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Introduction

We are pleased to bring you the Proceedings of the 8th Workshop on Speech and Language Processing
for Assistive Technologies (SLPAT), held in Minneapolis, Minnesota, USA, on June 7, 2019. This
workshop was intended to bring researchers from all areas of speech and language technology with a
common interest in making everyday life more accessible for people facing physical, cognitive, sensory,
emotional or developmental communication challenges. This workshop builds on seven previous such
workshops co-located with conferences such as ACL, NAACL, EMNLP and Interspeech. It provides an
opportunity for individuals from research communities, and the individuals with whom they are working,
to share research findings, and to discuss present and future challenges and the potential for collaboration
and progress.

While Augmentative and Alternative Communication (AAC) is a particularly apt application area for
speech and natural language processing technologies, we purposefully made the scope of the workshop
broad enough to include assistive technologies (AT) as a whole, even those falling outside of AAC. Thus
we have aimed at broad inclusivity, which is also manifest in the diversity of our program committee.

We thank all the people who made this event possible including both the authors and the members of the
program committee.

Heidi Christensen, Kristy Hollingshead, Emily Prud’hommeaux, Frank Rudzicz, and Keith Vertanen
Co-organizers of SLPAT 2019
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Abstract

Participating in conversations can be difficult
for people with hearing loss, especially in
acoustically challenging environments. We
studied the preferences the hearing impaired
have for a personal conversation assistant
based on automatic speech recognition (ASR)
technology. We created two prototypes which
were evaluated by hearing impaired test users.
This paper qualitatively compares the two
based on the feedback obtained from the tests.
The first prototype was a proof-of-concept sys-
tem running real-time ASR on a laptop. The
second prototype was developed for a mobile
device with the recognizer running on a sepa-
rate server. In the mobile device, augmented
reality (AR) was used to help the hearing im-
paired observe gestures and lip movements of
the speaker simultaneously with the transcrip-
tions. Several testers found the systems useful
enough to use in their daily lives, with majority
preferring the mobile AR version. The biggest
concern of the testers was the accuracy of the
transcriptions and the lack of speaker identifi-
cation.

1 Introduction

Hearing loss can make the participation in normal
conversations an exhausting task, because people
with hearing impairments need to focus more on
the conversation to be able to keep up (Arlinger,
2003). This can cause the deaf and hard of hearing
to withdraw from social interactions, leading to
isolation and poorer well-being (Arlinger, 2003).
Having access to an automatic speech recognizer
(ASR) designed to answer their needs could make
participation in everyday conversations consider-
ably easier for them.

People with hearing impairment are a hetero-
geneous group with significant variability in the

degree of hearing loss and its causes. Hearing
aids and implants can restore hearing to a degree,
but they struggle in noisy environments (Goehring
et al., 2016). Many people with hearing impair-
ments also refuse to use aids because they are
perceived as uncomfortable or costly (Gates and
Mills, 2005). Professional human interpreters can
help the deaf and hard of hearing with their near
real-time transcription, but they require advance
booking and are also costly (Lasecki et al., 2017).

ASR has the potential to both function as a sup-
port and a replacement to other solutions. The
strengths of ASR include accessibility with little
cost, nearly real-time transcription and indepen-
dence of costly human labour. Furthermore, it can
be helpful to anyone irrespective of their degree
of hearing loss. The weaknesses of ASR are in
robustness and the lack of support for speaker di-
arization. And even though the accuracy of ASR
has improved to a level where it rivals human tran-
scribers (Xiong et al., 2017), noisy environments,
accented speakers, and far-field microphones re-
main a challenge (Yu and Deng, 2015). Addition-
ally, recognizing and conveying paralinguistic fea-
tures like tone, pitch and gestures is difficult for
automatic systems.

The objective of our work is to study the pref-
erences of the deaf and hard of hearing when us-
ing ASR-based conversation assistants. We con-
structed two pilot Finnish language ASR systems
for two portable devices with different display op-
tions. The first system is a standalone laptop
ASR that does not utilize network connection or
video camera. The second system is a mobile de-
vice wirelessly connected to an ASR server. In
the mobile device the ASR transcript is shown in
augmented video stream next to the head of the
speaker. The purpose of this augmented reality
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(AR) view is to reduce visual dispersion, which
in this case refers to the need of the user to switch
attention between multiple visuals. These two se-
tups were tested by deaf and hard of hearing users,
who were then interviewed to find out their pref-
erences. We review the results and compare the
feedback the systems received.

1.1 Previous work

Automatic speech recognition research focusing
specifically on helping people with hearing im-
pairments has gone on at least since 1996 (Ro-
bison and Jensema, 1996). The first assistive
ASR system for the Finnish deaf and hard of
hearing was devised in 1997 (Karjalainen et al.,
1997). Since then, helping the deaf and hard
of hearing in their school environment has been
a concern in many assistive ASR systems. A
lot of this research focuses in providing real-time
ASR-generated transcriptions of lectures (Wald,
2006; Kheir and Way, 2007; Ranchal et al., 2013).
Major effort is also dedicated to improving the
ASR aided learning experience in other ways,
such as minimizing visual dispersion (Cavender
et al., 2009; Kushalnagar and Kushalnagar, 2014;
Kushalnagar et al., 2010), comparing captioning
and transcribing of online video lectures (Kushal-
nagar et al., 2013), and using human editors to cor-
rect ASR output (Wald, 2006). Our work focuses
more generally on helping people with hearing im-
pairments in conversational situations, not just the
school setting.

Other notable applications include the system of
Matthews et al. (2006), where mobile phones were
used for delivering human-made transcriptions via
text messages. They showed transcriptions could
help people with hearing impairments, but lacked
the ASR component. The transcription table de-
sign from Van Gelder et al. (2005) provided all
meeting participants with partial text support. The
aim there was to minimize the stigma on the deaf
or hard of hearing participant.

The idea to use AR has also been introduced
before in the work of Mirzaei et al. (2012, 2014)
and Suemitsu et al. (2015). The system of Mirzaei
et al. is similar to our mobile AR system, but it
is developed for ultra mobile personal computers
and has a text-to-speech component. In the work
of Suemitsu et al. the focus is on reducing effect
of noise with directional microphones and beam-
forming. As a consequence, their system works

well only if the speaker is directly in front of the
user. Moreover, both of these works lack the user
perspective because the focus is more on the sys-
tem design.

2 Conversation Assistant

Our aim in building the two Conversation Assis-
tant systems was to provide automatic transcrip-
tions to people with hearing impairments in a use-
ful format. A useful conversation assistant sys-
tem can (1) recognize large-vocabulary continu-
ous speech in real-time, (2) manage varying acous-
tic environments with noise, and (3) present the
transcriptions in a clear manner. Achieving the
first two requirements is possible with modern
speech recognition systems, however, their com-
puting power and memory consumption pose lim-
itations on the system design. The minimal solu-
tion to the third requirement would be to just dis-
play the recognition results on a screen, but look-
ing at the screen would cause the user to miss non-
verbal communication, like gestures.

We built two prototypes of the Conversation As-
sistant system: one running on a laptop and one on
a mobile device with augmented reality (AR) ca-
pabilities. In both systems, Kaldi Speech Recogni-
tion Toolkit (Povey et al., 2011) was used to build
the speech recognition models. In addition, we
used Gst-Kaldi, a GStreamer plugin, for handling
the incoming audio. The source codes for both the
laptop version1 and the mobile AR version2 are
published on Github.

2.1 Laptop

The laptop version was built for the first round of
user tests, to find out the preferences of the deaf
and hard of hearing for the Conversation Assistant
concept in general. We therefore built a decidedly
simple system. It ran a Kaldi speech recognition
model locally on a laptop. The acoustic model
of the automatic speech recognizer was a feed-
forward deep neural network, trained on multi-
condition data to increase noise robustness. The
robustness to noise is important, because conver-
sations are rarely had in silent environment. The
data for training the acoustic model came from the
SPEECON corpus (Iskra et al., 2002). The lan-
guage model was trained using the Kielipankki3

1https://github.com/Esgrove/mastersthesis
2https://github.com/aalto-speech/conversation-assistant
3The Language Bank of Finland
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(a) Laptop version. The speech recognition results are at the
top of the window. The speech being recognized currently is
displayed at the bottom with orange background.

(b) Mobile AR version. The speech recognition results are
placed in speech bubbles next to the face of the speaker.

Figure 1: User interface screenshots from the software.

corpus and the lexicon was based on morphs (Vir-
pioja et al., 2013) instead of words, because of the
morphological complexity of Finnish. The speech
recognition model had a word error rate (WER)
of 29.7 % when tested on (low-noise) broadcast

news data from the Finnish public broadcaster
YLE (Lukkarila, 2017). The user interface (UI),
shown in Figure 1a, was kept minimal with only
a record button and space for the transcription re-
sults. A more detailed description of the system is
given in (Lukkarila, 2017).

2.2 Mobile AR

The main objective of the mobile AR Conversa-
tion Assistant was to move the laptop-based sys-
tem to a mobile device platform and use AR to
bring the transcriptions and a visual of the speaker
close to each other. With the latter we aimed to
reduce the amount of non-verbal communication
the user loses when switching between the speaker
and the transcriptions. The reduced computational
capabilities of mobile devices necessitated split-
ting the system into a separate mobile AR applica-
tion and a speech recognition server.

The mobile application was developed for the
iOS platform using a 10.5” iPad Pro tablet from
Apple as a test device. In the application, AR cam-
era is used to provide a view of the speaker. The
face of the speaker is located locally on the de-
vice with a face recognition algorithm provided as
part of iOS toolkits. When speech is recorded by
the device, the application sends the audio to the
server for recognition. The text transcriptions re-
turned from the server are then placed in speech
bubbles next to the detected face as shown in Fig-
ure 1b. The bubbles follow the face of the speaker,
if he or she moves in the screen.

The server side uses an open-source Kaldi
Server implementation (Alumäe, 2014) based on
Gst-Kaldi. The server is split to a controlling
master server unit and workers responsible for the
recognition process. Each mobile device connect-
ing to the server needs one worker to do the tran-
scribing and connections between the two are han-
dled by the master server. The master server and
the workers can be run on different machines and
all the communication happens over the internet.
This requires stable connections from all parties,
including the mobile client, but on the upside, the
system can be scaled up as much as needed.

In the speech recognizer, the acoustic model
was a combination of time-delay and long short-
term memory neural network trained with Finnish
Parliament Speech Corpus (Mansikkaniemi et al.,
2017). This training data is significantly larger
than the one used for the laptop system, but in-
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cludes little background noise. The language
model was trained with the same data as in the lap-
top system, but utilizing a more recent subword
modeling optimized for Kaldi’s weighted finite
state transducer architecture (Smit et al., 2017).
The speech recognition model scored WER of
18.56 % on the YLE data which is more than
a 10 % absolute improvement over the model in
the laptop system (Mansikkaniemi et al., 2017).
Even though these evaluations were not performed
for noisy tasks, we expect that the improvement
is substantial enough to cover the lack of noise-
robustness for our user tests. For a more de-
tailed description of the system, see the work in
(Virkkunen, 2018).

3 User tests

To evaluate the prototypes, we organized user tests
for both versions with deaf and hard of hearing
participants. Our aim was to simulate noisy con-
versational situations to see how much the Conver-
sation Assistant could help the tester in following
the conversation. In the user tests of the laptop
version, the participant had a conversation with
and without the support of the Conversation As-
sistant. In the mobile AR tests, the comparison
was made between a text-only view similar to the
laptop version and the AR view seen in figure 1b.
The contents of this section are further detailed in
(Lukkarila, 2017) and (Virkkunen, 2018).

The test users were recruited with the help of
Kuuloliitto, the association of the deaf and hard of
hearing in Finland. The number of participants for
the laptop and mobile AR versions were nine and
twelve, respectively. The sample size was limited
by the number of volunteers we were able to find.
Each participant was also asked to give a written
consent and permission to record the test session.
Six people took part in both tests so in total there
were 15 unique participants. The age of the testers,
excluding two who refused to disclose their age,
ranged from 15 to 84, with the median age be-
ing 55. All except two participants were women.
Two of the participants were deaf, but they could
communicate verbally. The rest had different de-
grees of hearing loss and used either hearing aids,
cochlear implants or both in their daily lives. Four
participants also had used ASR applications be-
fore, for example personal voice assistants, auto-
matic video captioning, the Google Translate ser-
vice and note takers.

3.1 Test setup

The test setup simulated a conversation of two
people in a noisy environment. The test adminis-
trator and the participant would sit face-to-face at a
table surrounded by loudspeakers playing a looped
noise recording from a busy cafe. The participant
had the laptop/mobile device in front of them and
they could freely alternate between following the
application and their conversation partner. In the
case of mobile AR, the participant could choose to
hold the device in their hands or place it on a tri-
pod. The test was designed to last for one hour and
the feedback was collected using a questionnaire.
The overall structure and content of the question-
naires is the same between the two user tests, but
small changes were made to the mobile AR ver-
sion to reflect the changes in the system.

The test and the questionnaire had four sections:
introduction, word explaining, conversation, and
debriefing. In the introduction the test participant
was familiarized with the test plan and the Conver-
sation Assistant. The participant was also asked to
fill in their background information in the ques-
tionnaire. In the debriefing section, the participant
was asked to give overall feedback on the system.

The first task, word explaining, consisted of the
test administrator explaining words from a list to
the participant, who tried to guess the word in
question. Halfway through the task, the partici-
pant was asked to switch between the compared
methods (without versus with Conversation Assis-
tant or text view versus AR view). After finishing
the word list or running out of time, the participant
gave feedback in the questionnaire. In the second
task, the conversation, the test administrator con-
versed with the test participant on a range of com-
mon topics from hobbies to food and travel for 10-
15 minutes. Switch between the compared meth-
ods was made at the midpoint again. And after a
time limit set for the task was reached, the partic-
ipant was asked to give feedback on the question-
naire.

3.2 Results

The questionnaire had questions with both writ-
ten and numeric format. Question with written
feedback were concerned with the potential use
cases of the system and its strengths and weak-
nesses. The numeric questions assessed the per-
ceived quality of the system and the preferences of
the testers. The numeric questions further break
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Figure 2: Rating results from task 1, word explanation (left side of each plot) and task 2, conversation (right side
of each plot). The range from one to seven is the same as in Figure 3.

down into binary choices, one multiple-choice
question and rating questions. The rating ques-
tions had a range from one (negative) to seven
(positive). Questions with numeric format also
had text fields where the testers could elaborate
their choices if they wanted.

Several numeric results (Table 1, Figure 3 and
top-left of Figure 2) show that the participants
found both Conversation Assistant systems use-
ful. Majority of the participants would adopt a
Conversation Assistant system in their daily lives.
Potential use cases and environments mentioned
included daily conversations, meetings, museums,
restaurants, live television, lectures and office.
Speed and ease of following the output in both
systems were also rated favorably with few excep-

Would you use an application like the
Conversation Assistant in your daily life?
Yes: 83 % No: 17 %
Which mode would you prefer?
With AR view: 67 % Text-only view: 33 %
Which one of the following options is
better?
Text appears faster
(<1 sec), but contains
more mistakes: 67 %

Text appears slower
(>1 sec), but contains
less mistakes: 33 %

Table 1: Results to the binary questions asked in the
user tests of the mobile AR version.

tions in Figure 2. Those who disagreed said that
the following suffered mostly from recognition er-
rors. Another point raised was the movement and
positioning of the speech bubbles in the mobile
AR version which felt distracting to some.

Speech recognition errors were the biggest
problem reducing the perceived utility of the sys-

Mobile AR Laptop

1
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4

5

6

7

R
a

tin
g

Was the Conversation Assistant

helpful in the test situations?

Figure 3: Rating of the overall usefulness of the sys-
tem. The range is from one (negative) to seven (pos-
itive). In the box plots, the circle with the dot marks
the median. The bottom and top of the box correspond
to 25th and 75th percentiles, respectively. The sam-
ple is skewed if the median is not at the middle of the
box. The whiskers show the extreme data points that
are not considered outliers. The data points outside the
whiskers are marked with plus signs.
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comparison to the text-only mode?

Figure 4: In the user tests of the mobile AR version,
the testers were asked to rate whether they preferred
having AR view over the text-only view. The range is
from minus three (much worse) to three (much better).

tem. The ratings are similar for the two systems,
but the AR mobile has less negative ratings over-
all. In Figure 2 it can be seen that ratings of the ac-
curacy reflect the ratings of the helpfulness. Many
felt the transcriptions helped them get an idea of
the conversation, but that they could not solely rely
on the transcriptions because of the errors. More-
over, a couple of participants noted they used the
Conversation Assistant only a little because they
could use lip reading instead. They would need
transcriptions only in group conversations or in
cases where the face of the speaker cannot be seen.

Figure 4 shows that the user testers preferred the
AR view over having text-only view similar to the
laptop version. Majority of the answers cited the
ability to use lip reading in AR view as the decisive
factor. Two participants thought the views would
have different use cases, for example the text-only
view could be useful in meetings. One found the
text-only view cleaner and easier to follow than the
AR view. Some testers also worried that pointing
the device camera at the conversation partner in
the mobile AR version would feel inappropriate.

