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Abstract

We revisit a particular visual grounding
method: the “Image Retrieval Using Scene
Graphs” (IRSG) system of Johnson et al.
(2015). Our experiments indicate that the sys-
tem does not effectively use its learned object-
relationship models. We also look closely
at the IRSG dataset, as well as the widely
used Visual Relationship Dataset (VRD) that
is adapted from it. We find that these datasets
exhibit biases that allow methods that ignore
relationships to perform relatively well. We
also describe several other problems with the
IRSG dataset, and report on experiments us-
ing a subset of the dataset in which the biases
and other problems are removed. Our stud-
ies contribute to a more general effort: that
of better understanding what machine learning
methods that combine language and vision ac-
tually learn and what popular datasets actually
test.

1 Introduction

Visual grounding is the general task of locating
the components of a structured description in an
image. In the visual-grounding literature, the
structured description is often a natural-language
phrase that has been parsed as a scene graph or
as a subject-predicate-object triple. As one exam-
ple of a visual-grounding challenge, Figure 1 illus-
trates the “Image Retrieval using Scene Graphs”
(IRSG) task (Johnson et al., 2015). Here the
sentence “A standing woman wearing dark sun-
glasses” is converted to a scene-graph representa-
tion (right) with nodes corresponding to objects,
attributes, and relationships. Given a scene graph

and an input image, the grounding task is to cre-
ate bounding boxes corresponding to the speci-
fied objects, such that the located objects have
the specified attributes and relationships (left).
A final energy score reflects the quality of the
match between the scene graph and the located
boxes (lower is better), and can be used to rank
images in a retrieval task. A second example
of visual grounding, illustrated in Figure 2, is
the “Referring Relationships” (RR) task of Kr-
ishna et al. (2018). Here, a sentence (e.g., “A
horse following a person”) is represented as a
subject-predicate-object triple (“horse”, “follow-
ing”, “person”). Given a triple and an input im-
age, the task is to create bounding boxes corre-
sponding to the named subject and object, such
that the located boxes fit the specified predicate.
Visual grounding tasks—at the intersection of vi-
sion and language—have become a popular area
of research in machine learning, with the poten-
tial of improving automated image editing, cap-
tioning, retrieval, and question-answering, among
other tasks.

While deep neural networks have produced
impressive progress in object detection, visual-
grounding tasks remain highly challenging. On
the language side, accurately transforming a natu-
ral language phrase to a structured description can
be difficult. On the vision side, the challenge is to
learn—in a way that can be generalized—visual
features of objects and attributes as well as flexi-
ble models of spatial and other relationships, and
then to apply these models to figure out which of a
given object class (e.g., woman) is the one referred
to, sometimes locating small objects and recog-
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Figure 1: An example of the scene-graph-grounding task of Johnson et al. (2015). Right: A phrase represented as
a scene graph. Left: A candidate grounding of the scene graph in a test image, here yielding a low energy score
(lower is better).

Figure 2: An example of the referring-relationship-grounding task of Krishna et al. (2018). Right: A phrase broken
into subject, predicate, and object categories. Left: a candidate grounding of subject and object in a test image.

nizing hard-to-see attributes (e.g., dark vs. clear
glasses). To date, the performance of machine
learning systems on visual-grounding tasks with
real-world datasets has been relatively low com-
pared to human performance.

In addition, some in the machine-vision com-
munity have questioned the effectiveness of pop-
ular datasets that have been developed to evaluate
the performance of systems on visual grounding
tasks like the ones illustrated in Figures 1 and 2.
Recently Cirik et al. (2018b) showed that for
the widely used dataset Google-Ref (Mao et al.,
2016), the task of grounding referring expressions
has exploitable biases: for example, a system that
predicts only object categories—ignoring relation-
ships and attributes—still performs well on this
task. Jabri et al. (2016) report related biases in
visual question-answering datasets.

In this paper we re-examine the visual ground-
ing approach of Johnson et al. (2015) to deter-
mine how well this system is actually performing
scene-graph grounding. In particular, we compare
this system with a simple baseline method to test
if the original system is using information from
object relationships, as claimed by Johnson et al.
(2015). In addition, we investigate possible biases
and other problems with the dataset used by John-
son et al. (2015), a version of which has also been
used in many later studies. We briefly survey re-
lated work in visual grounding, and discuss possi-
ble future studies in this area.

