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Abstract

We explore the use of real-time clinical infor-
mation, i.e., text messages sent between nurses
and doctors regarding patient conditions in or-
der to predict transfer to the intensive care unit
(ICU). Preliminary results, in data from five
hospitals, indicate that, despite being short and
full of noise, text messages can augment other
visit information to improve the performance
of ICU transfer prediction.

1 Introduction

‘Failure to rescue’ is an important aspect of patient
safety and can be caused by poor communication,
or a lack of situational awareness, in the care team
(Brady and Goldenhar, 2014). There has been in-
creased recognition of the importance of acting on
deteriorating patients by escalating their care via
rapid response and emergency medical teams (De-
Vita et al., 2006). Established criteria, such as the
Modified Early Warning Score (MEWS) (Subbe
et al., 2001), identify patients at risk of deteri-
oration. Recently, machine learning approaches
have employed electronic patient record data, vi-
tal signs, and laboratory results (Zhou et al., 2016;
Futoma et al., 2015; Che et al., 2016; Frost et al.,
2017), and have typically performed better than
MEWS (Churpek et al., 2016; Zhai et al., 2014).

Related work in intensive care unit (ICU) trans-
fer prediction often relies on structured data (i.e.,
lab results and vitals) taken from the patient’s elec-
tronic health record. For instance, Tabak et al.
(2017) developed a measure that relied on both
clinical and administrative data (e.g., diagnosis,
length of stay, number of previous discharges) and
predicted hospital readmission with c-statistics up
to 0.722. Similarly, Genevès et al. (2018) focused
on drug prescription data on the day of admis-
sion, and predicted various forms of risk, includ-
ing ICU admissions (≥65% AUC). By contrast,

Escudié et al. (2018) represented the text of elec-
tronic health records based on the Fast Healthcare
Interoperability Resources format1 and used word
embedding and random forests to predict disease
codes at the time of discharge, with a wide range in
accuracies. Miotto et al. (2016) embedded medi-
cations, diagnoses, procedures, lab tests, and other
structured information in a deep neural net and
were able to predict various diseases with an aver-
age AUC-ROC of 0.773. Crucially, none of these
systems used dynamic real-time data on a patient.

Real-time clinical information, especially com-
munication between nurses and doctors, may be
useful in improving the accuracy of detecting de-
teriorating patients (Rajkomar et al., 2018). In par-
ticular, this information may hold vital data not
included in other fields, including changes in con-
sciousness, pain, and other symptoms. Often, ur-
gent communication in the hospital still occurs
through pagers, limiting analysis of this commu-
nication (De Meester et al., 2013; Wu et al., 2013;
Johnston et al., 2014). In some hospitals, how-
ever, communication occurs through text messag-
ing. This transition from unrecorded messages to
text allows for deeper analysis of these potentially
crucial information. In this work, we evaluate the
impact of using text messages between physicians
and nurses to predict ICU transfer.

2 Data

Our data consist of 38,373 patients across 49,224
visits, between 2011 and 2017, divided into five
groups according to different institutional codes.
Messages from 2011 to 2015 are in a different
format (from an older system), so we focus our
analysis on messages from 2015 to 2017. We also
exclude all patients who have missing institutional

1https://www.hl7.org/fhir/overview.
html

https://www.hl7.org/fhir/overview.html
https://www.hl7.org/fhir/overview.html
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Group A Group B Group C Group D Group E
Patient info.
# Patients (M/F) 4,536 / 4,031 3488 / 3363 206 / 202 21 / 19 17 / 10
Age at admission 63.45 (18.55) 70.01 (18.86) 72.75 (14.45) 72.59 (17.35) 72.66 (12.07)
# mheaders/patient 13.86 (23.07) 15.54 (24.96) 21.81 (38.58) 15.07 (19.68) 11.82 (9.17)
# mreplies/patient 14.27 (23.52) 16.46 (26.49) 22.68 (40.86) 21.61 (23.39) 12.32 (8.74)
Visit info.
# Visits 10,001 8,586 527 57 30
# visits/patient 1.35 (0.89) 1.41 (1.02) 1.37 (0.86) 1.48 (0.85) 1.29 (0.60)
# days/visit 9.80 (19.01) 9.91 (21.47) 15.22 (19.87) 12.76 (14.75) 9.22 (6.47)
# mheaders/visit 9.85 (16.58) 10.64 (17.84) 15.48 (27.02) 14.40 (18.14) 8.67 (7.97)
# mreplies/visit 10.18 (16.98) 11.31 (18.95) 16.18 (28.46) 15.07 (19.68) 9.03 (7.99)
Messages info.
# mheaders 98,468 91,330 8,159 821 260
# mreply 99,456 95,654 8,395 844 271
ICU% 16.75% 0.36% 35.86% 22.12% 2.01%
# tokens/mheader 22.31 (14.22) 22.90 (14.28) 22.68 (14.62) 22.38 (13.47) 23.70 (13.84)
# tokens/mreply 7.34 (7.97) 7.55 (8.07) 7.47 (7.89) 7.05 (7.22) 7.42 (7.17)