Figure 5 shows the participants preferences for
end-user devices. It is clear from the answers that
the device needs to be mobile to be of any use.
Most people would like to have the application
on their smartphones, as it is a device most peo-
ple own and carry around everywhere. Tablets and
laptops also get many votes, especially from work-
ing age people. Smart glasses got votes from three
curious participants, though we anticipated more.
We hypothesize the image most people have of
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Figure 5: Which device the participants would like to
use the Conversation Assistant on.

AR glasses is that they are bulky, impractical and
stand out. This could explain the lack of appeal
the glasses had among the participants.

4 Conclusions

We evaluated two prototypes of a conversational
assistant for the deaf and hard of hearing by user
tests. The results show that it is already possible to
build an assistive application the deaf and hard of
hearing find useful with current technology. In the
written feedback many expressed the urgent need
for this type of application. Several people noted
they would download the mobile application if it
were available, despite its flaws. Majority of the
test users preferred the mobile AR version because
it supported their use of lip reading. A couple of
participants saw potential use for both versions de-
pending on the situation.

Accuracy of the transcriptions was the biggest
issue in need of improvement according to the par-
ticipants. Several testers also noted that group
conversations in noise are the most difficult to fol-
low. For them, speaker diarization would be the
feature that would make the Conversation Assis-
tant truly useful. Both systems also lack direct un-
mediated eye contact which could be potentially
solved with AR glasses. However, to be widely
adopted, the glasses would have to be unobtrusive
and light weight.
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André Mansikkaniemi, Peter Smit, Mikko Kurimo,
et al. 2017. Automatic construction of the Finnish
parliament speech corpus. In INTERSPEECH
2017–18th Annual Conference of the International
Speech Communication Association.

Tara Matthews, Scott Carter, Carol Pai, Janette Fong,
and Jennifer Mankoff. 2006. Scribe4me: Evaluating
a mobile sound transcription tool for the deaf. In
UbiComp 2006: Ubiquitous Computing, pages 159–
176. Springer.

Mohammad Reza Mirzaei, Seyed Ghorshi, and Mo-
hammad Mortazavi. 2012. Combining augmented
reality and speech technologies to help deaf and hard
of hearing people. In 2012 14th Symposium on Vir-
tual and Augmented Reality, pages 174–181.

Mohammad Reza Mirzaei, Seyed Ghorshi, and Mo-
hammad Mortazavi. 2014. Audio-visual speech
recognition techniques in augmented reality envi-
ronments. The Visual Computer, 30(3):245–257.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The Kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Pro-
cessing Society. IEEE Catalog No.: CFP11SRW-
USB.

Rohit Ranchal, Teresa Taber-Doughty, Yiren Guo,
Keith Bain, Heather Martin, J Paul Robinson, and
Bradley S Duerstock. 2013. Using speech recogni-
tion for real-time captioning and lecture transcrip-
tion in the classroom. IEEE Transactions on Learn-
ing Technologies, 6(4):299–311.

Joseph Robison and Carl Jensema. 1996. Computer
speech recognition as an assistive device for deaf
and hard of hearing people. In Biennial Conference
on Postsecondary Education for Persons Who Are
Deaf or Hard of Hearing (7th, Knoxville, Tennessee,
volume 948, page 154. ERIC.

Peter Smit, Sami Virpioja, and Mikko Kurimo.
2017. Improved subword modeling for WFST-
based speech recognition. In INTERSPEECH 2017
– 18th Annual Conference of the International
Speech Communication Association, pages 2551–
2555, Stockholm, Sweden.

7



Kazuki Suemitsu, Keiichi Zempo, Koichi Mizutani,
and Naoto Wakatsuki. 2015. Caption support sys-
tem for complementary dialogical information us-
ing see-through head mounted display. In 2015
IEEE 4th Global Conference on Consumer Electron-
ics (GCCE), pages 368–371.

Joris Van Gelder, Irene Van Peer, and Dzmitry Ali-
akseyeu. 2005. Transcription table: Text support
during meetings. In IFIP Conference on Human-
Computer Interaction, pages 1002–1005. Springer.

Anja Virkkunen. 2018. Automatic speech recognition
for the hearing impaired in an augmented reality ap-
plication. MSc Thesis, Aalto University.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and
Mikko Kurimo. 2013. Morfessor 2.0: Python im-
plementation and extensions for Morfessor Baseline.
Technical report, Aalto University.

Mike Wald. 2006. Captioning for deaf and hard of
hearing people by editing automatic speech recogni-
tion in real time. In Computers Helping People with
Special Needs, pages 683–690, Berlin, Heidelberg.
Springer.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Michael L Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. 2017. Toward human par-
ity in conversational speech recognition. IEEE/ACM
Transactions on Audio, Speech and Language Pro-
cessing (TASLP), 25(12):2410–2423.

Dong Yu and Li Deng. 2015. Automatic Speech Recog-
nition: A Deep Learning Approach. Springer, Lon-
don.

8



Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies, pages 9–16
Minneapolis, Minnesota, USA c©2019 Association for Computational Linguistics

Modeling Acoustic-Prosodic Cues
for Word Importance Prediction in Spoken Dialogues

Sushant Kafle, Cecilia O. Alm, Matt Huenerfauth
Rochester Institute of Technology, Rochester NY

{sxk5664,matt.huenerfauth,coagla}@rit.edu

Abstract

Prosodic cues in conversational speech aid lis-
teners in discerning a message. We investi-
gate whether acoustic cues in spoken dialogue
can be used to identify the importance of in-
dividual words to the meaning of a conversa-
tion turn. Individuals who are Deaf and Hard
of Hearing often rely on real-time captions in
live meetings. Word error rate, a traditional
metric for evaluating automatic speech recog-
nition (ASR), fails to capture that some words
are more important for a system to transcribe
correctly than others. We present and evaluate
neural architectures that use acoustic features
for 3-class word importance prediction. Our
model performs competitively against state-of-
the-art text-based word-importance prediction
models, and it demonstrates particular benefits
when operating on imperfect ASR output.

1 Introduction

Not all words are equally important to the meaning
of a spoken message. Identifying the importance
of words is useful for a variety of tasks includ-
ing text classification and summarization (Hong
and Nenkova, 2014; Yih et al., 2007). Consider-
ing the relative importance of words can also be
valuable when evaluating the quality of output of
an automatic speech recognition (ASR) system for
specific tasks, such as caption generation for Deaf
and Hard of Hearing (DHH) participants in spoken
meetings (Kafle and Huenerfauth, 2017).

As described by Berke et al. (2018), inter-
locutors may submit audio of individual utterances
through a mobile device to a remote ASR sys-
tem, with the text output appearing on an app for
DHH users. With ASR being applied to new tasks
such as this, it is increasingly important to eval-
uate ASR output effectively. Traditional Word
Error Rate (WER)-based evaluation assumes that
all word transcription errors equally impact the

Figure 1: Example of conversational transcribed text,
right where you move from, that is difficult to disam-
biguate without prosody. The intended sentence struc-
ture was: Right! Where you move from?

quality of the ASR output for a user. However,
this is less helpful for various applications (Mc-
Cowan et al., 2004; Morris et al., 2004). In par-
ticular, Kafle and Huenerfauth (2017) found that
metrics with differential weighting of errors based
on word importance correlate better with human
judgment than WER does for the automatic cap-
tioning task. However, prior models based on text
features for word importance identification (Kafle
and Huenerfauth, 2018; Sheikh et al., 2016) face
challenges when applied to conversational speech:

• Difference from Formal Texts: Unlike for-
mal texts, conversational transcripts may lack
capitalization or punctuation, use informal
grammatical structures, or contain disfluen-
cies (e.g. incomplete words or edits, hes-
itations, repetitions), filler words, or more
frequent out-of-vocabulary (and invented)
words (McKeown et al., 2005).

• Availability and Reliability: Text transcripts
of spoken conversations require a human
transcriptionist or an ASR system, but ASR
transcription is not always reliable or even
feasible, especially for noisy environments,
nonstandard language use, or low-resource
languages, etc.

While spoken messages include prosodic cues
that focus a listener’s attention on the most im-
portant parts of the message (Frazier et al., 2006),
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such information may be omitted from a text tran-
script, as in Figure 1, in which the speaker pauses
after “right” (suggesting a boundary) and uses
rising intonation on “from” (suggesting a ques-
tion). Moreover, there are application scenarios
where transcripts of spoken messages are not al-
ways available or fully reliable. In such cases,
models based on a speech signal (without a text
transcript) might be preferred.

With this motivation, we investigate modeling
acoustic-prosodic cues for predicting the impor-
tance of words to the meaning of a spoken dia-
logue. Our goal is to explore the versatility of
speech-based (text-independent) features for word
importance modeling. In this work, we frame the
task of word importance prediction as sequence
labeling and utilize a bi-directional Long Short-
Term Memory (LSTM)-based neural architecture
for context modeling on speech.

2 Related Work

Many researchers have considered how to iden-
tify the importance of a word and have pro-
posed methods for this task. Popular meth-
ods include frequency-based unsupervised mea-
sures of importance, such as Term Frequency-
Inverse Document Frequency (TF-IDF), and word
co-occurrence measures (HaCohen-Kerner et al.,
2005; Matsuo and Ishizuka, 2004), which are pri-
marily used for extracting relevant keywords from
text documents. Other supervised measures of
word importance have been proposed (Liu et al.,
2011, 2004; Hulth, 2003; Sheeba and Vivekanan-
dan, 2012; Kafle and Huenerfauth, 2018) for var-
ious applications. Closest to our current work,
researchers in (Kafle and Huenerfauth, 2018) de-
scribed a neural network-based model for cap-
turing the importance of a word at the sentence
level. Their setup differed from traditional im-
portance estimation strategies for document-level
keyword-extraction, which had treated each word
as a term in a document such that all words iden-
tified by a term received a uniform importance
score, without regard to context. Similar to our
application use-case, the model proposed by Kafle
and Huenerfauth (2018) identified word impor-
tance at a more granular level, i.e. sentence- or
utterance-level. However, their model operated on
human-generated transcripts of text. Since we fo-
cus on real-time captioning applications, we pre-
fer a model that can operate without such human-

produced transcripts, as discussed in Section 1.
Previous researchers have modeled prosodic

cues in speech for various applications (Tran et al.,
2017; Brenier et al., 2005; Xie et al., 2009). For
instance, in automatic prominence detection, re-
searchers predict regions of speech with relatively
more spoken stress (Wang and Narayanan, 2007;
Brenier et al., 2005; Tamburini, 2003). Identifi-
cation of prominence aids automatically identify-
ing content words (Wang and Narayanan, 2007),
a crucial sub-task of spoken language understand-
ing (Beckman and Venditti, 2000; Mishra et al.,
2012). Moreover, researchers have investigated
modeling prosodic patterns in spoken messages
to identify syntactic relationships among words
(Price et al., 1991; Tran et al., 2017). In partic-
ular, Tran et al. demonstrated the effectiveness of
speech-based features in improving the constituent
parsing of conversational speech texts. In other
work, researchers investigated prosodic events to
identify important segments in speech, useful for
producing a generic summary of the recordings of
meetings (Xie et al., 2009; Murray et al., 2005).
At the same time, prosodic cues are also challeng-
ing in that they serve a range of linguistic func-
tions and convey affect. We investigate models ap-
plied to spoken messages at a dialogue-turn level,
for predicting the importance of words for under-
standing an utterance.

3 Word Importance Prediction

For the task of word importance prediction, we
formulate a sequence labeling architecture that
takes as input a spoken dialogue turn utterance
with word-level timestamps1, and assigns an im-
portance label to every spoken word in the turn
using a bi-directional LSTM architecture (Huang
et al., 2015; Lample et al., 2016).

−→
ht = LSTM(st,

−−→
ht−1) (1)

←−
ht = LSTM(st,

←−−
ht−1) (2)

The word-level timestamp information is used
to generate an acoustic-prosodic representation for
each word (st) from the speech signal. Two LSTM
units, moving in opposite directions through these

1For the purposes of accurately evaluating efficacy of
speech-based feature for word importance, we currently make
use of high-quality human-annotated word-level timestamp
information in our train/evaluation corpus; in the future,
speech tokenization could be automated.
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Figure 2: Architecture for feature representation of spoken words using time series speech data. For each spoken
word (w) identified by a word-level timestamp, a fixed-length interval window (τ ) slides through to get n =
time(w)/τ sub-word interval segments. Using an RNN network, a word-level feature (s), represented by a fixed-
length vector, is extracted using the features from a variable-length sub-word sequence.

word units (st) in an utterance, are then used
for constructing a context-aware representation for
every word. Each LSTM unit takes as input the
representation of the word (st), along with the hid-
den state from the previous time step, and each
outputs a new hidden state. At each time step,
the hidden representations from both LSTMs are
concatenated ht = [

−→
ht ;
←−
ht ], in order to obtain a

contextualized representation for each word. This
representation is next passed through a projection
layer (details below) to the final prediction for a
word.

3.1 Importance as Ordinal Classification

We define word importance prediction as the task
of classifying the words into one of the many
importance classes, e.g., high importance (HI),
medium importance (MID) and low importance
(LOW) (details on Section 5). These importance
class labels have a natural ordering such that
the cost of misclassification is not uniform e.g.,
incorrect classification of HI class for LI class
(or vice-versa) will have higher error cost than
classification of HI class for MI. Considering this
ordinal nature of the importance class labels, we
investigate three different projection layers for
output prediction: a softmax layer for making
local importance prediction (SOFTMAX), a relaxed
softmax tailored for ordinal classification (ORD),
and a linear-chain conditional random field (CRF)
for making a conditioned decision on the whole
sequence.

Softmax Layer. For the SOFTMAX-layer, the
model predicts a normalized distribution over all

possible labels (L) for every word conditioned on
the hidden vector (ht).

Relaxed Softmax Layer. In contrast, the ORD-
layer uses a standard sigmoid projection for ev-
ery output label candidate, without subjecting it
to normalization. The intuition is that rather than
learning to predict one label per word, the model
predicts multiple labels. For a word with label
l ∈ L, all other labels ordinally less than l are
also predicted. Both the softmax and the relaxed-
softmax models are trained to minimize the cate-
gorical cross-entropy, which is equivalent to min-
imizing the negative log-probability of the correct
labels. However, they differ in how they make the
final prediction: Unlike the SOFTMAX layer which
considers the most probable label for prediction,
the ORD-layer uses a special “scanning” strategy
(Cheng et al., 2008) – where for each word, the
candidate labels are scanned from low to high (or-
dinal rank), until the score from a label is smaller
than a threshold (usually 0.5) or no labels remain.
The last scanned label with score greater than the
threshold is selected as the output.

CRF Layer. The CRF-layer explores the possible
dependence between the subsequent importance
label of words. With this architecture, the network
looks for the most optimal path through all possi-
ble label sequences to make the prediction. The
model is then optimized by maximizing the score
of the correct sequence of labels, while minimiz-
ing the possibility of all other possible sequences.
Considering each of these different projection lay-
ers, we investigate different models for the word
importance prediction task. Section 4 describes
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our architecture for acoustic-prosodic feature rep-
resentation at the word level, and Sections 5 and
6 describe our experimental setup and subsequent
evaluations.

4 Acoustic-Prosodic Feature
Representation

Similar to familiar feature-vector representations
of words in a text e.g., word2vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014), various
researchers have investigated vector representa-
tions of words based on speech. In addition to cap-
turing acoustic-phonetic properties of speech (He
et al., 2017; Chung et al., 2016), some recent work
on acoustic embeddings has investigated encoding
semantic properties of a word directly from speech
(Chung and Glass, 2018). In a similar way, our
work investigates a speech-based feature represen-
tation strategy that considers prosodic features of
speech at a sub-word level, to learn a word-level
representation for the task of importance predic-
tion in spoken dialogue.

4.1 Sub-word Feature Extraction

We examined four categories of features that have
been previously considered in computational mod-
els of prosody, including: pitch-related features
(10), energy features (11), voicing features (3) and
spoken-lexical features (6):

• Pitch (FREQ) and Energy (ENG) Features:
Pitch and energy features have been found effec-
tive for modeling intonation and detecting em-
phasized regions of speech (Brenier et al., 2005).
From the pitch and energy contours of the speech,
we extracted: minimum, time of minimum, max-
imum, time of maximum, mean, median, range,
slope, standard deviation and skewness. We
also extracted RMS energy from a mid-range
frequency band (500-2000 Hz), which has been
shown to be useful for detecting prominence of
syllables in speech (Tamburini, 2003).

• Spoken-lexical Features (LEX): We examined
spoken-lexical features, including word-level spo-
ken language features such as duration of the spo-
ken word, the position of the word in the utter-
ance, and duration of silence before the word. We
also estimated the number of syllables spoken in
a word, using the methodology of De Jong and
Wempe (2009). Further, we considered the per-
word average syllable duration and the per-word

articulation rate of the speaker (number of sylla-
bles per second).

• Voicing Features (VOC): As a measure of voice
quality, we investigated spectral-tilt, which is rep-
resented as (H1 - H2), i.e. the difference between
the amplitudes of the first harmonic (H1) and the
second harmonic (H2) in the Fourier Spectrum.
The spectral-tilt measure has been shown to be ef-
fective in characterizing glottal constriction (Keat-
ing and Esposito, 2006), which is important in dis-
tinguishing voicing characteristics, e.g. whisper
(Ito et al., 2002). We also exmined other voic-
ing measures, e.g. Harmonics-to-Noise Ratio and
Voiced Unvoiced Ratio.