2 Image Retrieval Using Scene Graphs

2.1 Methods

The “Image Retrieval Using Scene Graphs”
(IRSG) method (Johnson et al., 2015) performs the
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task illustrated in Figure 1: given an input image
and a scene graph, output a grounding of the scene
graph in the image and an accompanying energy
score. The grounding consists of a set of bounding
boxes, each one corresponding to an object named
in the scene graph, with the goal that the ground-
ing gives the the best possible fit to the objects,
attributes, and relationships specified in the scene
graph. Note that the system described in (Johnson
et al., 2015) does not perform any linguistic analy-
sis; it assumes that a natural-language description
has already been transformed into a scene graph.

The IRSG system is trained on a set of human-
annotated images in which bounding boxes are
labeled with object categories and attributes, and
pairs of bounding boxes are labeled with relation-
ships. The system learns appearance models for
all object and attribute categories in the training
set, and relationship models for all training-set re-
lationships. The appearance model for object cate-
gories is learned as a convolutional neural network
(CNN), which inputs an bounding box from an im-
age and outputs a probability distribution over all
object categories. The appearance model for ob-
ject attributes is also learned as a CNN; it inputs
an image bounding box and outputs a probabil-
ity distribution over all attribute categories. The
pairwise spatial relationship models are learned as
Gaussian mixture models (GMMs); each GMM
inputs a pair of bounding boxes from an image and
outputs a probability density reflecting how well
the GMM judges the input boxes to fit the model’s
corresponding spatial relationship (e.g., “woman
wearing sunglasses”). Details of the training pro-
cedures are given in (Johnson et al., 2015).

After training is completed, the IRSG system
can be run on test images. Given a test image and
a scene graph, IRSG attempts to ground the scene
graph in the image as follows. First the system cre-
ates a set of candidate bounding boxes using the
Geodesic Object Proposal method (Krähenbühl
and Koltun, 2014). The object and attribute CNNs
are then used to assign probability distributions
over all object and attribute categories to each can-
didate bounding box. Next, for each relationship
in the scene graph, the GMM corresponding to that
relationship assigns a probability density to each
pair of candidate bounding boxes. The probability
density is calibrated by Platt scaling (Platt, 2000)
to provide a value representing the probability that
the given pair of boxes is in the specified relation-

ship.
Finally, these object and relationship probabil-

ities are used to configure a conditional random
field, implemented as factor graph. The objects
and attributes are unary factors in the factor graph,
each with one value for each image bounding
box. The relationships are binary factors, with
one value for each pair of bounding boxes. This
factor graph represents the probability distribution
of groundings conditioned on the scene graph and
bounding boxes. Belief propagation (Andres et al.,
2012) is then run on the factor graph to deter-
mine which candidate bounding boxes produce the
lowest-energy grounding of the given scene graph.
The output of the system is this grounding, along
with its energy. The lower the energy, the better
the predicted fit between the image and the scene
graph.

To use the IRSG system in image retrieval, with
a query represented as a scene graph, the IRSG
system applies the grounding procedure for the
given scene graph to every image in the test set,
and ranks the resulting images in order of increas-
ing energy. The highest ranking (lowest energy)
images can be returned as the results of the query.

Johnson et al. (2015) trained and tested the
IRSG method on an image dataset consisting of
5,000 images, split into 4,000 training images
and 1,000 testing images. The objects, attributes,
and relationships in each image were annotated
by Amazon Mechanical Turk workers; the au-
thors created scene graphs that captured the anno-
tations. IRSG was tested on two types of scene-
graph queries: full and partial. Each full scene-
graph query was a highly detailed description of a
single image in the test set—the average full scene
graph consisted of 14 objects, 19 attributes, and
22 relationships. The partial scene graphs were
generated by examination of subgraphs of the full
scene graphs. Each combination of two objects,
one relation, and one or two attributes was drawn
from each full scene graph, and any partial scene
graph that was found at least five times was added
to the collection of partial queries. Johnson et al.
randomly selected 119 partial queries to constitute
the test set for partial queries.

2.2 Original Results

Johnson et al. (2015) used a “recall at k” metric to
measure their their system’s image retrieval per-
formance. In experiments on both full and partial



40

scene-graph queries, the authors found that their
method outperformed several baselines. In par-
ticular, it outperformed—by a small degree—two
“ablated” forms of their method: the first in which
only object probabilities were used (attribute and
relationship probabilities were ignored), and the
second in which both object and attribute probabil-
ities were used but relationship probabilities were
ignored.