Table 1: Patient, visit, and messages information of data between years 2015 and 2017 used to train models for
predicting ICU transfer. We indicate standard deviation in parentheses. ICU % is the ratio of mheaders resulting
in ICU transfer within 3 days of the message send date.

code in their record. Data include patient and visit
information, and text messages.
Patient information includes patient ID, date
of birth, gender, date admitted, most recent
medication, and most recent diagnosis.
Visit information includes visit number, dis-
charge date time, diagnosis made during the
visit2, visit type (“Emergency” or “Inpatient”),
doctors’ notes, lab results, institutional code, and
an Admission/Discharge/Transfer (ADT) code
indicating to where the patient was admitted,
discharged, or transferred to. Of the 539 ADT
values, 19 correspond to an ICU transfer.
Text messages are collected from the hospital net-
work system and split into message headers and
message replies. Message headers consist of text
messages sent from nurses to physicians. These
messages include information such as medication
and status of patient. Some message headers have
a corresponding message reply, which consists of
text responses from doctors. The database system
in which these text messages are stored only
allows for replies from doctor but not a reply back
from nurse. If a nurse replies back, it is considered
a new message header, making it difficult to track
a “conversation thread”. Sometimes the message

2This is not the same as the diagnosis in the patient infor-
mation.

reply gets sent more than one time and many
other times it is empty. In our experiments, we
only look at the message header, as most message
replies are short and uninformative. The top most
frequent replies are: “thanks”, “ok” and “noted”
across all groups. We split the data by institutional
code and report a summary of the demographics,
visits, and messages in Table 1.

mheader:“hb=65, cr=123 & more lab res up
from last nights bldwork. Ping if anything you
want me to follow up.”
mreply: “informed.”
mheader: “dc hep drip on epr. Pls see chart or-
der. Thnx.”
mreply: “done thanks”
mheader: “hey are icu recommends to be
cosigned. thx.”
mreply: “Ok. Pls run one l of ringers wide & then
one more”

Table 2: Examples of message header (mheader) and
message reply (mreply) pairs. Modified for anonymity.

Text messages can be challenging to analyze,
given spelling mistakes, abbreviations specific to
the medical domain, missing punctuation, and
other challenges. Open-source spelling correction
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Group A Group C
−− +Ling −− +Ling

V isit 0.47 ± (0.01) 0.50 ± (0.01) 0.44 ± (0.02) 0.53 ± (0.02)
V isit+ TFIDF 0.51 ± (0.01) 0.48 ± (0.01) 0.56 ± (0.04) 0.56 ± (0.04)
V isit+ w2vSMS 0.51 ± (0.02) 0.48 ± (0.01) 0.57 ± (0.05) 0.57 ± (0.04)
V isit+ w2vPubmed 0.51 ± (0.01) 0.49± (0.01) 0.54 ± (0.04) 0.54 ± (0.04)
V isit+ TFIDF + w2vSMS 0.51± (0.01) 0.48 ± (0.01) 0.56 ± (0.04) 0.56 ± (0.04)
V isit+ TFIDF + w2vPubmed 0.49± (0.01) 0.47± (0.01) 0.54± (0.03) 0.51 ± (0.04)

Table 3: Macro F1- scores on the logistic regression model for Group A and C. We report the macro F1 metric
averaged over 5-fold cross-validation (with standard deviations in parentheses).

software3 provides little improvement, due to the
domain-specific nature of the words. E.g., the
message ‘pls add prn pain med, not PO. thx’ gets
corrected to ‘ls add pr pain mod, not PO. tax’. We
provide examples of message header and message
reply pairs in Table 2.