In total, we extracted 30 features using Praat
(Boersma, 2006), as listed above. Further, we
included speaker-normalized (ZNORM) version of
the features. Thereby, we had a total of 60 speech-
based features extracted from sub-word units.

4.2 Sub-word to Word-level Representation

The acoustic features listed above were extracted
from a 50-ms sliding window over each word re-
gion with a 10-ms overlap. In our model, each
word was represented as a sequence of these sub-
word features with varying lengths, as shown in
Figure 2. To get a feature representation for a
word, we utilized a bi-directional Recurrent Neu-
ral Network (RNN) layer on top of the sub-word
features. The spoken-lexical features were then
concatenated to this word-level feature representa-
tion to get our final feature vectors. For this task,
we utilized Gated Recurrent Units (GRUs) (Cho
et al., 2014) as our RNN cell, rather than LSTM
units, due to better performance observed during
our initial analysis.

5 Experimental Setup

We utilized a portion of the Switchboard corpus
(Godfrey et al., 1992) that had been manually an-
notated with word importance scores, as a part
of the Word Importance Annotation project (Kafle
and Huenerfauth, 2018). That annotation covers
25,048 utterances spoken by 44 different English
speakers, containing word-level timestamp infor-
mation along with a numeric score (in the range of
[0, 1]) assigned to each word from the speakers.
These numeric importance scores have three natu-
ral ordinal ranges [0 - 0.3), [0.3, 0.6), [0.6, 1] that
the annotators had used during the annotation to
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indicate the importance of a word in understanding
an utterance. The ordinal range represents low im-
portance (LI), medium importance (MI) and high
importance (HI) of words, respectively.

Our models were trained and evaluated using
this data, treating the problem as a ordinal classifi-
cation problem with the labels ordered as (LI < MI

< HI). We created a 80%, 10% and 10% split of
our data for training, validation, and testing. The
prediction performance of our model was primar-
ily evaluated using the Root Mean Square (RMS)
measure, to account for the ordinal nature of la-
bels. Additionally, our evaluation includes F-score
and accuracy results to measure classification per-
formance. As our baseline, we used various text-
based importance prediction models trained and
evaluated on the same data split, as described in
Section 6.3.

For training, we explored various architectural
parameters to find the best-working setup for our
models: Our input layer of GRU-cells, used as
word-based speech representation, had a dimen-
sion of 64. The LSTM units, used for generating
contextualized representation of a spoken word,
had a dimension of 128. We used the Adam op-
timizer with an initialized learning rate of 0.001
for training. Each training batch had a maximum
of 20 dialogue-turn utterances, and the model was
trained until no improvement was observed in 7
consecutive iterations.

6 Experiments

Tables 1, 2 and 3 summarize the performance of
our models on the word importance prediction
task. The performance scores reported in the ta-
bles are the average performance across 5 different
trials, to account for possible bias due to random
initialization of the model.

6.1 Comparison of the Projection Layers

We compared the efficacy of the learning archi-
tecture’s three projection layers (Section 3.1) by
training them separately and comparing their per-
formance on the test corpus. Table 1 summarizes
the results of this evaluation.

Results and Analysis: The LSTM-SOFTMAX-
based and LSTM-CRF-based projection layers had
nearly identical performance; however, in com-
parison, the LSTM-ORD model had better perfor-
mance with significantly lower RMS score than

Model ACC F1 RMS
LSTM-CRF 64.22 56.31 75.21
LSTM-SOFTMAX 65.66 57.34 74.08
LSTM-ORD 63.72 57.58 68.21

Table 1: Performance of our speech-based models on
the test data under different projection layers. Best per-
forming scores highlighted in bold.

the other two models. This suggests the utility
of the ordinal constraint present in the ORD-based
model for word importance classification.

6.2 Ablation Study on Speech Features
To compare the effect of different categories of
speech features on the performance of our model,
we evaluated variations of the model by removing
one feature group at a time from the model during
training. Table 2 summarizes the results of the
experiment.

Model ACC F1 RMS
speech-based 63.72 57.58 68.21

– ENG 62.24† 55.67† 71.14
– FREQ 63.25 57.30 69.0
– VOC 62.90 56.84 70.5
– LEX 63.37 57.34 71.49†

– ZNORM 62.04? 53.86? 72.0?

Table 2: Speech feature ablation study. The minus sign
indicates the feature group removed from the model
during training. Markers (? and †) indicate the biggest
and the second-biggest change in model performance
for each metric, respectively.

Results and Analysis: Omitting speaker-based
normalization (ZNORM) features and omitting
spoken-lexical features (LEX) resulted in the great-
est increase in the overall RMS error (+5.5% and
+4.8% relative increase in RMS respectively) –
suggesting the discriminative importance of these
features for word importance prediction. Further,
our results indicated the importance of energy-
based (ENG) features, which resulted in a substan-
tial drop (-2.4% relative decrease) in accuracy of
the model.

6.3 Comparison with the Text-based Models
In this analysis, we compare our best-performing
speech-based model with a state-of-the-art word-
prediction model based on text features; this prior
text-based model did not utilize any acoustic or
prosodic information about the speech signal. The
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baseline text-based word importance prediction
model used in our analysis is described in Kafle
and Huenerfauth (2018), and it uses pre-trained
word embeddings and bi-direction LSTM units,
with a CRF layer on top, to make a prediction for
each word.

As discussed in Section 1, human transcriptions
are difficult to obtain in some applications, e.g.
real-time conversational settings. Realistically,
text-based models need to rely on ASR systems
for transcription, which will contain some errors.
Thus, we compare our speech-based model and
this prior text-based model on two different types
of transcripts: manually generated or ASR gen-
erated. We processed the original speech record-
ing for each segment of the corpus with an ASR
system to produce an automatic transcription. To
simulate different word error rate (WER) levels in
the transcript, we also artificially injected the orig-
inal speech recording with white-noise and then
processed it again with our ASR system. Specif-
ically, we utilized Google Cloud Speech2 ASR
with WER≈ 25% on our test data (without the
addition of noise) and WER≈ 30% after noise
was inserted. Given our interest in generating au-
tomatic captions for DHH users in a live meet-
ing on a turn-by-turn basis (Section 1), we pro-
vided the ASR system with the recording for each
dialogue-turn individually, which may partially
explain these somewhat high WER scores.

The automatically generated transcripts were
then aligned with the reference transcript to com-
pare the importance scores. Insertion errors auto-
matically received a label of low importance (LI).
The WER for each ASR system was computed by
performing a word-to-word comparison, without
any pre-processing (e.g., removal of filler words).

Model ACC F1 RMS
speech-based 63.72 57.58 68.21
text-based 77.81 73.6 54.0

+ WER: 0.25 72.30 69.04 65.15
+ WER: 0.30 71.84 67.71 68.55

Table 3: Comparison of our speech-based model with a
prior text-based model, under different word error rate
conditions.

Result and Analysis: Given the significant lexical
information available for the text-based model, it
would be natural to expect that it would achieve

2https://cloud.google.com/Speech_API

higher scores than would a model based only
on acoustic-prosodic features. As expected, Ta-
ble 3 reveals that when operating on perfect
human-generated transcripts (with zero recogni-
tion errors), the text-based model outperformed
our speech-based model. However, when oper-
ating on ASR transcripts (including recognition
errors), the speech-based models were competi-
tive in performance with the text-based models.
In particular, prior work has found that WER
of ≈ 30% is typical for modern ASR in many
real-world settings or without good-quality micro-
phones (Lasecki et al., 2012; Barker et al., 2017).
When operating on such ASR output, the RMS er-
ror of the speech-based model and the text-based
model were comparable.

7 Conclusion

Motivated by recent work on evaluating the accu-
racy of automatic speech recognition systems for
real-time captioning for Deaf and Hard of Hear-
ing (DHH) users (Kafle and Huenerfauth, 2018),
we investigated how to predict the importance of a
word to the overall meaning of a spoken conversa-
tion turn. In contrast to prior work, which had de-
pended on text-based features, we have proposed
a neural architecture for modeling prosodic cues
in spoken messages, for predicting word impor-
tance. Our text-independent speech model had an
F-score of 56 in a 3-class word importance classi-
fication task. Although a text-based model utiliz-
ing pre-trained word representation had better per-
formance, acquisition of accurate speech conver-
sation text-transcripts is impractical for some ap-
plications. When utilizing popular ASR systems
to automatically generate speech transcripts as in-
put for text-based models, we found that model
performance decreased significantly. Given this
potential we observed for acoustic-prosodic fea-
tures to predict word importance continued work
involves combining both text- and speech-based
features for the task of word importance predic-
tion.
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Abstract

Silent speech interfaces (SSIs) are devices that
enable speech communication when audible
speech is unavailable. Articulation-to-speech
(ATS) synthesis is a software design in SSI
that directly converts articulatory movement
information into audible speech signals. Per-
manent magnetic articulograph (PMA) is a
wireless articulator motion tracking technol-
ogy that is similar to commercial, wired Elec-
tromagnetic Articulograph (EMA). PMA has
shown great potential for practical SSI ap-
plications, because it is wireless. The ATS
performance of PMA, however, is unknown
when comparing with current EMA. In this
study, we compared the performance of ATS
using a PMA we recently developed and a
commercially available EMA (NDI Wave sys-
tem). Datasets with same stimuli and size that
were collected from tongue tip were used in
the comparison. The experimental results in-
dicated the performance of PMA was close
to, although not as equally good as that of
EMA. Furthermore, in PMA, converting the
raw magnetic signals to positional signals did
not significantly affect the performance of
ATS, which support the future direction in
PMA-based ATS can be focused on the use of
positional signals to maximize the benefit of
spatial analysis.

1 Introduction

People who had a laryngectomy have their lar-
ynx surgically removed in the treatment of a con-
dition such as laryngeal cancer (Bailey et al.,
2006). The removal of the larynx, as a treat-
ment of cancer, prevents laryngectomees from
producing speech sounds and inhibit their ability
to communicate. Current approaches for improv-
ing their ability to communicate include (intra-
or extra-oral) artificial larynx (Baraff, 1994), tra-

cheoesophageal puncture (TEP) (Robbins et al.,
1984), and esophageal speech (Hyman, 1955). All
of these approaches generate abnormal speech like
hoarse voicing by tracheoesophageal speech or
robotic voicing by artificial larynx (Mau, 2010;
Mau et al., 2012). These patients may feel de-
pressed because of their health status and anxiety
during social interactions, as they think that other
people perceive them as abnormal, or they directly
experience symbolic violence (Mertl et al., 2018).
As a result, the development of communication
aids that can produce normal-sounding speech is
essential to improving the quality of life for pa-
tients in this population.

Silent speech interfaces (SSI) are devices which
convert non-audio biological signals, such as
movement of articulators, to audible speech
(Denby et al., 2010). Unlike existing methods,
SSIs are able to produce natural sounding synthe-
sized speech and even have the potential to re-
cover the patients’ own voices. There are cur-
rently two types of software designs in SSI. One
is a “recognition-and-synthesis” approach, which
is to convert articulatory movement to text, and
then drive speech output using a text-to-speech
synthesizer (Kim et al., 2017). The other de-
sign is direct articulation-to-speech (ATS) syn-
thesis, which is more promising for SSI applica-
tion, because ATS can be real-time. Currently,
the prominent methods for capturing articulatory
motion data include: electromagnetic articulo-
graph (EMA) (Schönle et al., 1987; Cao et al.,
2018; Bocquelet et al., 2016), permanent mag-
net articulograph (PMA) (Gonzalez et al., 2014;
Kim et al., 2018), ultrasound image (Csapó et al.,
2017), surface electromyography (sEMG) (Diener
et al., 2018), non-audible murmur (NAM) (Naka-
jima et al., 2003). All of these technologies have
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Figure 1: Our recently developed, head-set PMA de-
vice, where a small magnet is attached on the tongue
tip.

their own advantages and disadvantages. PMA has
recently shown its potential for SSI because it is
wireless and suitable for future practical applica-
tions.

Unlike EMA that uses wired sensors attached
on the articulators with a magnetic field generator
outside, PMA attaches (wireless) permanent mag-
nets to articulators and adopts magnetometers to
capture the changes in the magnetic field gener-
ated by the motion of the magnets. These mag-
netic readings are then fed into a localization algo-
rithm that estimates the 3D position of the magnet
in the oral cavity (Sebkhi et al., 2017). Both EMA
and PMA have been used in prior research on ATS
(Cao et al., 2018; Gonzalez et al., 2017a; Cheah
et al., 2018) with varying results. Although EMA
has been shown to yield more precise measure-
ments (Yunusova et al., 2009; Berry, 2011) com-
pared to PMA (Sebkhi et al., 2017), EMA devices
are normally cumbersome as they require wired
sensors be attached to articulators. Additionally,
EMA devices are normally expensive. In contrast,
PMA devices are mostly very light and portable,
relying on wireless tracking by using permanent
magnets as the tracers, also affordable compared
to EMA. Due to the wireless, portability and low-
cost advantages of PMA, it offers an appealing al-
ternative to EMA if it is able to achieve similar
levels of performance as EMA in ATS systems.
To our knowledge, however, no prior studies have
directly compared the performance of these two
technologies for SSI applications.

In this study, we compared the ATS perfor-

Figure 2: Wave System (EMA), where multiple sensors
are attached on the tongue and lips. Only the tongue tip
sensor data was used in the comparison with PMA.

mance of our recently developed PMA-based
wireless tongue tracking system and a commer-
cial EMA (NDI Wave system). We first examined
whether it is more effective to use raw magnetic
field signals than to use the converted magnet po-
sitional data (x, y, z coordinates) of PMA in ATS.
Second, we compared the performance of EMA
and PMA using tongue tip data only. A deep neu-
ral network (DNN)-based ATS model was used to
evaluate the ATS performance for both EMA and
PMA data. In this study, a dataset was collected
from two groups of subjects who spoke the same
stimuli using PMA or EMA, respectively. Tongue
tip is the common flesh point in the PMA and
EMA datasets, which were used for analysis in this
study.

2 Dataset

2.1 PMA Data Collection
Ten subjects (6 males and 4 females, average age:
24.1 years ± 4.84) participated in the PMA data
collection session in which they repeated a list of
132 phrases twice in their habitual speaking rate.
The first repetition is normal voiced speech, and
the second repetition is unvoiced speech. In this
study, only the voiced speech data was used. The
phrases in the list were phrases that are frequently
spoken by users of augmentative and alternative
communication (AAC) devices (Glennen and De-
Coste, 1997). The PMA data was collected at the
Georgia Institute of Technology.

The PMA data used in this study was collected
with our newly developed wearable, headset sys-
tem, which is based on the same magnetic tech-
nology in the prior benchtop version multimodal
speech capture system (MSCS) (Sebkhi et al.,
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Figure 3: Lateral view samples of tongue tip trajectory captured by PMA and EMA when saying: “That is perfect!”
(By two different subjects).

2017). Figure 1 shows the wearable, wireless
tongue tracking system, which uses PMA and a
camera for tongue and lip motion caption, respec-
tively. A microphone was used for audio record-
ing. This PMA system has an embedded array of
magnetometers that measure the change of mag-
netic field generated by a magnetic tracer attached
close to the tongue tip.

During a data collection session, a disk-shaped
magnetic tracer (diameter = 3mm, thickness =
1.5mm, D21BN52, K&J Magnetics) was attached
to about 1cm from tongue tip. An array of 24 ex-
ternal 3-axial magnetometers (LSM303D, STMi-
croelectronics) are divided into six modules, each
with 4 magnetometers, which are positioned near
the mouth, so there are two groups of 12 sensors
that are near the right cheek and left cheek. These
sensors were used for capturing the magnetic field
fluctuations generated by the tracer, which are fed
into a localization algorithm that estimates the 3D
position of the magnet every 10 ms (100 Hz). The
spatial tracking accuracy of the PMA varies from
0.44 to 2.94 mm depending upon the position and
orientation of the tracer (Sebkhi et al., 2017). The
audio data recording was sampled at 96000 Hz.

Previous studies (Gonzalez et al., 2017a; Cheah
et al., 2018) show that the combination of multiple
tracers on the tongue had better performance than
single tracer (i.e., tongue tip). However, a smaller
number of magnetic tracers on the tongue is crit-
ical for its practical use in daily life (Kim et al.,
2018). Future users of this technology likely pre-
fer to have only one permanent or semi-permanent
attached magnetic tracer on their tongue. Even for
lab experiment, attaching multiple tracers on the
tongue takes longer time and relative logistic diffi-

culty to operate. In addition, with only one tracer
on the tongue tip, the risk of accidentally biting it
is very small (Laumann et al., 2015).

To provide the best tracking performance with
one single tracer, the system relies on 24 mag-
netometers positioned outside the mount to accu-
rately track the tongue motion (Kim et al., 2018).
The six magnetometer modules are connected via
serial peripheral interface (SPI) to a sensor con-
troller module (Kim et al., 2018) that also in-
cludes a USB interface to communicate with the
PC. More technical details about the tracking tech-
nology can be found in (Sebkhi et al., 2017). In
this study, although wearable, the headset was an-
chored to a support in order to provide the best
positional accuracy (to avoid possible head motion
during recording).

