcomp, nsubjpass,
advcl:to}, DI = {advcl:to, xcomp}

output : SX = set of senders, RX = set of receivers
1 SX,RX := ∅
2 Ed := GetDependencyTree(s)
// Ed is set of tuples of the form

(a, b, dr) where a is governor of b
with dependency relation dr

3 foreach actor a ∈ A s.t. a has mention in s do
4 if (v, a, ds) ∈ Ed ∧ ds ∈ DS then

SX := SX ∪ {a} ; continue
5 if (v, a, nmod:∗with) ∈ Ed then

SX := SX ∪ {a} ; continue
6 if ∃u s.t.(u, v, advcl∗) ∈ Ed ∧ (u, a, ds) ∈

Ed ∧ ds ∈ DS then
7 SX := SX ∪ {a} ; continue
8 if ∃u s.t.(v, u, ds) ∈ Ed ∧ ds ∈ DS ∧ u.ner =

OTHER ∧ (u, a, dp) ∈ Ed ∧ dp ∈ DPOSS
then SX := SX ∪ {a} ; continue

9 if ∃b s.t. b ∈ SX ∧ (b, a, nmod:∗with) ∈ Ed

then SX := SX ∪ {a} ; continue
10 foreach actor b ∈ A \ SXs.t. b has a mention in s and
∃ path P from v to b in G using Ed do

11 if ∃u 6= v s.t. u.POS = V B ∗ ∧ u ∈
P ∧ (v, u, dr) ∈ Ed ∧ dr /∈ DI then
continue

12 if ∃u 6= v s.t. u.POS = V B ∗ ∧ u ∈
P ∧ (v, u, ∗) /∈ Ed then continue

13 if ∃x in Ps.t.(x, b, dr) ∈ Ed ∧ dr ∈ DR then
RX := RX ∪ {b}

14 return (SX,RX)

cordial reception and was loaded with

gifts., MatePlus (in M2) identifies He as A0 for
accorded, which is wrong because He is not the
initiator of this interation; He should be A1 for
accord. We correct this by using the fact that
B1 (dependencies based approach) detects the
nsubjpass dependency between accorded and He

and identifies He as receiver. As another example,
for His father united him in an arranged

marriage to Luo Yigu, thereby uniting

their land-owning families., MatePlus does
not identify any A0 for uniting, where the true
A0 is His father, which we correct using the de-
pendency parse in which His father is connected
to uniting through the path nsubj → advcl.

3.4 Message Label Generation
We propose a simple algorithm for generating
a clear and intuitive label for each message,
covering various scenarios. For a verbal event, the
label includes the main verb (joined), followed
by a particle if present (set up), a preposition

Algorithm 2: create messages M2
input : s (sentence), A (set of known actors with

coreferents), v (interaction verb),
B0 = {agent, theme, cause},
B1 = {experiencer},
B2 = {AMLOC,AMDIR},
B3 = {asset, cause, extent, instrument,
stimulus, time, topic, theme, predicate},
B4 = {theme}, B5 = {agent, theme}

output: SX = set of senders, RX = set of receivers
1 H := MateP lus(S); // output of MatePlus

2 SX,RX := ∅;
3 if v /∈ H∨ is copula like(v) then return(SX,RX)
4 if H.v has argument A0 then
5 x := H.v.A0.phrase;
6 if x contains an actor from A then
7 if vnrole(H.v.A0) ∈ B0 ∨ (is comm(H.v) ∧

vnrole(H.v.A0) ∈ B1) then
8 SX := SX ∪ {get actor(x,A)};

9 else if is ergative(v)∧H.v has argument A1 then
10 x := H.v.A1.phrase;
11 if x contains an actor from A then
12 if vnrole(H.v.A1) ∈ B5 then
13 SX := SX ∪ {get actor(x,A)};

14 foreach argument Ai (i > 0) in H.v do
15 x := H.v.Ai.phrase;
16 if x contains no actor from A \ SX then continue
17
18 if H.v.Ai ∈ B2 ∨ vnrole(H.v.Ai) /∈

B3 ∨ (is action(H.v) ∧H.v.Ai ∈ B4) then
19 RX := RX ∪ {get actor(x,A)};

20 if H.v has another predicate v′ as argument then
21 SX ′, RX ′ := create messages M2(S,A, v′);
22 RX := RX ∪RX ′;
23 return(SX,RX)

if present (cut off from), a negation if present
(not cut off from), a secondary verb if present
(infinitive, gerund or past participle), which also
may be followed by a particle and/or prepo-
sition (set up to defend, helped organize,

set up for taking away from). The general
syntax of our message label is given by the
regex: NEG? MAIN VERB PARTICLE? (PREP|to)?