We focus our experiments on Group A since
it has the most amount of data, and on Group
C since it has the most number of messages per
visit and the longest messages. We use the ADT
(Admission/Discharge/Transfer) code in the pa-
tients’ records to determine transfer to the ICU. A
mheader is determined to have the outcome if an
ICU transfer occurs within the next 3 days of the
message send date (Table 1).

3 Methods

For each text message, we include the patient’s age
and gender, the total number of days spent in hos-
pital at the time the message is sent4, their pre-
scribed medication at the time of the message, and
their diagnosis. The medication and diagnosis are
encoded with one-word TF-IDF.

We then look at the following representations of
text messages. For each representation, we use at
most 20 words and zero-pad if necessary:
TF-IDF: We represent each text message with
its TF-IDF representation. We experiment with
word, n-gram, and character-level TF-IDF, as well
as combinations. We use n-gram TF-IDF (n =
1, 2, 3) in our final models.
Word2Vec: We use 1) pre-trained word embed-
dings (Mikolov et al., 2013) trained on publicly
available PubMed articles (Moen and Ananiadou,
2013), as well as 2) our own word embeddings,
trained on the text messages data. We train word

3 https://github.com/rfk/pyenchant
4this includes the number of days spent in the hospital

from previous visits

embeddings of dimension size 100, with a con-
text window equal to 5 for training (Bojanowski
et al., 2017). We explore different combinations
of the text message word embeddings through
concatenation, summing, and averaging. We re-
port results using a combination of all three types.
More specifically, we concatenate twenty 100-
dimensional word embeddings (2000 dimensions),
a sum of the word embeddings (100 dimensions),
and an average of the 20 words (100 dimensions),
for a total of 2200-dimensional feature vector.
Linguistic features: We represent each text mes-
sage as a vector containing 9 linguistic features.
We compute lexical features (character and word
count, word density5), syntactic features (counts
of nouns, verbs, adjectives, and adverbs), and pos-
itive and negative polarity extracted from nltk’s
sentiment analyzer (Loper and Bird, 2002).

We use an ANOVA-based feature selection (Pe-
dregosa et al., 2011), and we train a logistic re-
gression model. We report the macro F1 metric
averaged across 5-fold cross-validation.

4 Results

We experiment with Visit (i.e., age, gender, total
number of days spend in hospital, medication, and
diagnosis), TFIDF, Ling (i.e., linguistic), w2vSMS

(i.e., word vectors trained on text messages), and
w2vPubmed (i.e., pre-trained word vectors from
PubMed) features. When multiple text represen-
tations are used (e.g., TF-IDF and w2v), we con-
catenate them together. Typically, the addition of
linguistic features does not seem to improve per-
formance.

We then look at performance across data and
report results in Table 4 on the logistic regres-
sion model using visit information only, visit fea-

5Word density is the number of words in a message di-
vided by the number of characters in a message.

https://github.com/rfk/pyenchant


92

tures augmented with text message representations
(w2vSMS , and TFIDF ).

visit visit + wsms visit + tfidf

A 0.47 (0.01) 0.51 (0.02) 0.51 (0.01)
B 0.48 (0.01) 0.46 (0.07) 0.50 (0.01)
C 0.44 (0.02) 0.57 (0.05) 0.56 (0.04)
D 0.44 (0.03) 0.46 (0.07) 0.44 (0.04)
E 0.69 (0.28) 0.69 (0.28) 0.69 (0.28)

Table 4: Model performance across the different data.
F1 macro results on a logistic regression model using
1) visit features only, and 2) visit features, word2vec
embeddings (i.e., w2vSMS) and 3) visit features, TF-
IDF features.

Our results indicate that the addition of informa-
tion from text messages improves results in ICU
transfer prediction three days before the event hap-
pens. Our best results are in the model consisting
of visit and word2vec features trained on our data
(i.e., w2vSMS). We look more closely at the per-
formance of this model with this subset of features
in Table 5. As expected, the model does better on
messages that don’t result in ICU transfer. We ob-
tain recall of 0.22 and 0.43 in ICU transfer mes-
sages for Groups A and C, respectively.