2.2 EMA Data Collection

Another group of 10 gender- and age-matched
subjects (6 males and 4 females, average age: 24.3
years ± 3.50) participated in the EMA data col-
lection session. These individuals read the same
list of 132 phrases used in the PMA data collec-
tion session. The EMA dataset was collected at
the University of Texas at Dallas.

Wave system (Northern Digital Inc., Waterloo,
Canada) was used for EMA data collection (Figure
2). Four small wired sensors were attached to the
tongue tip (0.5 to 1cm from tongue apex), tongue
back (20-30mm back from TT), upper lip and
lower lip using dental glue or tape. Additionally,
a fifth (head) sensor was attached to the middle
of forehead for head correction. Finally, 3D EMA
data was sampled at 100 Hz which is same to PMA
data. The spatial precision of motion tracking is
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about 0.5 mm (Berry, 2011), Figure 3(a) gives an
example of two-dimensional (2D) EMA tongue tip
movement trajectory (lateral view) when saying:
“That is perfect!”. The sampling rate of audio data
was 22050 Hz. NDI Wave system does not provide
the raw magnetic signals.

To ensure an analogous comparison with the
PMA device, only the tongue tip data collected us-
ing EMA was used in this study.

2.3 Data Preprocessing

To provide EMA and PMA consistent acoustic
features, the sampling rates of audio data in EMA
and PMA were resampled to same level. The
audio data in PMA dataset was downsampled to
48000 Hz from 96000 Hz, and the audio data in
EMA dataset was upsampled to 48000 Hz from
22050 Hz. After that, spectral envelope was ex-
tracted with Cheaptrick algorithm (Morise, 2015)
and then converted to 60-dimensional mel-cepstral
coefficients (MCCs) as the output acoustic fea-
tures of ATS model. The MCCs were extracted
at a rate of 200 frames per second, therefore, the
PMA and EMA data were upsampled to 200 Hz to
match the acoustic features.

Our PMA device captures the motion of tongue
tip with the 72-channel raw magnet signals (3 axes
24 magnetometers). In addition to raw magnet
signals, the 3D cartesian positions of the magnet
tracer were obtained by localizing the raw magnet
signals with nonlinear optimization method (Se-
bkhi et al., 2017). Figure 3(b) gives an exam-
ple of a 2D trajectory (lateral view) of magnet
tracer when saying “That is perfect!” obtained by
localizing raw magnet signals. Both raw magnet
signals and 3D-position signals were used in this
study.

3 Method

3.1 Articulation-to-Speech Synthesis (ATS)
Using Deep Neural Network (DNN)

The ATS model in this study uses a DNN to map
articulatory signals (PMA or EMA) to acoustic
features (MCCs) (Figure 4).The first and second
order derivatives of both input articulatory and the
output acoustic data frames were computed and
concatenated to the original frames for context in-
formation.

The DNN has 6 hidden layers, each layer has
512 nodes with rectified linear unit (ReLU) acti-
vation function. During the DNN training, Adam
optimizer (Kingma and Ba, 2014) was used, the
maximum number of training epochs is 50, learn-
ing rate for PMA data is 0.008 and 0.005 for EMA
data. The performances of ATS system is assessed
using EMA positional data, PMA raw data, PMA
positional data, and the combination of PMA raw
and positional data. Therefore, the input dimen-
sions of ATS in this study are: 9 (3-dim. PMA or
EMA positional + ∆ + ∆∆), 216 (72-dim. PMA
raw magnet signals + ∆ + ∆∆), and 225 (con-
catenation of 9-dim. and 216-dim.). The output
dimension is 180 (60-dim. MCCs + ∆ + ∆∆).
The DNN model in this study was implemented
with Tensorflow machine learning library (Abadi
et al., 2016).

3.2 Experimental Setup

As mentioned previously, we first compared the
ATS performance using raw PMA signals, con-
verted positional data, or both. This experiment
will help to understand the which type of PMA
data leads to the best performance. NDI Wave
is a commercial system, which does not provide
any magnetic signals that have not been localized,
thus this experiment was conducted for our PMA
system only. Second, we compared the best per-
formance in PMA with the performance in EMA.
The results will reveal which technology (PMA or
EMA) performs better.

Speaker-dependent setup was used in both ex-
periments, as speaker-independent ATS is consid-
ered challenging at this moment, due to the physi-
ological difference among different speakers. The
ATS performances on each subject were averaged
as the final performance. For the 132 phrases in
both PMA and EMA data, 110 phrases were used
for training, 10 for validating, and 12 for testing.
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Figure 5: Average MCD of 10 PMA Subjects and 10
EMA Subjects. Statistical significances between the
results using EMA and all types of PMA data on ATS
model are computed with ANOVA tests.

The ATS results were measured with mel-
cepstral distortion (MCD). MCD is calculated
by equation (1), where C and Cgen denote the
original and generated mel-cepstral coefficients
(MCCs), respectively, m is the frame step (or
time), d denotes dth dimension in frame m. D is
the dimension of MCCs, which is 60 in this study.

MCD =
10

ln10

T∑

m=1

√√√√2
D∑

d=1

(Cm,d − Cgen
m,d)2

(1)

As mentioned, lip movement information has
not been used in this study, since PMA and EMA
devices use different approaches for lip motion
caption. PMA uses a computer vision algorithm
to recognize the shape of the lips from images cap-
tured by an embedded camera, whereas EMA re-
lies on tracking the motion of attached sensors to
the vermilion borders of the lips to estimate lips
gesture. In additon, due to the relatively small data
size, the synthesized audio samples did not have
sufficiently high speech intelligibility for listen-
ing test. Therefore, the subjective/listening testing
was not conducted in this study.

4 Results and Discussion

4.1 Magnetic signals vs positional data in
PMA

Experimental results are presented in Figure 5,
where three-way ANOVA tests were used in the
statistical analysis. First, for PMA, that perfor-
mance using raw magnet data was not significantly

different to the performance using positional data
only (p < 0.85), and was also not significantly
different with that using combined raw magnetic
field signals and positional data (p < 0.76). There
was also no significance between the ATS per-
formance using positional data only and that us-
ing combined raw magnetic field signals and posi-
tional data (p < 0.60).

These findings suggest, for PMA, we could use
either raw magnetic field signals or converted po-
sitional data for a similar level of performance.
Combining these two signals together may not im-
prove the performance. This finding is inconsis-
tent with our prior study in silent speech recogni-
tion (SSR) using PMA data, where using magnetic
signals outperformed than that using converted po-
sitional data (Kim et al., 2018). Further studies
are needed to reveal why magnetic signals outper-
formed positional data in SSR, but their perfor-
mance in ATS was not significantly different.

The finding that positional data can have simi-
lar performance with that using magnetic data is
encouraging for our future development of ATS
using PMA. Although mapping the raw mag-
netic signals directly to acoustic features is more
straightforward, transforming these signals to po-
sitional signals allows the use of articulation data
processing methods, such as Procrustes matching
(Gower, 1975; Kim et al., 2017), that cannot be
easily applied to the raw data. In addition, a PMA
positional data-based ATS can be decoupled from
a device configuration, it will be easier to change
the number of sensors, their positions, their model,
and their settings. Finally, a PMA positional data-
based ATS has a potential of using EMA data for
training, since they both track the 3D motion of
articulators.

4.2 PMA vs EMA

Second, when comparing the ATS performance
using PMA data and EMA data, the results ob-
tained using PMA is not as equally good as that
obtained in EMA. The performance in EMA sig-
nificantly outperformed all the three configura-
tions in PMA (raw, positional, and raw + posi-
tional data) ( p < 0.01 also in an ANOVA test).

Although the EMA-based ATS system outper-
formed the PMA-based system in our experiment,
this finding does not negate the merits of PMA
technology. Since PMA has shown the abilities
of reaching a sufficiently good level in ATS (Gon-
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zalez et al., 2014, 2017a,b; Cheah et al., 2018).
Therefore, it is still a good fit for SSI application.

In this study, we focused on the comparison of
PMA and EMA, and only tongue tip motion was
used for ATS performance. Other studies in liter-
ature that have incorporated lip motion and other
tongue flesh point motion have achieved high per-
formance for PMA-based ATS (Gonzalez et al.,
2014, 2017a,b; Cheah et al., 2018). In addition,
this study used on MCD as the ATS performance
measure. While MCD is a widely used measure
for ATS performance, it does not fully represent
the vocal quality of the resulting speech. Other
acoustic measures including band aperiodicities
distortion (BAP) (Morise, 2016), root mean square
error of fundamental frequencies (F0-RMSE), and
voiced/unvoiced (V/UV) error rate, as well as lis-
tening tests are needed to truly assess the differ-
ences of PMA and EMA which has not been con-
ducted in the current stage of this study as ex-
plained.

Although the subjects were age- and gender-
matched in the two groups for comparison (PMA
vs EMA) with the same protocol (stimuli and data
size), they were different subjects. Indeed, the
PMA and EMA systems were located in two dif-
ferent research laboratories, and they could not be
placed at a same location for this study. Because
the data were collected by two different teams and
with different subjects for the EMA and PMA,
there could likely be variations in the outcome of
the study between the datasets. This issue will be
resolved in the future study where the same sub-
jects will use both devices and the same operators
will supervise the data collection sessions.

5 Conclusion and Future Work

In this study, we compared the ATS performance
between a PMA-based tongue motion tracking de-
vice and a commercially available EMA (NDI
Wave). We found both the raw magnetic signals
and transformed positional signals acquired from
PMA have similar ATS performance. Although
we found that PMA-based system did not perform
as well as the EMA-based system in this single-
tracer comparison, PMA still has great potential
for SSI application, because it is wireless, afford-
able, portable, and easy to use. Future work will
verify these findings using a larger data set (both
EMA and PMA) collected from the same speak-
ers, and further improve the PMA measurement

accuracy as well as the localization approach that
converts raw magnetic signals to positional data.
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Based Ultrasound-to-Speech Conversion for a Silent
Speech Interface. Proc. Interspeech 2017, pages
3672–3676.

Bruce Denby, Tanja Schultz, Kiyoshi Honda, Thomas
Hueber, Jim M Gilbert, and Jonathan S Brumberg.
2010. Silent Speech Interfaces. Speech Communi-
cation, 52(4):270–287.

22



Lorenz Diener, Sebastian Bredehoeft, and Tanja
Schultz. 2018. A comparison of EMG-to-Speech
Conversion for Isolated and Continuous Speech.
In Speech Communication; 13th ITG-Symposium,
pages 1–5. VDE.

Sharon Glennen and Denise C DeCoste. 1997. The
Handbook of Augmentative and Alternative Commu-
nication. Cengage Learning.

Jose A Gonzalez, Lam A Cheah, Jie Bai, Stephen R
Ell, James M Gilbert, Roger K Moore, and Phil D
Green. 2014. Analysis of Phonetic Similarity in a
Silent Speech Interface Based on Permanent Mag-
netic Articulography. In Proc. INTERSPEECH,
pages 1018–1022.

Jose A Gonzalez, Lam A Cheah, Angel M Gomez,
Phil D Green, James M Gilbert, Stephen R Ell,
Roger K Moore, and Ed Holdsworth. 2017a. Di-
rect Speech Reconstruction from Articulatory Sen-
sor Data by Machine Learning. IEEE/ACM Trans-
actions on Audio, Speech, and Language Process-
ing, 25(12):2362–2374.

Jose A Gonzalez, Lam A Cheah, Phil D Green,
James M Gilbert, Stephen R Ell, Roger K Moore,
and Ed Holdsworth. 2017b. Evaluation of a Silent
Speech Interface Based on Magnetic Sensing and
Deep Learning for a Phonetically Rich Vocabulary.
Proc. Interspeech 2017, pages 3986–3990.

John C Gower. 1975. Generalized Procrustes Analysis.
Psychometrika, 40(1):33–51.

Melvin Hyman. 1955. An Experimental Study of
Artificial-Larynx and Esophageal Speech. Journal
of Speech and Hearing Disorders, 20(3):291–299.

Myungjong Kim, Beiming Cao, Ted Mau, and Jun
Wang. 2017. Speaker-Independent Silent Speech
Recognition from Flesh-Point Articulatory Move-
ments Using an LSTM Neural Network. IEEE/ACM
Transactions on Audio, Speech and Language Pro-
cessing (TASLP), 25(12):2323–2336.

Myungjong Kim, Nordine Sebkhi, Beiming Cao,
Maysam Ghovanloo, and Jun Wang. 2018. Prelim-
inary Test of a Wireless Magnetic Tongue Tracking
System for Silent Speech Interface. In 2018 IEEE
Biomedical Circuits and Systems Conference (Bio-
CAS), pages 1–4. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Anne Laumann, Jaimee Holbrook, Julia Minocha,
Diane Rowles, Beatrice Nardone, Dennis West,
Jeonghee Kim, Joy Bruce, Elliot Roth, and Maysam
Ghovanloo. 2015. Safety and Efficacy of Medically
Performed Tongue Piercing in People with Tetraple-
gia for Use with Tongue-Operated Assistive Tech-
nology. Topics in Spinal Cord Injury Rehabilitation,
21(1):61–76.

Ted Mau. 2010. Diagnostic Evaluation and Manage-
ment of Hoarseness. Medical Clinics, 94(5):945–
960.

Ted Mau, Joseph Muhlestein, Sean Callahan, and
Roger W Chan. 2012. Modulating Phonation
Through Alteration of Vocal Fold Medial Surface
Contour. The Laryngoscope, 122(9):2005–2014.

J. Mertl, E. kov, and B. epov. 2018. Quality of Life
of Patients After Total Laryngectomy: the Struggle
Against Stigmatization and Social Exclusion Using
Speech Synthesis. Disability and Rehabilitation:
Assistive Technology, 13(4):342–352.

Masanori Morise. 2015. CheapTrick, A Spectral Enve-
lope Estimator for High-Quality Speech Synthesis.
Speech Communication, 67:1–7.

Masanori Morise. 2016. D4C, A Band-Aperiodicity
Estimator for High-Quality Speech Synthesis.
Speech Communication, 84:57–65.

Yoshitaka Nakajima, Hideki Kashioka, Kiyohiro
Shikano, and Nick Campbell. 2003. Non-Audible
Murmur Recognition Input Interface Using Stetho-
scopic Microphone Attached to the Skin. In
2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03)., volume 5, pages 708–711. IEEE.

Joanne Robbins, Hilda B Fisher, Eric C Blom, and
Mark I Singer. 1984. A Comparative Acous-
tic Study of Normal, Esophageal, and Tracheoe-
sophageal Speech Production. Journal of Speech
and Hearing disorders, 49(2):202–210.

Paul W Schönle, Klaus Gräbe, Peter Wenig, Jörg
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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a pro-
gressive neurological disease that leads to de-
generation of motor neurons and, as a result,
inhibits the ability of the brain to control mus-
cle movements. Monitoring the progression
of ALS is of fundamental importance due to
the wide variability in disease outlook that ex-
ists across patients. This progression is typ-
ically tracked using the ALS functional rat-
ing scale - revised (ALSFRS-R), which is the
current clinical assessment of a patient’s level
of functional impairment including speech and
other motor tasks. In this paper, we inves-
tigated automatic estimation of the ALSFRS-
R bulbar subscore from acoustic and articula-
tory movement samples. Experimental results
demonstrated the AFSFRS-R bulbar subscore
can be predicted from speech samples, which
has clinical implication for automatic monitor-
ing of the disease progression of ALS using
speech information.

1 Introduction

Amyotrophic Lateral Sclerosis (ALS, also known
as Lou Gehrig’s disease) is a progressive neuro-
logical disease that destroys nerve cells and in-
hibits the normal voluntary motor function of the
affected individual. The progression of this dis-
ease rapidly limits the patient’s ability to perform
normal daily tasks such as walking, speaking, and
eventually even breathing. Although there is cur-
rently no cure for ALS, early detection and accu-
rate tracking of disease progression is crucial to
the planning of treatment strategies and therapeu-
tic intervention (Kiernan et al., 2011). The cur-
rently used clinical measure for the disease pro-
gression is the patient self-reported ALSFRS-R
score, which estimates the degree of functional

impairment across motor tasks such as speaking
and walking, as well as common daily tasks such
as getting dressed and climbing the stairs (Cedar-
baum et al., 1999).

ALSFRS-R has a collection of 12 questions,
with a total score ranging from 0 to 48, which is
composed of three factors: bulbar functions, fine
and gross motor functions, and respiratory func-
tion (Franchignoni et al., 2013). Bulbar func-
tions include speaking, salivating, and swallow-
ing. The efficacy of the ALSFRS-R for measur-
ing motor-function and levels of self-sufficiency
of individuals with ALS has been thoroughly
demonstrated. The ALSFRS-R has shown high
inter-rater reliability, test-retest reliability, and
internal consistency (Cedarbaum and Stambler,
1997; Brinkmann et al., 1997). Additionally, the
ALSFRS-R is highly correlated with the clinical
stage of ALS (Balendra et al., 2014) and has been
shown to be a useful predictor of patient survival
(Magnus et al., 2002). Despite the utility and reli-
ability of the ALSFRS-R, it is only able to quan-
tify specific degradations in motor function along
a five point scale. As such, it lacks the resolu-
tion to capture more subtle changes in motor func-
tion that can be observed through instrumentation-
based measures (Allison et al., 2017).