3 Revisiting IRSG

We obtained the IRSG code from the authors
(Johnson et al., 2015), and attempted to replicate
their reported results on the partial scene graphs.
(Our study included only the partial scene graphs,
which seemed to us to be a more realistic use case
for image retrieval than the complex full graphs,
each of which described only one image in the
set.) We performed additional experiments in or-
der to answer the following questions: (1) Does
using relationship information in addition to ob-
ject information actually help the system’s perfor-
mance? (2) Does the dataset used in this study
have exploitable biases, similar to the findings of
Cirik et al. (2018b) on the Google-Ref dataset?
Note that here we use the term “bias” to mean
any aspect of the dataset that allows a learning
algorithm to rely on shallow correlations, rather
than actually solving the intended task. (3) If the
dataset does contain biases, how would IRSG per-
form on a dataset that did not contain such biases?

3.1 Comparing IRSG with an Object-Only
Baseline

To investigate the first two questions, we created
a baseline image-retrieval method that uses infor-
mation only from object probabilities. Given a test
image and a scene-graph query, we ran IRSG’s
Geodesic Object Proposal method on the test im-
age to obtain bounding boxes, and we ran IRSG’s
trained CNN on each bounding box to obtain a
probability for each object category. For each
object category named in the query, our baseline
method simply selects the bounding box with the
highest probability for that query. No attribute or
relationship information is used. We then use a
recall at k (R@k) metric to compare the perfor-
mance of our baseline method to that of the IRSG
method.

Our R@k metric was calculated as follows. For
a given scene-graph query, let Sp be the set of pos-

itive images in the test set, where a positive image
is one whose ground-truth object, attribute, and re-
lationship labels match the query. Let Sn be the
set of negative images in the test set. For each
scene-graph query, IRSG was run on both Sp and
Sn, returning an energy score for each image with
respect to the scene graph. For each image we
also computed a second score: the geometric mean
of the highest object-category probabilities, as de-
scribed above. The latter score ignored attribute
and relationship information. We then rank-order
each image in the test set by its score: for the IRSG
method, scores (energy values—lower is better)
are ranked in ascending order; for the baseline
method, scores (geometric mean values—higher
is better) are ranked in descending order. Because
the size of Sp is different for different queries, we
consider each positive image Ip ∈ Sp separately.
We put Ip alone in a pool with all the negative im-
ages, and ask if Ip is ranked in the top k. We define
R@k as the fraction of images in Sp that are top-
k in this sense. For example, R@1 = .2 would
mean that 20% of the positive images are ranked
above all of the negative images for this query;
R@2 = .3 would mean that 30% of the positive
images are ranked above all but at most one of the
negative images, and so on. This metric is slightly
different from—and, we believe, provides a more
useful evaluation than—the recall at k metric used
in (Johnson et al., 2015), which only counted the
position of the top-ranked positive image for each
query in calculating R@k.

We computed R@k in this way for each of the
150 partial scene graphs that were available in the
test set provided by Johnson et al., and then av-
eraged the 150 values at each k. The results are
shown in Figure 3, for k = 1, ..., 1000. It can
be seen that the two curves are nearly identical.
Our result differs in a small degree from the re-
sults reported in (Johnson et al., 2015), in which
IRSG performed slightly but noticeably better than
an object-only version. The difference might be
due to differences in the particular subset of scene-
graph queries they used (they randomly selected
119, which were not listed in their paper), or to
the slightly different R@k metrics.

Our results imply that, contrary to expectations,
IRSG performance does not benefit from the sys-
tem’s relationship models. (IRSG performance
also does not seem to benefit from the system’s
attribute models, but here we focus on the role of
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Figure 3: Recall at k values for IRSG and the geometric-mean baseline on the partial query dataset from (Johnson
et al., 2015). This figure shows the averaged R@k values for all partial scene-graph queries.

relationships.) There are two possible reasons for
this: (1) the object-relationship models (Gaussian
mixture models) in IRSG are not capturing useful
information; or (2) there are biases in the dataset
that allow successful scene-graph grounding with-
out any information from object relationships. Our
studies show that both hypotheses are correct.

Figure 4 shows results that support the first
hypothesis. If, for a given scene-graph query,
we look at IRSG’s lowest-energy configuration
of bounding boxes for every image, and com-
pare the full (object-attribute-relationship) factor-
ization (product of probabilities) to the factoriza-
tion without relationships, we can see that the
amount of information provided by the relation-
ships is quite small. For example, for the query
“clear glasses on woman”, Figure 4 is a scatter
plot in which each point represents an image in
the test set. The x-axis values give the products
of IRSG-assigned probabilities for objects and at-
tributes in the scene graph, and the y-axis values
give the full product—that is, including the rela-
tionship probabilities. If the relationship probabil-
ities added useful information, we would expect a
non-linear relationship between the x- and y-axis
values. However, the plot generally shows a sim-
ple linear relationship (linear regression goodness-
of-fit r2 = 0.97), which indicates that the relation-
ship distribution is not adding significant informa-

tion to the final grounding energy. We found that
over 90% of the queries exhibited very strong lin-
ear relationships (r2 ≥ 0.8) of this kind. This sug-
gests that the relationship probabilities computed
by the GMMs are not capturing useful informa-
tion.