(NEG? SECONDARY VERB PARTICLE? PREP?)?.
We do not include adverbs, nor any nominal ob-
jects and arguments as part of the message label.
We also do not include any auxiliary or modal
verbs; e.g., from had fled, was elected we
get the message labels fled, elected. Syntactic
verbal structures such as could have helped

indicate interactions that may not have taken
place; so no messages are created for them.

3.5 Temporal Ordering of Messages

Temporal ordering of messages in a MSC is the fi-
nal step and an important sub-problem of the over-
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all high-level goal of automated MSC extraction.
To order the messages, it is important to assign a
temporal anchor to each message. A temporal an-
chor is a point in time (such as 1795-10-01), at
which an interaction has happened. The granular-
ity of the temporal anchor is defined at the level
of a year (1795), a month (1795-10) or a day
(1795-10-01), but not lower.

We can observe sentences in a narrative which
contain explicit time expressions (timex). Explicit
timex are date points which are self-contained
(e.g., October 1795) or can be resolved based
on previously occurring dates (e.g., Three months

earlier). Temporal anchors of messages in such
sentences can be assigned normalized values of
the explicit timex. To achieve this, we first iden-
tify these explicit timex and normalize them using
the Heideltime timex recognizer and normaliza-
tion system (Strötgen and Gertz, 2015). Secondly,
the normalized explicit timex is assigned as the
temporal anchor of the message which is present
in the sentence. In case of sentences with multi-
ple message verbs, the normalized explicit timex
is assigned as the temporal anchor of the message
which has its main verb nearest to the timex in the
sentence’s dependency tree.

However, it is important to note that messages
may be in sentences without any explicit timex. In
order to find the temporal anchor of such messages
we employ the “document level time-anchoring
(DLT)” algorithm proposed by (Laparra et al.,
2015). The algorithm takes a list of messages
(as per the text order) and document creation time
(DCT) as inputs. The key assumption behind the
algorithm is that all the messages of exactly same
tense tend to occur in the text order, unless stated
explicitly. In other words, the author will men-
tion an explicit timex for the current message with
tense t, only if its temporal anchor is different
from the anchor of the last message of tense t.

The algorithm proceeds as follows: If a mes-
sage m has a time anchor t obtained from an ex-
plicit timex, then t is stored in a tense-to-anchor
map as the last seen anchor associated with the
tense of m. However, if m does not have a tem-
poral anchor assigned, then the last seen anchor
of the message’s tense is obtained from the tense-
to-anchor map and set as m’s temporal anchor. If
the tense-to-anchor map does not have a mapping
for m’s tense then the provided DCT is set as m’s
temporal anchor.

Once all messages are assigned some temporal
anchor, a simple sorting algorithm is used to order
the messages based on their anchors. While sort-
ing it is taken care that the assumption of ordering
messages with the same temporal anchor by their
text order is maintained.

4 Experimental Evaluation

4.1 Datasets

We evaluate our approach on history narratives
as they are replete with multiple actors, spatio-
temporal details and have varied forms of interac-
tions. We choose public narratives of varying lin-
guistic complexity to cover a spectrum of history:
(i) famous personalities: Napoleon (Nap) (Littel,
2008), and Mao Zedong (Mao) (Wikipedia, 2018),
(ii) a key event: Battle of Haldighati (BoH) (Chan-
dra, 2007), and (iii) a major phenomenon: Fascism
(Fas) (Littel, 2008).

We also use a subset of the Facebook’s bAbI
QA dataset (Weston et al., 2015) which is a text
understanding and reasoning benchmark. Our
bAbI dataset includes 10 instances from the time-
reasoning subset of the bAbI QA dataset. Each
instance consists of two interleaved sets of infor-
mation: a set of sentences describing an event
and its time for e.g. Mary went to the cinema

yesterday., and a set of temporal reasoning ques-
tions which need to be answered based on the sen-
tences seen till that instant. We remove the ques-
tions from each instance keeping only the event
description sentences as input to the approach.

We manually annotated these datasets for in-
dependent actor mentions, their aliases (canonical
mentions), interaction verbs, complete messages
and temporal ordering of the messages. Number
of sentences and messages for the datasets are:
Nap (106, 99), Fas (117, 115), BoH (77, 133),
Mao (58, 135) and bAbI (118, 118).

4.2 Evaluation

We give highest priority to the message label and
hence senders / receivers of a message are deemed
to be correct only if the corresponding message
label has been identified correctly. As one of the
evaluation measures, we report the F-measure for
identifying only the message labels, ignoring the
corresponding senders / receivers.