Recently, there has been a surge of research
using speech analytics to detect and track a
range of neurological diseases such as Parkinson’s
(Orozco-Arroyave et al., 2016a,b; Hsu et al., 2017;
Benba et al., 2015) and ALS (An et al., 2018; ill;
Norel et al., 2018; Wang et al., 2016a,b, 2018). Ef-
forts towards tracking disease progression in this
area have typically focused on the estimation of
speech specific measures such as speech intelli-
gibility (Berisha et al., 2013; Kim et al., 2015),
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speaking rate (Jiao et al., 2016; Martens et al.,
2015), or severity (Tu et al., 2017; Asgari and
Shafran, 2010). While these efforts have shown
success in the ability to objectively measure func-
tional changes directly related to speech, whether
speech can be used to measure functional impair-
ment along other tasks in ALS remains largely un-
explored.

In this paper we sought to address this ques-
tion by examining how well speech and articula-
tion data can predict the ALSFRS-R bulbar sub-
score (ranges from 0 to 12). The long-term goal of
this research is to develop objective measures for
broad level motor function. At this early stage, we
focused on the bulbar score first. To our knowl-
edge, this paper is the first to predict ALSFRS-R
(bulbar) score directly from speech information.
Two regression models, a simple linear ridge re-
gression model and a machine learning algorithm
(support vector machine), were used in the regres-
sion analysis.

2 Data Collection

2.1 Participants

Sixty-six speakers diagnosed with ALS at early-
onset participated in this study at up to four data
collection sessions with an interval of four to six
months. At each session, participants or caregivers
completed the ALSFRS-R, which included the
bulbar subscore. Speech intelligibility (percent-
age of understandable words, judged by listeners)
and speaking rate (words produced per minute)
were assessed by a speech-language pathologist
using the Sentence Intelligibility Test (SIT) soft-
ware (Dorsey et al., 2007). Intelligible speaking
rate, called communication efficiency, was also
calculated, which is the percentage of understand-
able words per minute (speech intelligibility ×
speaking rate) (Yorkston and Beukelman, 1981).
The whole data set was used for the basic correla-
tion analysis between ALSFRS-R and speech per-
formance measures, while the data from 28 partic-
ipants were used for regression analysis. This sub-
set includes 15 male and 13 female participants,
whose age averaged 57.3 years with a standard de-
viation of 10.7 years.

2.2 Stimuli and Procedure

The participants were asked to produce 20 sen-
tences in a fixed order, such as I need some as-
sistance and call me back when you can. A com-

x

y

z

Figure 1: Sensor locations for the Wave system

plete list of the stimuli used for data collection is
included in the Appendix. The sentences were se-
lected because they are commonly used in aug-
mentative and alternative communication (AAC)
devices (Beukelman et al., 1984). All speech stim-
uli were presented on a TV screen in front of the
participants. The stimuli were repeated for a to-
tal of four recordings at the participants habitual
speaking rate among other speech tasks.

The NDI Wave System (Northern Digital Inc.,
Waterloo, Canada) was used to collect articula-
tory movement data with an accuracy of 0.5 mm
(Berry, 2011). An optimal four sensor set-up
(Wang et al., 2016c) was used to collect articu-
latory data from the tongue tip (TT, 5 mm from
apex), tongue back (TB, 10 mm from TT), up-
per lip (UL, vermillion border) and lower lip (LL,
vermillion border). The sensors were attached us-
ing nontoxic dental glue (PeriAcryl 90, GluStitch)
or medical tape. A lightweight helmet with a
6 degree-of-freedom sensor served as a point of
head reference. Prior to the start of each data col-
lection session, the speakers had 3-5 minutes to
adapt to the wired sensors prior to formal data col-
lection. In this paper, we used x, y, and z to repre-
sent lateral, vertical, and anterior-posterior move-
ments, respectively. A visual depiction of the sen-
sor locations and coordinate system is displayed in
Figure 1. To capture acoustic signals simultane-
ously, a Shure Microflex microphone with a sam-
pling rate of 22kHz was positioned approximately
15 cm from each speaker’s mouth.

2.3 Data Processing

Head rotation and translation movements were re-
moved from articulatory data prior to analysis.
A low pass filter of 15hz was applied to remove
noise (Wang et al., 2016c). SMASH (Green et al.,
2013a), a Matlab based software, was used seg-
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ment the time-matched articulatory and acoustic
data into individual phrase samples.

2.4 Relationship between ALSFRS-R scores
and speech performance measures

In this section, we evaluated the relationship be-
tween traditional speech metrics, such as speak-
ing rate and speech intelligibility, and ALSFRS-
R scores. Because speech represents only a small
component of the broad motor function assessed
by the ALSFRS-R, we not only compared the re-
lationship between speech and the ALSFRS-R as
a whole, but also at the Bulbar subscore, which
reflects the portion of the ALSFRS-R related to
speaking, salivating and swallowing.

There are several important factors to consider
when evaluating the relationship between these
measures and ALSFRS-R score. First, neither
the speech metrics nor the ALSFRS-R scores be-
ing compared are perfect measures of the underly-
ing decline in motor function that they attempt to
quantify. Speaking rate is highly sensitive to natu-
ral deviation between speakers and compensatory
strategies that can mask changes in motor function
(Green et al., 2013b). Speech intelligibility suffers
from ceiling and floor effects that prevent it from
tracking disease progression outside of a fixed
severity range (Yorkston and Beukelman, 1981).
Second, because the ALSFRS-R measures each
motor component along a 5-point scale it cannot
capture subtle changes to motor control that oc-
cur between points on this scale. Despite this lim-
itation, the ALSFRS-R has been proven reliable
in test-retest analysis (Cedarbaum and Stambler,
1997) and correlates highly with the clinical stage
of individuals with ALS (Balendra et al., 2014).

Figure 2 displays the relationship between
speech intelligibility, speaking rate, and intelligi-
ble speaking rate (ISR) and the ALSFRS-R bulbar
subscore for participants in our data set. Although
all three scatter plots show a correlation between
the measures of speech and the ALSFRS-R bulbar
subscore, there exists significant variability in the
ALSFRS-R that cannot be explained by the mea-
sures of speech. This is particularly true of in-
telligibility, where participants could score as low
as 4/12 of the ALSFRS-R bulbar subscore, while
maintaining near-perfect intelligibility. Among
the three speech measures, ISR had the highest
correlation with ALSFRS Bulbar subscore.

To better understand the relationship between

these speech measures and the different compo-
nents of the ALSFRS-R, we performed a corre-
lation analysis between three measures of speech
intelligibility, speaking rate, and ISR, and three
ALSFRS-R component scores (Table 1). The
three component scores were (a) the total score,
which provides a broad assessment of motor func-
tion, (b) the bulbar subscore, which includes func-
tions of motor control most closely related to
speech including assessment of speaking, swal-
lowing and salivating, and (c) the non-bulbar com-
ponent, which is the difference between the total
ALSFRS-R score and the bulbar subscore. This
analysis found a strong correlation between all
three measures of speech and the Bulbar subscore
with all correlations between 0.5 and 0.7 and all
p-values less than 10−6. Although there exists a
statistically significant relationship between each
of the speech measures and the total ALSFRS-
R score, this significance disappears if the bulbar
component is removed. Therefore this relationship
is simply more evidence of the speech measures
ability to track the bulbar component.

3 Methods

As mentioned earlier, this analysis was based on
a subset of twenty eight participants from the pre-
viously described data set whose speech data has
been manually parsed for automatic processing.
Fifteen of the patients only made a single visit, six
made two visits, five made three visits, and only
two made the full four visits. Though the number
of samples collected for each patient is usually 80
per session, some of the participants were not able
to complete all of the recording tasks. In these
cases predictions were made based on the reduced
set of samples that were available.

3.1 Acoustic Features

The acoustic features used in this paper were
based on the frame-level Mel-frequency cepstral
coefficients (MFCCs). Although MFCCs were
originally popularized due to their effectiveness in
automatic speech recognition systems, they have
recently seen increasing usage in a range of other
speech assessment tasks, including the detection
of motor speech disorders like Parkinson’s dis-
ease (Benba et al., 2015). As the mel cepstrum
encodes spectral magnitude information related to
the shape of the vocal tract, MFCC’s can capture
articulatory changes resulting from conditions like
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(a) Intelligibility (b) Speaking Rate (c) Intelligible Speaking Rate

Figure 2: Scatter plots depicting the relationship between the three speech metrics and ALSFRS-R Bulbar subscore
for each participant & recording session in the data set.

ALSFRS-R ALSFRS-R (Bulbar) ALSFRS-R (non-Bulbar)
Correlation p-value Correlation p-value Correlation p-value

Intelligibility 0.1960 0.0366 0.5840 < 10−6 0.0005 0.9954
Speaking Rate 0.2419 0.0095 0.6422 < 10−6 0.0286 0.7625
ISR 0.2331 0.0126 0.6957 < 10−6 0.0002 0.9981

Table 1: Correlations between the speech measures and ALSFRS-R overall, bulbar, and non-bulbar scores.

depression (Williamson et al., 2014) or dysarthria
(Fraile et al., 2008). For each frame we extracted
14 MFCCs, along with their first and second tem-
poral derivatives ∆MFCC and ∆∆MFCC. From
these 42 variables across time, we calculate 3 dif-
ferent summary statistics, mean, standard devia-
tion and pairwise variability yielding a total of 126
features.

3.2 Articulatory Features
For a specific sensor, we have three positional
arrays x = [x1, ..., xN ], y = [y1, ..., yN , and
z = [z1, ..., zN corresponding to dimensions x, y,
and z. For any index i ∈ [1, .., N − 1], we can
calculate the corresponding distance traveled as

di =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (1)

and form the corresponding distance matrix

D = [d1, ..., dN−1]. (2)

This distance matrix forms the basis for the articu-
lation features used in this paper. From D, we ex-
tracted eight summary statistics: mean, standard
deviation, skewness, kurtosis, maximum, mini-
mum, range, and pairwise variability. In addi-
tion to these baseline features, we considered three
procedures for normalizing the feature based on
measurements of the overall distance trajectory.
The first normalization procedure was dividing the
features by the overall distance traveled

∑
D, in

order to control for the distance of the overall ar-
ticulation motion which was heavily dependent on
the specific phrase being produced. The second
and third normalization procedures attempted to
control for the size of each individual’s articula-
tion motion space, the first by normalizing be-
tween the maximum overall distance between any
two points in (x,y, z). The second was form-
ing a convex hull around the articulation path and
normalizing based on the volume of the resulting
hull. Combining the 8 different statistics and four
normalization methods (including no normaliza-
tion) with the four different sensors (Tongue-tip,
tongue-back,lower lip and upper lip) yielded a to-
tal of 128 features.

To illustrate how these articulatory features
might help assess motor function for different in-
dividuals, we plotted the articulation data from
two different patients on opposite ends of the
severity spectrum in our dataset (Figure 3). The
first sample was from participant DA001 on
his/her first visit. This participant experienced
minimal decline in their speaking abilities and
scored a perfect 12/12 on the ALSFRS-R bulbar
subscore. The second sample was drawn from pa-
tient DA016 on her second visit, where she had
a severe speech decline already scoring only 3/12
points on the Bulbar subsection. Figure 3 dis-
plays the tongue-tip articulation tracks for the two
participants, along with a box plot comparing the
distribution of the distance values between points
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(a) DA001 Articulation Plot (b) DA016 Articulation Plot (c) Box Plot

Figure 3: Articulation plots for two participants (a) DA001 (normal speech) and (b) DA016 (severe speech deficit)
while speaking the phrase “I need to see a doctor”, along with (c) a box plot comparing the distributions of distances
between adjacent points in the articulation track for each participant. In the articulation plots, the starting point of
the articulatory motion is marked with a red cross and the end is marked with a green square.

for each participant. As shown in Figures 3a
and 3b, participant DA016 has a significantly re-
duced articulation space relative to DA001, where
DA001’s space had a volume that almost doubled
DA016’s (335.96 vs. 181.55). Additionally, the
box plot in Figure 3c shows a stark difference be-
tween the distribution of pairwise distances across
the two participants. The distances for participant
DA016 are significantly lower on average than
DA016, indicating a pronounced reduction in the
speed of articulation.

3.3 Regression Analysis
The regression analysis conducted in this experi-
ment began with the 3959 × 254 dimension fea-
ture matrix extracted via the procedure outlined
in the previous section. To ensure the regres-
sion model’s ability to generalize to new speak-
ers, it is evaluated by leave-one-speaker-out cross-
validation. Thus at every stage of cross-validation,
the model is trained using 27 participants and
evaluated based on the single left-out participant.
When a participant with multiple recording ses-
sions is moved to the validation set, all sessions are
moved to the validation set as a group and unique
predictions are made and evaluated for each ses-
sion.

All the data samples were z-scored (subtracted
the mean and divided by the standard deviation)
to obtain the normalized feature data. This proce-
dure helped prevent the scale of different attributes
affecting how much they contribute to the model.

Two regression models were used in this analy-
sis, a simple ridge regression model and a support
vector machine (SVM). Ridge regression is sim-
ilar to ordinary least-squares regression, but uti-
lizes an L2 regularization term in order to bet-

ter model data that is subject to multicollineari-
ties (Hoerl and Kennard, 1970). Unlike traditional
regression models that minimize observed train-
ing error, support vector regression (SVR) mini-
mizes a generalization bound in order to ensure
the model performs well on out-of-sample data
(Basak et al., 2007). This factor, combined with
the ability of SVMs to use non-linear kernels to
model complex non-linear patterns in data, has
made them widely used for both classification and
regression problems. The SVMs used in this paper
employed a linear kernel and were trained using
the sequential minimal optimization (SMO) algo-
rithm.

In addition to the baseline model (using all pre-
viously described acoustic and articulation fea-
tures), we also tested the performance of other
five feature groups, acoustic only, acoustic + lips,
tongue, lips, and tongue + lips. The initial predic-
tions were made on individual samples (phrases),
and were then averaged to form a final prediction
for each patient-session pair.

Two measures were used for the regression per-
formance, root mean squared error (RMSE) and
the correlation of the resulting set of predictions
with the true ALSFRS-R (bulbar) scores. Low
RMSE indicates that the small difference between
the predicted and true ALSFRS-R values. High
correlation indicates that changes in the predicted
ALSFRS-R values are likely corresponding to a
proportional changes in the true values.

4 Results

The results for each of the six feature group and
two regression models are displayed in terms of
both RMSE and correlation in Figure 4. The high-
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Figure 4: Bar graphs describing the performance of Ridge (blue) and SVM (orange) models across the six feature
groupings described along the x-axis in terms of both root mean-squared error and correlation.

est performance was achieved by the SVR model
using acoustic data along with all articulatory mo-
tion data (RMSE = 1.78, r = 0.64).

Figure 4 indicated a few interesting findings.
First, we found that the models trained on both
the articulation motion data and the acoustic data
tended to outperform either grouping by itself.
This is consistent with the literature on both ISR
prediction (Wang et al., 2016b, 2018) and ALS
early detection (Wang et al., 2016a), which have
shown the performance benefits of adding articu-
latory data to acoustic models.

In addition, the performance on data from
tongue or lips separately shows that the tongue
sensors were significantly more powerful than lips
for predicting ALSFRS-R scores when viewed in
isolation, which is not surprising, as the tongue is
the primary articulator. Wang and colleagues also
found tongue information outperformed lip infor-
mation in predicting intelligible speaking rate for
ALS (Wang et al., 2018).

Interestingly, when comparing the perfor-
mances between the “Acoustic+Lips” group and
the “All Features” group, we found that the ad-
dition of the tongue data (on top of acoustic and
lip motion data) did not significantly improve the
performance. Further studies, however, are re-
quired to verify this finding with a deeper analysis
on the performance of additional tongue informa-
tion on top of acoustic and lip information. Future
research should investigate the degree to which
non-invasive video-based measures of lip motion
can be substituted for the more traditional motion-
sensors. This finding supports the idea that a mo-
bile app for recording speech and lip motion (via

a webcam) would be beneficial for future home-
based data collection from patients.

Finally, when comparing the performance of
the two regression models that were tested, SVM
tended to perform slightly better than the ridge re-
gression models. The lone exception to this was
in the case of tongue-only articulation data, where
the ridge regression model slightly outperformed
the SVM. Future work will involve more com-
plicated models such as convolutional neural net-
works (CNNs), which have recently shown poten-
tial in ALS early detection (An et al., 2018).