Group A Group C

No ICU transfer P 0.86 (0.01) 0.78 (0.05)
R 0.80 (0.05) 0.73 (0.07)

ICU transfer P 0.16 (0.02) 0.36 (0.06)
R 0.22 (0.06) 0.43 (0.13)

Micro F1 0.72 (0.04) 0.65 (0.05)
Macro F1 0.51 (0.02) 0.57 (0.05)
Weighted F1 0.74 (0.03) 0.66 (0.05)

Table 5: Results for logistic regression model using
Visit and w2vSMS .

5 Discussion

Table 4 shows that the addition of text message
representations yields to improvements in Groups
A, B, C, and D. The greatest improvement in in
Group C. The proportion of messages which are
followed by an ICU transfer three days later is
much higher in Group C, which could reasonably
explain the difference in performance. However,
we also note that text messages in Group C tend
to be longer than other data, and that nurses in
Group C send more messages per visit. Across
all data, the best model performance is for Group

E but no improvement after adding text messages.
However, it consists of the smallest number of
messages and the highest variance in performance
across validation folds. The ratio of messages
which are followed by an ICU transfer in the next
3 days are 16.75%, 0.36%, 35.86%, 22.12% and
2.01% for Groups A, B, C, D, and E, respectively
(Table 2). The differences in performance could
be attributed to the number of messages.

Word w2vSMS w2vPubmed

dr dr., doctor, md,
resident, oncolo-
gist

99:1, diastereos-
electivities, ee,
=98:2, 98:2

bld blood, bloood,
blod , frozen,
pt.iv

whi, bldB,
EPS-deficient,
transposon-
generated, A-
factor-deficient

med medication,
pill, lactulose,
risperidone,
hypoglycemics

Nicolae, Delores,
Dres, habil., CSc.

bp b/p, bp=, bp-,
bpm, pulse

nt, bps, nts, bp-
long, bp-long

icu msicu, emerg, er,
cvicu, gim

bag/mask, Patient-
initiated, extra-
hospital, patient-
cycled, airway-
management

Table 6: Comparison of word embeddings. Top five
similar words for common abbreviated medical terms.
w2vSMS denotes the word embeddings trained on our
text message data and w2vPubmed denotes the word
embeddings trained on publicly available PubMed arti-
cles.

Using word embeddings trained on our data per-
forms better than the pre-trained ones. We dig
deeper and report the top 5 similar words of some
common medical terms in Table 6. Word embed-
dings trained on text messages do a much bet-
ter job of capturing different spellings (e.g., “bp”
and “b/p”) as well as common misspellings (e.g.,
“bloood” and “blod”). These results further high-
light the need for context-specific word embed-
dings (Chiu et al., 2016).

6 Conclusion & Future Work

In this work, we look at the added value of text
messages sent from nurses to doctors in predicting
transfer to the ICU within three days of the mes-
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sage send date. We find that including messages
from information - through linguistic features, TF-
IDF features, and word vector representations -
improves performance. This finding is consistent
in 4 of the 5 datasets divided by institutional codes.
The best performance was observed in the data
with the most ICU transfers, the longest text mes-
sages and the most text messages per visit and per
patient. We find that using word vectors trained on
the text messages results in the best model perfor-
mance, and a closer look shows that the embed-
dings do a better job at capturing misspellings and
abbreviations unique to text messages.

In future work, we want to investigate differ-
ences across the data, and hope to identify key
features of the text messages that are relevant in
identifying ICU transfer. Other than that, we will
also investigate the utility of adding the message
replies, along with the message headers, as fea-
tures. In this work, we have only looked at predic-
tions for a given text message. Exploring how the
prediction probabilities change over time would
also be of interest. We will also consider differ-
ent word embeddings (Peters et al., 2018), as we
hypothesize that character-level word embeddings
could better capture the unique vocabulary of text
messages. To address class imbalance, we will ex-
plore undersampling/oversampling methods such
as SMOTE (Chawla et al., 2002). Furthermore, we
want to look at the added value of text messages
in a more complex set of features (i.e., lab results
and vitals), as we believe that this would provide a
complete picture of the patient’s visit profile.
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