We investigated the second hypothesis—that
there are biases in the dataset that allow suc-
cessful object grounding without relationship
information—by a manual inspection of the 150
scene-graph queries and a sample of the 1,000 test
images. We found two types of such biases. In
the first type, a positive test image for a given
query contains only one instance of each query ob-
ject, which makes relationship information super-
fluous. For example, when given a query such as
“standing man wearing shirt” there is no need to
distinguish which is the particular “standing man”
who is wearing a “shirt”: there is only one of
each. In the second type of bias, a positive image
for a given query contains multiple instances of
the query objects, but any of the instances would
be a correct grounding for the query. For exam-
ple, when given the query “black tire on road”,
even if there are many different tires in the image,
all of them are black and all of them are on the
road. Thus any black-tire grounding will be cor-
rect. Time constraints prevented us from making a
precise count of instances of these biases for each
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Figure 4: A scatterplot of the factorizations for a single query in the original dataset (”clear glasses on woman”),
each point representing a single image. The x-axis value is the product of the object and attribute probability values
from IRSG’s lowest-energy grounding on this image. The y-axis value includes the product of the relationship
probabilities. A strong relationship model would modify the object-attribute factorization and create a larger
spread of values than what is evident in this figure. We found similar strongly linear relationships for over 90% of
the queries in the test set.

query, but our sampling suggested that examples
of such biases occur in the positive test images for
at least half of the queries.

A closer look at the dataset and queries revealed
several additional issues that make it difficult to
evaluate the performance of a visual grounding
system. While Johnson et al. (2015) reported
averages over many partial scene-graph queries,
these averages were biased by the fact that in sev-
eral cases essentially same query appeared more
than once in the set, sometimes using synonymous
terms (e.g., “bus on gray street” and “bus on gray
road” are counted as separate queries, as are “man
on bench” and “sitting man on bench”). Removing
duplicates of this kind decreases the original set of
150 queries to 105 unique queries. Going further,
we found that some queries included two instances
of a single object class: for example, “standing
man next to man”. We found that when given such
queries, the IRSG system would typically create
two bounding boxes around the same object in the
image (e.g., the “standing man” and the other man
would be grounded as the same person).

Additionally, there are typically very few pos-
itive images per query in the test set. The mean
number of positive images per query is 6.5, and

the median number is 5. The dataset would ben-
efit from a greater number of positive results for
more thorough testing results.

The dataset was annotated by Amazon Me-
chanical Turk workers using an open annotation
scheme, rather than directing the workers to se-
lect from a specific set of classes, attributes,
and relationships. Due to the open scheme,
there are numerous errors that affect a system’s
learning potential, including mislabeled objects
and relationships, as well as typographical er-
rors (refridgerator [sic]), synonyms (kid/child,
man/guy/boy/person), and many prominent ob-
jects left unlabeled. These errors can lead to false
negatives during testing.

3.2 Testing IRSG on “Clean” Queries and
Data

To assess the performance of IRSG without
the complications of many of these data and
query issues, we created seven queries—involving
only objects and relationships, no attributes—that
avoided many of the ambiguities described above.
We made sure that there were at least 10 positive
test-set examples for each query, and we fixed the
labeling in the training and test data to make sure
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that all objects named in these queries were cor-
rectly labeled. The queries (and number of posi-
tive examples for each in the test set) are the fol-
lowing:

• Person Has Beard: 96

• Person Wearing Helmet: 81

• Person Wearing Sunglasses: 79

• Pillow On Couch: 38

• Person On Skateboard: 29

• Person On Bench: 18

• Person On Horse: 13

We call this set of queries, along with their training
and test examples, the “clean dataset”.

Using only these queries, we repeated the com-
parison between IRSG and the geometric-mean
baseline described above. The R@k results are
shown in Figure 5. These results are very sim-
ilar to those in Figure 3. This result indicates
that, while the original dataset exhibits biases and
other problems that make the original system hard
to evaluate, it still seems that relationship proba-
bilities do not provide strongly distinguishing in-
formation to the other components of the IRSG
method. The lack of strong relationship perfor-
mance was also seen in (Quinn et al., 2018) where
the IRSG and object-only baseline method showed
almost identical R@k performance on a different,
larger dataset.