5 Conclusion

This paper explored automatic estimation of the
ALSFRS-R bulbar score from speech information,
where both acoustic and articulatory motion data
collected during speech production were used.
Two regression models, support vector regression
and ridge regression, were applied on six different
feature groups/sets. The highest performance was
achieved by the SVR model using acoustic data
along with all articulatory motion data. To our
knowledge, for the first time, we demonstrated the
feasibility of automatic prediction of ALSFRS-R
bulbar score from speech samples. Future research
on this topic will focus on the degree to which non-
speech information can be included to predict ALS
motor function decline more broadly.
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Appendix

Index Phrase
1 I love you
2 Good afternoon
3 I changed my mind
4 I need some assistance
5 Come back again
6 Nice to see you
7 Not very good today
8 I need to see a doctor
9 I am fine
10 Thanks for stopping by
11 How are you
12 Call me back when you can
13 Great to see you again
14 Can I have that
15 This is an emergency
16 What are you doing
17 Good-bye
18 When will you be back
19 Give me one minute
20 I need to make an appointment

Table 2: List of stimuli used for data collection.
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Abstract

Blissymbolics (Bliss) is a pictographic writ-
ing system that is used by people with com-
munication disorders. Bliss attempts to create
a writing system that makes words easier to
distinguish by using pictographic symbols that
encapsulate meaning rather than sound, as the
English alphabet does for example. Users of
Bliss rely on human interpreters to use Bliss.
We created a translation system from Bliss to
natural English with the hopes of decreasing
the reliance on human interpreters by the Bliss
community. We first discuss the basic rules of
Blissymbolics. Then we point out some of the
challenges associated with developing com-
puter assisted tools for Blissymbolics. Next
we talk about our ongoing work in developing
a translation system, including current limita-
tions, and future work. We conclude with a set
of examples showing the current capabilities
of our translation system.

1 Background

An estimated 7.7% of children aged 3-17 have
had a communication disorder, 44.8% of which re-
ceive no intervention services (Black et al., 2015).
Blissymbolics was created to provide a tool for
cognitive, and speech related communication dis-
orders. Blissymbolics(Bliss, 1965), uses picto-
graphic symbols to represent language as opposed
to existing alphabetic writing systems in order to
provide an alternate that may be easier to learn for
people with low literacy.

In 1985, Muter and Johns conducted three ex-
periments to see if ideographic symbols made
it easier to extract meaning from words com-
pared to alphabetic symbols. Their experiments
showed shorter reaction times for extracting mean-
ing from symbols of Blissymbolics than for words
spelled in an unfamiliar language (Muter and
Johns, 1985). Therefore Blissymbolics may be
easier to learn for people with low literacy. In
addition, Blissymbolics can be used without any

speech, which may be useful for people with
speech related communication disorders.

Although many people use Blissymbolics, they
still have to rely on an interpreter to communicate
with the general population. In this paper, we dis-
cuss a prototype system we developed that trans-
lates Blissymbolics utterances to English. We also
discuss the future work we think is necessary for
this to become feasible for mainstream use.

Blissymbolics is composed of graphic Bliss
characters that form the smallest unit of meaning.
There are four categories of reasoning for creating
a glyph for Bliss characters illustrated in figure 1.

Pictographic Ideographic

Arbitrary Composite

Figure 1

Bliss characters can be combined to form Bliss
words with new meanings similar to the way En-
glish words can be composed of one or more let-
ters. However, individual symbols in Bliss corre-
spond to a morpheme, or smallest unit of meaning,
unlike the phonetic correspondence of written En-
glish. In figure 2, the symbol for house combined
with the symbol for medical form the word hospi-
tal, clinic.
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Figure 2

2 Challenges of Blissymbolics

2.1 Encoding
Currently there is no agreed upon encoding for
Bliss characters, making it difficult to develop
computer assisted tools. The official Blissymbol-
ics dictionary contains a unique 4-5 digit code as-
sociated with each Bliss character or Bliss word.
This encoding scheme does not differentiate be-
tween Bliss characters and words. This is the only
encoding we were able to find.

2.2 Computer Assisted Tools
Currently, users of Blissymbolics are restricted by
the need for an interpreter. Although the inter-
net has provided many tools for Blissymbolics,
there has yet to be a satisfactory translation tool
from Blissymbolics to natural language. Most on-
line tools are focused on creating customized Bliss
charts. For example, the chart in figure 3 about
food was created using blissonline 1.

Figure 3

Bliss charts help users communicate with non-
Blissymbolics users since the symbols are anno-
tated with their translation. However, users are re-
stricted to the number of symbols that fit on one
chart and the expressiveness of Blissymbolics is
reduced. Previous work has addressed the large
number of symbols by dynamically changing the
chart as symbols are input so that only valid op-
tions are presented to the user at each step (Netzer
and Elhadad, 2006).

1www.blissonline.org

Attempts have been made to create a translation
system from Blissymbolics to natural language.
Several systems have a digital bliss chart that syn-
thesizes speech for a given bliss word that is se-
lected 2. The digital nature of such devices helps
increase the number of symbols that a user can ac-
cess. Still, users are not able to build words up
from the characters that compose them.

At the University of Dundee (Waller and Jack,
2002), a predictive translation system prototype
was built using a trigram language model. The
system took Blissymbols as input and output En-
glish sentences. The gloss of each Blissymbol
contains one or more words of the target language.
The system consulted the trigram model to find the
most probable word from a given gloss. The sys-
tem also looked for words that probably belonged
between any two words, such as articles (which
are often implied in Blissymbolics). Although the
results of the system were not good enough for
mainstream use, the study paved the way for Natu-
ral Language Processing techniques to be applied
to Blissymbolics, and highlights some shortcom-
ings that need to be addressed for our work.

First, the input to the prototype translation sys-
tem is full Bliss words, not necessarily the char-
acters that compose them. In the current official
dictionary, there are 404 unique Bliss characters,
and 4,626 unique Bliss words that are composed
of one or more characters. If the system had the
ability to build up words from the characters that
compose them, then users would only need access
to 404 unique symbols, as opposed to all symbols
(characters and words).

Second, the translation system does not allow
the creation of new words. The official dictionary
contains words that are agreed upon by Blissym-
bolics International, but does not contain all possi-
ble words, or even all conjugations of those words.
The Blissymbolics Fundamental Rules includes a
section on building new vocabulary words, ac-
knowledging that not all words will necessarily be
built the same way by all users, and that users may
want to express words that are not in the official
lexicon. The rules provide an example of a word
being built in a different way than the official dic-
tionary.

For example, in Figure 4, the official spelling of
teacher is composed of the characters for person

2www.tobiidynavox.com, www.minspeak.com
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Figure 4

(non-gendered) + giving + knowledge. The funda-
mental rules concede that the same word should be
able to be built with the symbol female replacing
person (non-gendered). Additionally, there is no
official spelling for the word cried, although there
is a word for cry and there is a past action indica-
tor character that is made to be used as in figure 5.

Figure 5

A translation system that could handle alternate
spellings and unseen conjugations would help re-
lax the strict spelling requirements of the official
dictionary as intended by the Blissymbolics com-
munity, and increase the expressibility of the sys-
tem.

3 Our Translation System

We built a translation system in Python available
on github3. We made a few assumptions about
how Blissymbolics would be used. First, we as-
sumed that any input sequence would have a word
separating token, as the Fundamental Rules of
Blissymbolics dictate. Second, we used the en-
coding scheme found in The Official Blissymbol-
ics Dictionary, where each Bliss symbol, word or
character, is given a unique 4-5 digit numeric ID.
Our translation system only accepts these IDs as
input. We will need to create a graphical user in-
terface that allows users to select the Bliss charac-
ters to input in order to make this system usable.

The work associated with building our trans-
lation system focuses on Morphological Realiza-
tion, and a Language Model.

3.1 Morphological Realization
We wanted users to have the ability to express
words or conjugations of existing words that are

3www.github.com/usmansohail/Nighat

not in the Official Blissymbolics Dictionary. For
now, we only applied morphological realization on
recognized Bliss words, meaning only officially
recognized words can be conjugated in new ways.

We used the SimpleNLG realizer (Gatt and Re-
iter, 2009) to conjugate Bliss words. For example,
if an input Bliss character sequence had a Bliss
past tense indicator, we applied the past tense re-
alization to it. So a user could input the spelling
for the bliss word translating to cry, weep and ap-
pend the past tense indicator to the end, and get
the resulting words cried, wept.

Currently the system is limited to morpholog-
ical realization supported by SimpleNLG. There
are over 40 morphological relationships included
in Blissymbolics. Each relationship needs its own
realizing mechanism, not all of which can be
found in SimpleNLG. For example, there is a Bliss
character combine meant to combine two concepts
found in Bliss words. This is not a morpholog-
ical relationship and cannot be done using Sim-
pleNLG.

3.2 Language Model
We needed a language model to help choose the
best word from a given set of translation gloss, and
to decide when to add articles. The system first
builds all words using the machine readable dic-
tionary, and the morphological realizer outputting
a list of sets, where each set contains the possi-
ble English words that the given Bliss word may
translate to. The system looks at each set to de-
termine if it contains nouns using wordnet (Miller,
1995). If a noun is found, then a set of articles a,
the, or a blank is inserted before the set of nouns.
From here, the language model needs to decide the
most probable gloss words from each set, and also
which article, if any, is most probable.

We created an N-gram model trained on the
Gutenberg, brown, conll2000, and nps-chat cor-
pora using NLTK (Bird and Loper, 2004). We
used interpolation smoothing as in equation 1.

P (w1, w2, w3) = c1P (w3) + c2P (w3|w2) + ...

...+ CnP (w3|w1, w2)

s.t.
∑

ci = 1c1 < c2 < cn

(1)
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4 Test Set

We created a test set composed of 15 bliss utter-
ances from children’s books (Bruna, 1978; Andy
and Mann, 1979; Chait, 1992; Cocking, 1979), 6
of which are shown in figure 6 for discussion.

5 Results

The translation system received a BLEU score
of 34.53 when evaluated on the 15 utterance test
set. Some sentences preserve the general mean-
ing, whereas others do not. Some of the errors are
related to the language model, while others are re-
lated to Blissymbolics. In Figure 6, examples 1,
and 2 have errors that are related to the language
model. Sentence 1 is missing an a. Sentence 3 is
an example of a sentence that preserves the mean-
ing, although it incorrectly translates fat to thick.
The system translates Julius from sentence 2 and
1 to a boy. This translation relies on context to be
interpreted correctly. Sentence 4 translates other
to you. This error is caused by the fact that you
and other are spelled the same way with a minor
difference. The word you is spelled with person +
2, while other is spelled with person [modified] +
2. The current encoding scheme assigns each sym-
bol with a unique ID, however modified symbols
do not have a unique ID. Therefore, person and
person [modified] both have the same ID. Figure
7 shows the difference between the two words.

Other You

Figure 7: Other vs You

6 Future Work

In order to make a usable system, we think it is
necessary to address the following topics:

1. Encoding scheme
As the examples from figure 6 show, the cur-
rent encoding scheme is not able to capture
all of the capabilities of Bliss. In order to
make a usable system, an encoding scheme
needs to be chosen that can work with com-
puter systems, and also preserves the capa-

bilities of Bliss, such as modification of sym-
bols.

2. Language model
The language model that we used was imple-
mented to show a proof of concept. In order
to make the system more applicable, we think
that the training corpora used should be com-
posed primarily of dialogue utterances, since
this is the way that the translation system is
intended to be used.

3. User Interface
If users are ever to use the system, there needs
to exist a way for them to easily input. In or-
der to build this, the encoding scheme needs
to be chosen first. A critical component of a
UI is a text to speech component so that users
can be independent of a human interpreter.

4. Context
A system that is able to exploit the context of
a dialogue would decrease the reliance on a
human interpreter. The way Bliss is used typ-
ically involves a human interpreter who can
infer context, such as the name Julius from
figure 6.

7 Conclusion

Our translation system adds some new features
to Blissymbolics translation systems, namely the
ability to create new words based on existing
words. We also address some topics that need to
be addressed for mainstream use. We believe our
morphological perspective is useful for Blissym-
bolics, however more work is necessary to assess
it’s impact on translation. We hope to work with
the Blissymbolics community for future work.

8 Acknowledgments

Special thanks to Anne O’Malley, Shirley Mc-
Naughton, Margareta Jennische, Annalu Waller,
Lovisa Jacobson, and Blissymbolics Communica-
tion International.

35



Reference Translation/Bliss Result Translation

1
for boy and his
family

2
a boy the gain much
persons

3
I have two thick fish

4
the you the fat fish is
called bottom

Figure 6: Each row contains an utterance written in Bliss annotated with it’s reference translation. Adjacent to that
is the corresponding result translation using our system. Any written English inside of the Bliss utterance is taken
as is.
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Abstract
Making good letter or word predictions can
help accelerate the communication of users
of high-tech AAC devices. This is particu-
larly important for real-time person-to-person
conversations. We investigate whether per-
forming speech recognition on the speaking-
side of a conversation can improve language
model based predictions. We compare the ac-
curacy of three plausible microphone deploy-
ment options and the accuracy of two commer-
cial speech recognition engines (Google and
IBM Watson). We found that despite recogni-
tion word error rates of 7–16%, our ensemble
of N-gram and recurrent neural network lan-
guage models made predictions nearly as good
as when they used the reference transcripts.

1 Introduction

People who are non-verbal often use some form
of Augmentative and Alternative Communication
(AAC). Common forms of speaking disorders in-
clude stuttering, cluttering, apraxia, dysarthria,
aphasia, Parkinson’s disease, amyotrophic lateral
sclerosis (ALS), or cerebral palsy. An AAC device
may let a user select letters, words, and phrases
from its interface and a communication partner
can read the text or hear it via text-to-speech. The
rate at which an AAC user can enter text is typi-
cally slow (often less than 10 words-per-minute)
(Trnka et al., 2009; Simpson et al., 2006; Hig-
ginbotham et al., 2007). That is why predictive
AAC devices normally use a language model to
try and make suggestions of likely upcoming text.
These predictions are usually made based solely
on the text entered by the AAC user. They typ-
ically ignore the two-way nature of conversation
which can offer many contextual clues.

In this paper, first we investigate how to record
and recognize the speech of a partner communi-
cating with the AAC user. Then we investigate
if speech recognition on partner speech improves
two-sided conversational language modeling.

2 Related Work

Predictive AAC devices typically use an N-gram
language model (LM). An N-gram LM calculates
the probability of a token given the previous N-1
tokens. The performance of this model depends
on the training data being closely matched to a
user’s text. But for practical, ethical, and privacy
issues, there is a scarcity of text written by AAC
users. Researchers have resorted to training LMs
on data from news articles (Trnka et al., 2009) or
phone transcripts (Wandmacher et al., 2008). An-
other option is the large amounts of text that can be
mined from the internet, e.g. tweets, blog posts, or
Wikipedia articles. While such web data may be
informal or have other artifacts such as abbrevia-
tions, researchers have used filtering methods such
as cross entropy difference selection (Moore and
Lewis, 2010) to select training data for AAC lan-
guage models (Vertanen and Kristensson, 2011).

Recently, recurrent neural network language
models (RNNLMs) have achieved state-of-the-
art performance over traditional N-gram language
models. RNNLMs have been shown to bet-
ter model long range dependencies when com-
bined with techniques such as long short-term
memory (Hochreiter and Schmidhuber, 1997) or
gated units (Chung et al., 2014). Further gains
have also been achieved by interpolating N-gram
models (Mikolov et al., 2014) and other tech-
niques (Mikolov et al., 2011a,b).

In addition to using textual context, previous
AAC work has also investigated using face detec-
tion (Kane et al., 2012), vision (Kane and Mor-
ris, 2017), and location (Demmans Epp et al.,
2012) as context for AAC predictions. But lim-
ited work has been done to predict AAC user’s re-
sponse based on partner speech. Wisenburn (2008;
2009) created a program called Converser and
used speech recognition to identify the speaking
partner’s words. This input was then parsed by a
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A: Did you call the theater?
B: So sorry, I forgot to call the theater.
A: You can just go online.
B: That’s true, I’ll do that now.
A: What movie is it that you want to see?
B: The lord of the rings.

Table 1: A dialogue created by Amazon Turk workers.

Figure 1: The application used to record dialogues.

noun phrase identification system. Identified noun
phrases, along with relevant static messages, were
displayed to the user. This provided users with a
faster communication rate compared to a system
that did not use partner speech. In our work, we
also perform speech recognition on the partner’s
speech. However, we will use recognition results
as context to our language models in hopes of bet-
ter predicting an AAC user’s upcoming text.

3 Speech Data Collection

Our first step was to obtain text and audio data
reasonably representative of everyday person-to-
person conversations. In this section, we detail
how we collected this data. Further, we designed
our collection to answer the practical question of
how and where a microphone might be located for
recording a partner’s speech.

As a starting point for our spoken dialogue col-
lection, we used the text dialogues collected by
Vertanen (2017). These dialogues were invented
by workers on Amazon Mechanical Turk. The di-
alogue started with a question invented by one of
the workers. Subsequent workers then extended
the dialogue by another turn until a total of six
turns were completed. Table 1 shows an example
dialogue. The original collection had 1,419 dia-
logues. We removed 265 we deemed potentially
offensive, resulting in a set of 1,154 dialogues.

3.1 Audio Data Collection
The dialogue data from (Vertanen, 2017) consisted
only of text. We wanted to investigate whether
a partner’s speech could improve an AAC de-
vice’s predictions. We designed a desktop applica-
tion to record audio data of participants’ speaking
turns in the text dialogues. The application high-
lighted the current turn we wanted the participant
to speak. Any previous turns of the dialogue were
also shown as context. The application recorded
from three microphones simultaneously:

• HEADSET — A Logitech H390 USB noise
cancelling headset microphone.

• LAPTOP — The built-in microphone of a 13”
2015 MacBook Pro laptop.