We further evaluate message identification per-
formance of the proposed approaches at two lev-
els: i) complete messages with actor mentions
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(denoted as L1 level) and ii) complete messages
with canonical mentions of the actors (L2 level).
As described in Section 3.1, each actor mention
has a canonical mention associated with it, which
represents a group of corefering actor mentions.
At L1 level, a predicted message is counted as a
true positive if the combination of the predicted
sender mention, receiver mention and message
label (i.e., the complete message) is present in
the gold-standard messages for the same sentence.
False positives and false negatives are computed
on similar lines and overall F-measures are com-
puted for identifying complete messages, at the ac-
tor mention level. Similarly, the corresponding F-
measures at L2 (canonical mention) level are also
computed by considering canonical senders / re-
ceivers instead of their mentions.

We conduct the experiments in two different
settings: i) Setting S1: using gold-standard in-
formation about actor mentions, canonical men-
tions and interaction verbs ii) Setting S2: using
predicted actors and interaction verbs. We use the
approach proposed by Patil et al. (2018) for pre-
dicting actor mentions and identifying canonical
mentions; and a simple algorithm for predicting
interaction verbs. For evaluating our temporal or-
dering approach, we use Kendall’s τ rank corre-
lation coefficient (Kendall, 1938) to compare pre-
dicted and gold time-lines of a key actor in each
dataset (e.g., Mao Zedong in the Mao dataset).

As goal of Kof’s work (Kof, 2007) is same
as our work on message extraction, we use it as
one of the baselines (B-Kof). We also use Ope-
nIE (Mausam et al., 2012) as another baseline (B-
OIE). To avoid unnecessarily penalizing B-OIE,
we consider only those extractions where relations
fit our definition of interaction verbs and argu-
ments fit our definition of actors. We compare
our temporal ordering approach with the default
text order based baseline (Text-Order). Table 2
shows comparative performance of the proposed
approaches for message extraction and temporal
ordering.

4.3 Analysis of Results
It can be observed in Table 2 that our proposed ap-
proaches M1 and M2 are consistently outperform-
ing their corresponding baselines for all datasets
in Setting S1. Also, the approach M3 outperforms
all other approaches in Setting S1 when consider-
ing actor mentions for the complete message.

F1-measures in the setting S2 get reduced con-

siderably as compared to S1. Our approach is a
pipeline-based approach where output of actor and
interaction verb identification are provided as in-
put for the message creation algorithms. So, the
errors in these earlier stages are propagated to the
message creation stage, resulting in lower perfor-
mance for the overall pipeline. Especially, identi-
fying coreferences of actor mentions to determine
canonical mentions, is a hard problem (Ng, 2017).
Hence, in the setting S2, we see a significant drop
in F1-measure when we go from L1 level mes-
sages to the L2 level where identification of cor-
rect canonical sender / receiver is important.

History narratives tend to describe interactions
mostly in the order in which they happen. Hence,
we can observe that performance of the DLT based
approach and Text-Order baseline is almost sim-
ilar for the History datasets. In some instances,
DLT based approach performs poorly as the de-
fault fall back for any previously unobserved tense
is the DCT. This can be incorrect if a message
with its verb in past participle is anchored at DCT
even after observing multiple previous messages
in past tense anchored at an earlier time point. For
datasets like bAbI in which text order of interac-
tions differs significantly from the actual temporal
order, the performance of the DLT based temporal
ordering approach is better than the baseline.

5 Related Work

Though there has been some work in applying
MSC for Software Engineering domain, less atten-
tion is given to the automatic construction of MSC
using NLP. Feijs (2000) proposed an “object-
oriented” approach to automatically construct an
MSC from a narrative. The approach makes use
of a set of generative rules in the form of a
grammar. Kof (2007) proposed an approach to
construct MSC for modelling scenarios from re-
quirement analysis documents. Kof’s approach is
based on the situation stack based notion of hu-
man attention in a discourse (Grosz et al., 1995).
However, the approach makes naive assumptions
while finding senders, receivers and action verbs.
For example, a sentence contains only one ac-
tion verb, actors can be found in a pre-defined
list and so on. As history narratives include mul-
tiple senders/receivers/action verbs and the ac-
tors are not pre-specified in a sentence Kof’s ap-
proach (Kof, 2007) is less suitable.