4 Revisiting “Referring Relationship”
Grounding

The IRSG task is closely related to the “Refer-
ring Relationships” (RR) task, proposed by Kr-
ishna et al. (2018) and illustrated in Figure 2. The
method developed by Krishna et al. uses iterative
attention to shift between image regions accord-
ing to the given predicate, in order to locate sub-
ject and object. The authors evaluated their model
on several datasets, including the same images
as were in the IRSG dataset (here called “VRD”
or “visual relationship dataset”), but with 4710
referring-relationship queries (several per test im-
age). The evaluation metric they reported was
mean intersection over union (IOU) of the sub-
ject and object detections with ground-truth boxes.
This metric does not give information about the

detection rate. To investigate whether biases ap-
pear in this dataset and queries similar to the ones
we described above, we again created a baseline
method that used only object information. In par-
ticular, we used the VRD training set to fine-tune
a pre-trained version1 of the faster-RCNN object-
detection method (Ren et al., 2015) on the object
categories that appear in the VRD dataset. We
then ran faster-RCNN on each test image, and for
each query selected the highest-confidence bound-
ing box for the subject and object categories. (If
the query subject and object were the same cate-
gory, we randomly assigned subject and object to
the highest and second-highest confidence boxes.)
Finally, for each query, we manually examined
visualizations of the predicted subject and object
boxes in each test image to determine whether the
subject and object boxes fit the subject, object, and
predicate of the query. We found that for 56%
of the image/query pairs, faster-RCNN had iden-
tified correct subject and object boxes. In short,
our object-only baseline was able to correctly lo-
cate the subject and object 56% of the time, using
no relationship information. This indicates signif-
icant biases in the dataset, which calls into ques-
tion any published referring-relationship results on
this dataset that does not compare with this base-
line. In future work we plan to replicate the re-
sults reported by Krishna et al. (2018) and to com-
pare it with our object-only baseline. We hope to
do the same for other published results on refer-
ring relationships using the VRD dataset, among
other datasets (Cirik et al., 2018a; Liu et al., 2019;
Raboh et al., 2019).

5 Related Work

Other groups have explored grounding single ob-
jects referred to by natural-language expressions
(Hu et al., 2016; Nagaraja et al., 2016; Hu et al.,
2017; Zhang et al., 2018) and grounding all nouns
mentioned in a natural language phrase (Rohrbach
et al., 2016; Plummer et al., 2017, 2018; Yeh et al.,
2017).

Visual grounding is different from, though re-
lated to, tasks such as visual relationship detec-
tion (Lu et al., 2016), in which the task is not to
ground a particular phrase in an image, but to de-
tect all known relationships. The VRD dataset we

1We used faster rcnn resnet101 coco from
https://github.com/tensorflow/models/
blob/master/research/object_detection/
g3doc/detection_model_zoo.md.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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Figure 5: R@k values for the IRSG model and geometric mean model on the clean dataset. This figure shows, for
each k, the averaged R@k values over the seven queries.

described above is commonly used in visual re-
lationship detection tasks, and to our knowledge
there are no prior studies of bias and other prob-
lems in this dataset.

It should be noted that visual grounding also
differs from automated caption generation (Xu
et al., 2015) and automated scene graph genera-
tion (Xu et al., 2017), which input an image and
output a natural language phrase or a scene graph,
respectively.

The diversity of datasets used in these various
studies as well as the known biases and other prob-
lems in many widely used datasets makes it dif-
ficult to determine the state of the art in visual
grounding tasks as well as related tasks such as
visual relationship detection.

6 Conclusions and Future Work

We have closely investigated one highly cited ap-
proach to visual grounding, the IRSG method of
(Johnson et al., 2015). We demonstrated that
this method does not perform better than a sim-
ple object-only baseline, and does not seem to
use information from relationships between ob-
jects, contrary to the authors’ claims, at least on
the original dataset of partial scene graphs as well
as on our “clean” version. We have also identified
exploitable biases and other problems associated
with this dataset, as well as with the version used

in Krishna et al. (2018).
Our work can be seen as a contribution to the

effort promoted by Cirik et al. (2018b): “to make
meaningful progress on grounded language tasks,
we need to pay careful attention to what and how
our models are learning, and whether or datasets
contain exploitable bias.” In future work, we
plan to investigate other prominent algorithms and
datasets for visual grounding, as well as to curate
benchmarks without the biases and problems we
described above. Some researchers have used syn-
thetically generated data, such as the CLEVR set
(Johnson et al., 2017); however to date the high
performances of visual grounding systems on this
dataset have not translated to high performance on
real-world datasets (e.g., Krishna et al. (2018)).
We also plan to explore alternative approaches to
visual grounding tasks, such as the “active” ap-
proach described by Quinn et al. (2018).
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