• CONFERENCE — A MXL AC404 USB con-
ference microphone. This microphone was
positioned behind the laptop at a distance of
approximately 0.9 m from the participant.

The application allowed the participant to re-
record any utterances in which they misspoke. We
analyzed just the last recording for each dialogue
turn. Audio was recorded at 44.1 kHz. We re-
cruited 14 participants via convenience sampling.
Four self-reported as male, ten as female. The av-
erage age was 36. Participant 5 reported having
a foreign accent. Each participant took part in an
approximately half-hour session and was paid $10.
Participants sat at a desk with a laptop in quiet of-
fice. They were allowed to adjust their chair so
they could comfortably operate the laptop.

Participants first recorded three practice dia-
logues. We did not analyze the practice dialogues.
Each participant then completed half the turns in
28 additional dialogues. The subsequent partici-
pant completed the other half of the turns of the
same 28 dialogues. In total, we collected 1,176 ut-
terances constituting both sides of 196 dialogues.
We have made our filtered text dialogues, audio
recordings, recognition results, and Java audio col-
lection application available to other researchers1.

3.2 Speech Recognition Experiments
We performed speech recognition using two com-
mercially available speech recognizers, Google
Cloud Speech-to-Text and IBM Watson Speech-
to-Text. We performed speech recognition on au-
dio from each of the three different microphones.

1https://digitalcommons.mtu.edu/
data-files/1
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Microphone
LAPTOP HEADSET CONF.

GOOGLE 7.3±1.0 7.0±1.0 8.9±1.2
WATSON 10.5± 1.2 10.7±1.2 16.0±1.6

Table 2: Word Error Rate (WER %) using different mi-
crophones and speech recognizers. Results are format-
ted as mean ± 95% bootstrap confidence intervals.

We computed the Word Error Rate (WER) of each
recognition result against its reference transcript.

The reference transcripts included various nu-
meric characters representing times or amounts.
We found the recognition results on such turns
were variable. Sometimes the recognizer returned
numeric transcriptions and sometimes numbers
were spelled out as words. For consistency, we
dropped all dialogues if any of its reference turns
had a number in it. This reduced the number of
dialogues from 196 to 160.

As shown in Table 2, the mean WER on the
three different microphones using the GOOGLE

recognizer was LAPTOP 7.3%, HEADSET 7.0%,
and CONFERENCE 8.9%. IBM’s recognizer had
higher error rates with LAPTOP at 10.5%, HEAD-
SET at 10.7%, and CONFERENCE at 16.0%.

Figure 2 shows the WER for each participant
using the GOOGLE speech recognizer and audio
from the HEADSET microphone. 9 of the 14 par-
ticipants had a lower mean WER of 5.5%. This
was driven by the fact that 84.0% of their utter-
ance turns were recognized with no errors.

We recorded our audio in a quiet office. We also
wanted to explore how our methods might work in
noisier locations. To do this, we injected a record-
ing of street noise into our clean audio data. We
used the SoX Sound eXchange utility to add in the
street noise at three different volume levels: 0.1,
0.2, and 0.3. Figure 3 shows the mean word er-
ror rates on recordings with no noise and at the
three noise levels. Even at noise volume level 0.3,
both recognizers’ mean word error rates using the
HEADSET and LAPTOP microphones stayed be-
low 40%. However, the mean word error rates us-
ing the CONFERENCE microphone started deteri-
orating more sharply with increasing noise.

4 Language Modeling Experiments

We now investigate how to use language models to
better predict turns in our dialogue collection. Re-
call we recorded both sides of 196 of the dialogues
from our set of 1,154 dialogues. After dropping
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Figure 2: Participants’ per utterance WER using the
Google recognizer and audio from a headset mic.

0.0 0.1 0.2 0.3
Volume level of noise

0

20

40

60

80

M
ea

n
W

or
d

E
rr

or
R

at
e

(W
E

R
%

) google-headset
google-laptop
google-conference
watson-headset
watson-laptop
watson-conference

Figure 3: WER on audio dialogue turns without noise
and with three different injected noise levels.

dialogues with numbers, we arrived at a test set
of 160 dialogues with audio data. We created
text-only training and development sets from the
remaining 958 dialogues. From these dialogues,
we dropped 128 that contained numbers. We ran-
domly selected 160 from the remaining dialogues
as a development set and 670 as a training set.

Our language modeling experiments used a vo-
cabulary of 35 K words. The vocabulary consisted
of the most frequent known English words oc-
curring in 50 M words of sentences parsed from
Twitter. Any words not in this vocabulary were
mapped to an unknown word token. We converted
text to lowercase and removed punctuation aside
from apostrophe. Throughout, we report the per-
word perplexity of our test set (160 dialogues, 960
turns, 7.1 K words). We excluded the sentence end
pseudo-word from our calculations.

4.1 N-gram Language Models

We took each turn in the training set as an in-
dependent training example (4,020 turns, 30 K
words). We trained a 4-gram interpolated modified
Kneser-Ney model using SRILM (Stolcke, 2002;
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Training data Words PPL

Twitter, small amount of data 30 K 417.3
Crowd dialogues 30 K 211.8
Twitter, large amount of data 50 M 96.0

+ CE diff. 25% dialogues 50 M 91.0
+ CE diff. 50% dialogues 50 M 86.8
+ CE diff. 75% dialogues 50 M 83.5
+ CE diff. 100% dialogues 50 M 83.5
+ Optimized CE threshold 50 M 77.4

Table 3: N-gram perplexity varying training data.

Stolcke et al., 2011). As shown in Table 3, the per-
plexity on the test set was 211.8. For comparison,
we trained a 4-gram model on 30 K words of ran-
dom Twitter data collected via Twitter’s streaming
API between 2009–2015. The Twitter model had
a much higher perplexity of 417.3.

An approach to filtering an out-of-domain train-
ing data is cross-entropy difference selection
(Moore and Lewis, 2010). This approach cal-
culates the cross-entropy of individual sentences
under an in-domain and an out-of-domain model
trained on similar amounts of data. We trained our
in-domain model on between 25–100% of the text
in our Turk dialogue training set.

We selected 50 M words of Twitter data be-
low a certain cross-entropy difference threshold.
We used an initial threshold of -0.3. The more
negative the threshold, the more sentences had to
resemble in-domain text in order to be selected.
As shown in Table 3, using more in-domain data
reduced perplexity though gains eventually flat-
tened. Finally, we used all the in-domain data
to search for the optimal cross-entropy difference
threshold on the development set. The optimal
threshold of -0.06 further lowered perplexity to 77.

4.2 RNN Language Models

Next, we investigated training Recurrent Neu-
ral Network Language Models (RNNLMs) on
the cross-entropy difference selected Twitter data.
We trained our models using the Faster RNNLM
toolkit2. For each model type, we trained 10
RNNLMs with different random initialization
seeds. We report the perplexity on the test set of
the model that had the lowest perplexity on the de-
velopment set. Unless otherwise noted, we used
the default hyperparameters of Faster RNNLM.

2https://github.com/yandex/
faster-rnnlm

Model PPL PPL
Sentence Dialogue

Twitter RNNLM 179.0 129.3
+ GRUs 167.8 122.8
+ NCE 172.2 111.9
+ maximum entropy 123.7 84.1
+ Twitter 4-gram LM 75.2 71.5
+ unigram cache 75.2 68.5

Table 4: Perplexities with added features. We reset the
RNNLM between each sentence or after each dialogue.

During evaluation we reinitialized the RNNLM
after every sentence or after every six-turn dia-
logue. This allowed us to observe how much the
model was adapting to a particular dialogue while
avoiding allowing the model to adapt to the gen-
eral style of our Turk dialogues.

As shown in Table 4, a model trained with 250
sigmoid units had a perplexity of 129.3 on each
dialogue. Switching to 250 Gated Recurrent Units
(GRUs) (Chung et al., 2014) reduced perplexity to
122.8. Switching to Noise Contrastive Estimation
(NCE) (Chen et al., 2015) further reduced perplex-
ity to 111.9. Training a maximum entropy lan-
guage model of size 1000 and order 4 in the RNN
reduced perplexity substantially to 84.1.

We interpolated our best RNNLM with our best
previous N-gram model. We optimized the mix-
ture weights with respect to our development set.
This further reduced perplexity to 71.5. We also
investigated a unigram cache (Grave et al., 2016).
Similar to the RNNLM, we reset the cache after
each sentence or after each dialogue. The cache
model provided a small reduction in perplexity to
68.5. The mixture weights were: N-gram 0.55,
RNNLM 0.42, and unigram cache 0.04.

Comparing the result columns in Table 4,
we see consistently higher perplexities when the
RNNLM was evaluated on sentences instead of on
entire dialogues. In particular, the RNNLM was
substantially worse with a perplexity of 123.7 on
sentences versus 84.1 on dialogues. This demon-
strates the ability of the RNNLM to adapt to as-
pects of the text over a longer time horizon.

4.3 Two-sided Dialogue Language Models

We now turn to training language models on two-
sided dialogues. Since our Amazon Turk dia-
logue collection is relatively small, we instead
used dialogues from movies (Danescu-Niculescu-
Mizil and Lee, 2011). We created a training set
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Model PPL

Movie dialogue 7-gram 138.5
Movie dialogue RNNLM 129.1
Turk dialogue RNNLM 185.5
Mixture, dialogue models 104.3
Mixture, Twitter + dialogue + cache 66.3

Table 5: Perplexity of models trained on two-sided di-
alogues and mixtures of dialogue and twitter models.

of 83 K dialogues consisting of 305 K turns and
3.2 M words. We introduced a pseudo-word to de-
note speaker changes. We excluded this speaker
change word from our perplexity calculations. We
treated the set of turns making up a dialogue as a
single “sentence” during training and testing. We
evaluated models on each dialogue in our Turk test
set (the same set used previously). In the case of
RNNLMs, we reset the model after each dialogue.

We first tested 4-gram through 8-gram N-gram
models. The 4-gram had the highest perplexity of
139.2 The 7-gram model had the best perplexity
of 138.5 (Table 5). Next we trained a RNNLM on
the movie dialogues using 300 GRU units, NCE,
and with a maximum entropy model of size 1000,
order 4. The RNNLM had a lower perplexity of
129.1. This again highlights the ability of the
RNNLM to better model long-range dependencies
and/or topics compared to the N-gram model.

We also trained an RNNLM on just the Turk
dialogues. We used 100 GRU units, NCE, and a
maximum entropy model with 100 units and an
order of 4. This model had a perplexity of 185.5.
We think this model’s worse performance reflects
the substantially smaller amount of training data.
By interpolating these three dialogue models, we
obtained an even lower perplexity of 104.3. The
mixture weights were: Movie 7-gram 0.24, Movie
RNNLM 0.40, and Turk RNNLM 0.37.

Our two-sided models were trained on modest
amounts of data. To see if they still offered gains
in combination with models trained on substan-
tially more Twitter data, we interpolated all our
models. The mixture weights were: Twitter N-
gram 0.43, Twitter RNNLM 0.32, movie dialogue
N-gram 0.05, movie dialogue RNNLM 0.10, Turk
dialogue RNNLM 0.06, and unigram cache 0.04.
The mixture model’s perplexity was 66.3, a mod-
est gain compared to the 68.5 obtained using a
mixture of the Twitter models and unigram cache.
It does however represent a more substantial gain
compared to the 77.4 of the best N-gram only

model. This shows that having access to both sides
of a dialogue combined with the adaptive nature of
RNNLMs may offer improved predictive AAC.

4.4 Impact of Speech Recognition Errors

In real-time person-to-person conversations, we
cannot expect to have a perfect transcript of the
other side of the conversation. We now investigate
the impact of speech recognition errors on the per-
formance of our language models. We did this by
measuring the perplexity on two copies of the test
set. In the first copy, we replaced the transcript
of the even number dialogue turns with the speech
recognition result of one of our participants speak-
ing that turn. In the second copy, we replaced the
odd number turns. We report the perplexity cal-
culated from the odd turns from the first copy and
the even turns from the second copy.

The entire six turns were provided to the lan-
guage models for both copies to allow the model
to condition on prior turns (including any speech
errors). We reset the RNNLMs and unigram cache
model between each dialogue. We used the previ-
ous best ensemble of six models which had a per-
plexity on the test dialogues of 66.3. We tested
injecting the speech recognition results from the
three microphones, two recognition engines, and
four noise levels (none, 0.1, 0.2, and 0.3).

As shown in Figure 4, the perplexity of our en-
semble of models only increased slightly when
we replaced the reference transcripts with speech
recognition results based on noise-free audio. For
example, the far-field conference microphone had
a WER of 8.9%. However, the errors introduced
by recognition only slightly increased the perplex-
ity of the dialogues from 66.3 to 66.6. Similar to
WER in Figure 3, as the level of injected noise in-
creased, perplexities also increased.

5 Discussion and Limitations

In this paper, we conducted an initial investigation
into the feasibility of performing speech recogni-
tion on an AAC user’s speaking partner. We found
that whether audio was captured from a wired
headset or from a far-field microphone, we could
recognize conversational-style utterances with er-
ror rates between 7–16%. We found Google’s
speech engine provided more accurate recogni-
tion than the IBM Watson recognizer. However,
IBM’s engine offers other benefits such as expos-
ing probabilistic information about recognition re-
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Figure 4: Perplexities using speech recognition on part-
ner turns rather than reference transcripts. Results for
no added noise, and for three levels of injected noise.

sults (e.g. a word confusion network). Such in-
formation might be leveraged to help avoid con-
ditioning a predictive AAC interface on erroneous
regions of a partner’s speech recognition result.

Our participants were given the verbatim text
for each of their dialogue turns. As such, we can
expect they spoke more fluently than one could ex-
pect in a spontaneous conversation. Further, we
only collected audio in a quiet environment. While
our results seem robust to artificially added noise,
it remains to be seen if this holds for real-world
noisy environments. As such, our error rates prob-
ably represent a lower-bound of what could be ex-
pected. Nonetheless, it is reassuring that our lan-
guage models predict the non-speaking side’s text
with only minimal perplexity loses despite relying
on text obtained via speech recognition.

Thus far we have focused on ascertaining
whether there is a potential advantage to con-
ditioning on recognition of the speaking side.
Whether the perplexity gains we showed will re-
sult in actual practical improvements in the aus-
pices of a predictive AAC interface remain to
be seen. Further work is needed to understand
whether these language model gains will result in,
for example, better word predictions that actually
save a user keystrokes. Even more work is needed
to validate if end-user performance improves.

The use of speech recognition by an AAC de-
vice also has obvious privacy implications. This
may require the AAC device or user to allow part-
ners to opt-in to having their voice recognized.
Further, our current work used cloud-based speech
recognition. Users may prefer to have their speech
recognized locally on device. Local recognition

may also be necessary to avoid network latency or
to allow use without network connectivity.

Our goal here was to demonstrate some of the
building blocks necessary for modeling everyday
conversational-style text. While we made some ef-
fort to optimize our models (e.g. tuning mixture
weights on development data), further improve-
ments are certainly possible. For example, we did
not conduct an extensive search for the best hyper-
parameters used during RNNLM training. Further,
we need to investigate whether our methods and
results scale to substantially more training data.

Our results show the benefits of language mod-
els based on recurrent neural networks. In partic-
ular, we found even when trained on non-dialogue
data, RNNLMs adapted to the content of our short
dialogues, providing good gains compared to an
N-gram model. Further, we showed how a small
in-domain corpus can be used to optimize models
for everyday conversations. Despite our relatively
small amount of two-sided dialogues data (3.2 M
words of movie dialogues), we obtained improve-
ments compared to using models trained only on
much more non-dialogue data (50 M words of
Twitter). In the end, we found an ensemble of N-
gram and RNNLMs trained on sentence and dia-
logues combined with a unigram cache model pro-
vided the best performance.

6 Conclusions

AAC users often face challenges in taking part in
everyday conversations due to their typically slow
text entry rates. Predictions can provide an op-
portunity to accelerate their communication rate,
but it is crucial these predictions be as accurate as
possible. Leveraging real-world contextual clues
offers one route to improving these predictions. In
this paper, we found speech can be accurately rec-
ognized with a variety of microphone configura-
tions that might be deployed on an AAC device.
Further, we found the error rates of current state-
of-the-art recognizers allowed predictions nearly
as good as having the verbatim text of the part-
ner’s turn. We think this work provides promis-
ing results showing a partner’s speech can provide
context to improve an AAC device’s predictions.
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Tomáš Mikolov, Anoop Deoras, Stefan Kombrink,
Lukas Burget, and Jan Cernockỳ. 2011a. Empirical
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Abstract

Language models have broad adoption in
predictive typing tasks. When the typ-
ing history contains numerous errors, as in
open-vocabulary predictive typing with brain-
computer interface (BCI) systems, we observe
significant performance degradation in both n-
gram and recurrent neural network language
models trained on clean text. In evaluations
of ranking character predictions, training re-
current LMs on noisy text makes them much
more robust to noisy histories, even when the
error model is misspecified. We also pro-
pose an effective strategy for combining ev-
idence from multiple ambiguous histories of
BCI electroencephalogram measurements.