Our work is close to the work by Chambers and
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Message Complete Message Temporal Ordering
Label Actor Mentions Canonical Mentions Text-Order DLT

Dataset Approach S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

B-OIE 0.54 0.42 0.38 0.18 0.38 0.18
B-Kof 0.32 0.25 0.17 0.08 0.17 0.08

B1 0.92 0.67 0.49 0.28 0.49 0.32
Nap B2 0.94 0.70 0.64 0.32 0.62 0.34

M1 0.95 0.68 0.51 0.26 0.51 0.31 0.99 0.99 0.95 0.99
M2 0.94 0.71 0.65 0.29 0.64 0.29 0.99 0.99 0.99 0.99
M3 0.94 0.71 0.66 0.32 0.64 0.33 0.99 0.99 0.93 0.93

B-OIE 0.56 0.51 0.44 0.28 0.43 0.19
B-Kof 0.41 0.29 0.22 0.12 0.22 0.07

B1 0.93 0.63 0.58 0.31 0.58 0.25
Fas B2 0.92 0.62 0.59 0.29 0.59 0.22

M1 0.94 0.60 0.59 0.29 0.59 0.23 0.99 1.0 0.96 0.9
M2 0.92 0.63 0.64 0.28 0.64 0.22 0.99 0.99 0.96 0.89
M3 0.92 0.63 0.69 0.33 0.69 0.26 0.97 0.99 0.94 0.89

B-OIE 0.48 0.50 0.34 0.24 0.35 0.19
B-Kof 0.28 0.29 0.12 0.07 0.12 0.07

B1 0.86 0.72 0.40 0.31 0.41 0.21
Mao B2 0.93 0.74 0.61 0.31 0.63 0.18

M1 0.93 0.76 0.44 0.31 0.45 0.22 0.88 0.88 0.84 0.84
M2 0.93 0.73 0.65 0.34 0.67 0.20 0.90 0.88 0.86 0.88
M3 0.93 0.73 0.65 0.33 0.66 0.21 0.90 0.88 0.86 0.88

B-OIE 0.39 0.40 0.28 0.19 0.28 0.04
B-Kof 0.25 0.22 0.09 0.06 0.09 0.02

B1 0.91 0.79 0.58 0.50 0.51 0.21
BoH B2 0.96 0.80 0.63 0.43 0.59 0.21

M1 0.96 0.81 0.64 0.47 0.56 0.22 0.96 0.96 0.84 0.81
M2 0.96 0.79 0.65 0.46 0.61 0.21 0.96 0.96 0.84 0.81
M3 0.96 0.79 0.71 0.52 0.65 0.22 0.96 0.96 0.84 0.81

B-OIE 1.00 1.00 1.00 0.81 1.00 0.81
B-Kof 0.83 0.67 0.83 0.67 0.83 0.67

B1 1.00 1.00 0.95 0.77 0.95 0.77
bAbI B2 1.00 1.00 0.46 0.39 0.46 0.39

M1 1.00 1.00 1.00 0.81 1.00 0.81 0.73 0.73 1.0 1.0
M2 1.00 1.00 1.00 0.81 1.00 0.81 0.73 0.73 1.0 1.0
M3 1.00 1.00 1.00 0.81 1.00 0.81 0.73 0.73 1.0 1.0

Table 2: F1-measures for following approaches- B-OIE: OpenIE baseline, B-Kof: Kof (2007), B1: Base-
line using only dependencies, B2: Baseline using only SRL, M1: create messages M1 (Algorithm 1), M2:
create messages M2 (Algorithm 2), M3: Combined approach using SRL and dependencies. Setting S1 corre-
sponds to using gold actors and interaction verbs, Setting S2 uses predicted actors and interaction verbs

Jurafsky (2009) on modelling of narrative schemas
and their participants. They need a corpus of nar-
ratives to identify prototypical schemas which try
to capture common sequence of events. We ad-
dress a different problem of extracting MSC from
a single narrative and do not need a corpus. MSC
has been proposed as a knowledge representation
for a narrative text in (Bedi et al., 2017). We ex-
tend their work to automatically construct MSC.

Open Information Extraction (OpenIE) systems
aim to extract tuples consisting of relation phrases
and their multiple associated argument phrases
from an input sentence (Mausam et al., 2012). The
predicate-argument structures in OpenIE seem
similar to SRL and dependency parsing. How-
ever, in dependency parsing the relations are fixed,
while SRL systems require deeper semantic anal-
ysis of a sentence and hence they depend on lex-

ical resources like PropBank and FrameNet. On
the other hand, the predicate-argument structures
in OpenIE are not restricted to any pre-specified
or fixed list of relations and arguments.

6 Conclusions
Message Sequence Charts (MSC) is an important
knowledge representation to summarize and visu-
alize narratives such as historical texts. We pro-
posed algorithms to automatically extract MSC
from history narratives. We observed that the
state-of-the-art systems of dependency parsing
and SRL can not be used as-is for the task. Com-
bining dependency parsing, SRL and linguistic
knowledge achieves the best performance on dif-
ferent narratives. We also report results on tempo-
ral ordering of messages in the MSC using a tense
based temporal anchoring approach.
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