1 Introduction

Brain-computer interface (BCI) systems provide a
means of language communication for people who
have lost the ability to speak, write, or type, e.g.,
patients with amyotrophic lateral sclerosis (ALS)
or locked-in syndrome (LIS). These systems are
designed to detect a user’s intent from electroen-
cephalogram (EEG) or other signals and to trans-
late them into typing commands.

Recent studies have shown that incorporating
language information into BCI systems can signif-
icantly improve both their typing speed and accu-
racy (Oken et al., 2014; Mora-Cortes et al., 2014;
Speier et al., 2016, 2017, 2018; Dudy et al., 2018).
Existing methods for optimizing BCI systems with
language information either focus on improving
the accuracy of symbol classifiers by adding pri-
ors from language models(Oken et al., 2014), or
on accelerating the typing speed by tying predic-
tion (Dudy et al., 2018), word completion, or au-
tomatic error correction (Ghosh and Kristensson,
2017).

Instead of displaying a keyboard layout, these
BCI systems present candidate characters sequen-

tially, as in the Shannon game (Shannon, 1951),
and then measure users’ reactions with EEG or
other signals. Predictive performance is thus mea-
sured using the mean reciprocal rank of the correct
character or the recall of the correct character in
the k candidates presented in a batch to the user.

Most previous work on language modeling for
BCI employs n-gram language models although
the past decade has seen recurrent and other neu-
ral architectures surpass these models for many
tasks. Furthermore, most predictive typing meth-
ods, for BCI or other applications, depend on lan-
guage models trained on clean text; however, BCI
output often contains noise due to misclassifica-
tion of EEG or other input signals. To the best
of our knowledge, language models have rarely
been evaluated in with such character-level noise.
Recurrent language models, however, could effec-
tively utilize contexts of 200 tokens on average
(Khandelwal et al., 2018). Although this might be
a disadvantage with noisy histories, we will see
that it is no worse than n-gram models with clean
training and much better with noisy training.

In addition, existing work mainly focuses on
prediction given a single sequence of tokens in the
history, but the signal classifier for BCI systems
might not always correctly rank the users’ intent as
the top candidate. Dudy et al. (2018) proposed in-
corporating ambiguous history into decoding with
a joint word-character finite-state model, but typ-
ing prediction could not be further improved. Al-
though (Sperber et al., 2017) considered lattice de-
coding for neural models, the task of integrating
multiple candidate histories during online predic-
tion has not been studied.

To address these challenges, we propose to train
a noise-tolerant neural language model for online
predictive typing and to provide a richer under-
standing of the effect of the noise on recurrent
neural network language models. We aim to an-
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swer the following questions: (1) what effect noise
in different regions of the history and in different
sentence and word positions has on recurrent lan-
guage model character predictions; (2) how to mit-
igate performance degradation in LM predictive
accuracy with noisy histories; and (3) whether in-
cluding ambiguous history could help to improve
the performance of neural language models.

In this paper, we investigate these questions by
training long short-term memory (LSTM: Hochre-
iter and Schmidhuber, 1997) models on synthetic
noisy data generated from the New York Times
(NYT) corpus and the SUBTLEXus corpus to
cover both formal and colloquial language.

Experimental results show that injecting noise
into the training data improves the generalizabil-
ity of language models on a predictive typing
task. Moreover, a neural language model trained
on noisy text outperforms n-gram language mod-
els trained on noisy or clean text. In fact, some
language models trained on clean text do sub-
stantially worse than a character unigram base-
line when presented with text with only uniform
stationary noise. Taking multiple possible candi-
dates into consideration at each time step further
improves predictive performance.

2 Related Work

Language Modeling for BCI Systems As
noted above, several BCI systems have incorpo-
rated n-gram language models trained on clean
text (Oken et al., 2014; Speier et al., 2016, 2017).
Dudy et al. (2018) propose taking noisy ambigu-
ous outputs from BCI signal classifiers and using
a language model to find an optimal path among
those output to predict the next letter. Their use
of ambiguous histories, however, does not signif-
icantly improve performance for a word-character
hybrid model.

Noisy Language Models Xie et al. (2017) show
that injecting noise into training data for neu-
ral network grammar-correction models could
achieve comparable performance with parameter
regularization and thus make the model more gen-
eralizable with limited training data. Belinkov and
Bisk (2017) show that machine translation models
trained on noisy source text are more robust to the
corresponding type of noise. Li et al. (2013) aim at
using fixed-history neural network models to ana-
lyze the typing stream and predict the next charac-
ter. Ghosh and Kristensson (2017) describe train-

ing a sequence-to-sequence model with attention
to automatically correct and complete the current
context. Their word-level decoder cannot predict
unseen words, as a character or word-character hy-
brid model could naturally do.

3 Approach

Given an input sequence of characters typed by
a user, the goal of typing prediction is to predict
the next possible character that the user intends
to type, which is the usual objective of language
modeling. Both typing speed and typing accuracy
could be significantly increased if the user’s in-
tended character is ranked higher and presented
earlier to the user at each time step. We apply
LSTM model, which has been proven effective
in capturing long-term dependencies, as our lan-
guage model.

In this paper, we aim to study the effects of
noise in the input sequence on the performance
of language models for typing prediction in BCI
systems. As shown by Belinkov and Bisk (2017)
and Xie et al. (2017), the performance of language
models and translation models degrades dramat-
ically on text unobserved in the training corpus,
but adding appropriate noise to the training corpus
could significantly improve accuracy. We there-
fore propose to generate synthetic noisy data by
randomly choosing p percent of characters from
both the training and test corpus, and substituting
for them a random character excluding the original
correct one. Here we use uniform distribution to
sample the characters. We then train the language
models on the corrupted training set and compare
their performance on the corrupted test set.

4 Experiments

In this section, we first introduce the details of
our experimental setup (§4.1). Then we compare
the performance of the LSTM and baseline mod-
els trained on clean and noisy text (§4.2). Further
discussion of the effect of errors on LSTM models
follows in §4.3 and §4.4. §4.5 explores whether in-
cluding multiple candidate histories could further
improve predictive performance.

4.1 Experimental Setup

Datasets We evaluate our model on two datasets:
the New York Times (NTY) corpus (Sandhaus,
2008) and SUBTLEXus (Brysbaert and New,

45



(a) NYT (b) SUBTLEXus

Figure 1: MRR of different models for predictive typing on test sets with different noise rates

(a) NYT (b) SUBTLEXus

Figure 2: Recall of different models for predictive typing on test sets with different noise rates

2009) corpus of subtitles from movies and tele-
vision. The NYT has relatively longer sentences,
richer vocabulary, and more formal language;
SUBTLEXus tends toward colloquial language
and shorter sentences. To make a fair compari-
son between the two corpora, we randomly sam-
ple two subsets from them with equal numbers of
characters. Both corpora are split into sentences,
80% sentences are randomly sampled as training
set while the rest are used as test set. Table 1 sum-
marizes the data.

Dataset # Sentences Avg length Std of Length
NYT 1,750,000 120.11 64.78
SUBTLEXus 5,602,082 37.54 33.42

Table 1: Corpus sentence count and average character length

Baselines and Comparison We compare the
LSTM model with two baselines: a character un-
igram language model (Unigram) and a character
n-gram language model with Kneser-Ney smooth-
ing trained with KenLM (Heafield, 2011). Here

we set n as 9 and filter all the n-grams appear-
ing less than 5 times. We also compare the LSTM
with the OCLM model (Dudy et al., 2018), a joint
word-character finite-state model, on the predic-
tive typing task with a ambiguous history. Our
LSTM model has 3 layers with 512 hidden units
for each layer.
Evaluation Metrics Mean reciprocal rank at 10
(MRR@10) and Recall at 10 (Recall@10) are
used for evaluation. Recall@10 reflects whether
the correct characters are included in the top
10 candidates suggested by a language model;
MRR@10 reveals the rank of the correct character.
We use MRR and Recall for short in the following
sections. The average values of each metric across
all time steps of all sequences are reported.

4.2 Main Results

In this experiment, we compare the LSTM models
with Unigram and KenLM models on predictive
typing. We first train all the models on clean text
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to get LSTM clean, KenLM clean and Unigram.
LSTM and KenLM models are then trained on text
with p percent of noise to get the noisy models
{LSTM,KenLM} p% (p ∈ {1, 5, 10, 20, 30, 40}).
Since the focus of this paper is on noisy LSTM
models, we summarize the performance of all
noisy KenLM models as KenLM noisy: for a
given test set, we run KenLM p% for each p in
{1, 5, 10, 20, 30, 40} and choose the best perfor-
mance as the performance of KenLM noisy. Then
we compare these models on test sets with noise
rates varying from 0% (clean) to 40%. Figures 1
and 2 present the performance of all the language
models trained on clean or noisy text when evalu-
ating on noisy text.
Noisy or Clean Model? We see that both
noisy LSTM models and KenLM models signifi-
cantly outperform their corresponding clean mod-
els on noisy test sets. Although LSTM clean
and KenLM clean achieve the best performance
on clean test data, their performance drops dra-
matically when applied to noisy data. At 30%
noise, KenLM is no better than a unigram base-
line; LSTM clean does not suffer quite as much.
The language models trained on clean text are sen-
sitive to the noise rate of the test data, while the
language models trained on noisy data performs
more robustly, even when only 1% noise is added.
Therefore, injecting noise into the training corpus
could significantly improve the generalizability of
language models on unseen noisy data.
Neural or N-gram Language Model? Figures 1
and 2 show that the accuracy of LSTM models
is more stable on unseen noisy text than n-gram
models. This advantage, we conjecture, results
not only from the LSTMs’ incorporation of longer
contexts (which might be a disadvantage, but see
below), but also because the parameter counts of
n-gram models rise with the amount of noise.
Even LSTM clean achieves much higher Recall
than KenLM noisy on test sets with different noise
rates. The gap in Recall between them becomes
larger when the data is much noisier; however, the
difference between their MRR is not that signifi-
cant. This indicates that errors in the typing his-
tory have a more significant impact on the MRR
than the Recall of the LSTM clean model.
How to Choose the Training Noise Rate? The
performance of LSTM models trained with dif-
ferent noise rates reveals that all the noisy mod-
els works worse on noisier data. But a model

performs better when trained and tested on data
with matching noise rates. It is unsurprising that
LSTM 40% works worst on the test data with 1%
of noise, while LSTM 1% works worst on the test
set with 40% of noise. When the noise rate of the
test set is unknown, training the model with only
10% percent of noise is acceptable for test data
with noise rates less than 40%.

Figure 3: Percentage of predictions whose MRR is
changed by an error, as a function of distance to the error:
LSTM clean is more sensitive for longer distance.

Figure 4: Percentage of predictions whose recall is
changed by an error, as a function of distance to the error:
LSTM clean is more sensitive for longer distance.

4.3 How Do Errors Affect Nearby and
Long-range Predictions?

Since recurrent LMs are sensitive to long-range
contexts (Khandelwal et al., 2018), we investigate
the impact of errors on the predictions following
it. We inject an error into each character of each
sentence in turn, and then examine how the LSTM
models’ predictive performance is affected by the
distance to the error. Results are reported on the
NYT corpus due to space. SUBTLEXus displays
similar behavior.
Percentage of Predictions Affected Figures 3
and 4 show the percentage of predictions affected
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(a) MRR (b) Recall

Figure 5: Average decrease of performance at positions with different distances from the error for clean and noisy LSTM
models

by the error at positions with different distance
to the error: the closer to the error, the higher
percentage of predictions affected. The impact
of the error is higher and farther on LSTM clean
model than on the noisy models. The noisy mod-
els perform similarly, while the most noisy model
(LSTM 40%) is slightly more influenced by the
error. The error also affects MRR more signif-
icantly than Recall. For the noisy LSTMs, the
MRR of more than 20% of prediction has been
affected by the error within a five-character con-
text, while the Recall of less than 10% of them has
been affected. An error also has a longer-range
effect on MRR than on Recall. An error affects
the MRR of predictions about 40 characters after
it, while it only affects the Recall of predictions
about five characters after it. While the rank of the
correct output among all the characters has been
affected by the error, most are still in the top 10.
Performance Degradation Figure 5 presents the
average degradation in performance for those pre-
dictions affected by the error. Again, we see that
the farther away from the error, the smaller the
degradation of performance could be observed.
The drop of MRR and Recall is less significant
about 10 characters after the error for the noisy
LSTMs. It can also be observed that the average
decrease of MRR and Recall fluctuate around 0
about 10 characters and 5 characters after the er-
ror, respectively. This is because the error affects
the predictions of the noisy models farther than
this distance more randomly and less significantly,
i.e., it slightly increases the Recall and MRR of
some predictions. This effect is most significant
on LSTM 40%, which is trained with the most
noisy data. The decrease of recall fluctuates after
5 characters, since the percentage of predictions

whose recall is affected is much lower after this
distance, as we could see from Figure 4.

4.4 Effect of Error at Different Positions
within Words

Figure 6 presents the performance of LSTM mod-
els when seeing errors in different positions of the
words. For each sentence, we randomly choose
20%, 30% and 40% of the words and corrupt each
word at different positions: the first letter, the in-
termediate letters, the last letter, and the spaces af-
ter it. Since the character error rate is less than
10%, we test with LSTM 10%. We can see that
when the data is noisier, the performance of the
model is worse at all positions of the words. Fur-
thermore, the impact of word error rate is most
dramatic at the first letter, and the performance of
the LSTM gets better when the error moves to later
position in the word.

(a) NYT (b) Sublex

Figure 6: MRR of LSTM models tested on words with dif-
ferent noise rates at different positions.
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4.5 Exploiting Ambiguous Histories

(a) 2 inputs (b) 3 inputs

Figure 7: Performance of LSTM and OCLM trained with 2
or 3 inputs compared to models trained with 1 less input .

Due to input noise, BCI systems might rank
an erroneous character higher than the user’s in-
tended one. In this section, we explore whether
incorporating ambiguous histories into the model
could further improve the performance of neural
language models on a simulated predictive typing
task.

We simulate ambiguous histories by syntheti-
cally generating the top n candidate characters as
well as their probabilities predicted by BCI sys-
tems at each time step. We ensure that adding one
candidate will introduce 5% to 20% percent more
correct characters to it. The Dirichlet distribution
is used to sample a random multinomial distribu-
tion to assign the probabilities to the candidates.

A sum of the embeddings of candidate charac-
ters, weighted by those characters’ probabilities,
is then fed as input to the LSTM at each time
step. Summing is much more efficient the OCLM
or lattice encoder methods (Sperber et al., 2017).
LSTM or OCLM models trained with n inputs
are named LSTM n or OCLM n (n ∈ {1, 2, 3}).
The correctness probability of characters in the kth

candidate is pk (k ∈ {1, 2, 3}). Performance is re-
ported for LSTM and OCLM trained and tested on
datasets with matched error rates.

We compare LSTM and OCLM models on ran-
domly sampled 50K sentences from the test set for
NYT corpus. This is because OCLM is slow due
to the composition operations between finite state
transducers. We find that LSTM performance with
ambiguous history on the subset is consistent with
its performance on the whole NYT test set as well

as its performance on the SUBTLEXus test set re-
ported above.

Figure 7 shows that both LSTM and OCLM
work better when more correct characters are
added into the inputs. We can see from Fig-
ure 7 that the MRR of LSTM has been increased
by more than 13% percent when an extra candi-
date with 20% correctness probability is included;
however, adding an extra candidate with 5% cor-
rectness probability does not significantly improve
the performance of LSTM 2 model, compared to
the determinstic model LSTM 1. It even causes
a degradation in the performance of the OCLM,
which means that the OCLM is more sensitive to
the noise in the inputs.

Figure 7 also shows that when adding an in-
put introduces enough correct characters, the per-
formance of the model improves. Figure 7a
shows that LSTM models trained with an am-
biguous history of 2 inputs (LSTM 2) outperform
LSTM models trained with deterministic history
(LSTM 1), when the correct probability of the sec-
ond candidate p2 is more than 5%. Similar obser-
vation could be made for LSTM models with 3 in-
puts compared with those with 2 inputs in Figure
7b.

We can also see that the LSTM model signifi-
cantly outperforms the OCLM on ambiguous his-
tories. The OCLM has access to both word and
character information, while the LSTM is trained
on character sequences alone.

5 Conclusion

In this paper, we propose training language mod-
els on noisy text to improve their robustness on
unseen noisy text. We also investigate the impact
of errors in the history on the performance of re-
current language models. An efficient method of
integrating ambiguous histories further improves
model performance. We expect to experiment with
more realistic error distributions as more real typ-
ing data becomes available.
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A Appendices

A.1 Effect of Error at Different Positions
within Sentences

(a) NYT (b) Sublex

Figure 8: MRR of LSTM models tested on sentences with
different noise rates at different positions.

We also investigate how the position of errors
within sentences affects the predictive perfor-
mance of LSTM models. Figure 8 shows the
results of noisy LSTM models tested on sentences
where errors appearing in beginning, middle,
and end sections of a sentence. Each sentence
is split into thirds, and an equal percentage of
noise is added to each section in turn. Here,
LSTM models are trained and tested on data
with consistent noise rate. We can see that the
performance of noisy LSTM models does not
vary too much when the errors appear in different
sections of the sentences. Errors appear at earlier
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positions in a sentence do not have a significant
impact on the predictions in later positions in the
sentence.
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